!!$ !!$ Parallel Sparse BLAS v2.0 !!$ (C) Copyright 2006 Salvatore Filippone University of Rome Tor Vergata !!$ Alfredo Buttari University of Rome Tor Vergata !!$ !!$ Redistribution and use in source and binary forms, with or without !!$ modification, are permitted provided that the following conditions !!$ are met: !!$ 1. Redistributions of source code must retain the above copyright !!$ notice, this list of conditions and the following disclaimer. !!$ 2. Redistributions in binary form must reproduce the above copyright !!$ notice, this list of conditions, and the following disclaimer in the !!$ documentation and/or other materials provided with the distribution. !!$ 3. The name of the PSBLAS group or the names of its contributors may !!$ not be used to endorse or promote products derived from this !!$ software without specific written permission. !!$ !!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS !!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED !!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR !!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS !!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR !!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF !!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS !!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN !!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) !!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE !!$ POSSIBILITY OF SUCH DAMAGE. !!$ !!$ ! File: ppde90.f90 ! ! Program: ppde90 ! This sample program shows how to build and solve a sparse linear ! ! The program solves a linear system based on the partial differential ! equation ! ! ! ! The equation generated is ! ! b1 d d (u) b2 d d (u) a1 d (u)) a2 d (u))) ! - ------ - ------ + ----- + ------ + a3 u = 0 ! dx dx dy dy dx dy ! ! ! with Dirichlet boundary conditions on the unit cube ! ! 0<=x,y,z<=1 ! ! The equation is discretized with finite differences and uniform stepsize; ! the resulting discrete equation is ! ! ( u(x,y,z)(2b1+2b2+a1+a2)+u(x-1,y)(-b1-a1)+u(x,y-1)(-b2-a2)+ ! -u(x+1,y)b1-u(x,y+1)b2)*(1/h**2) ! ! Example taken from: C.T.Kelley ! Iterative Methods for Linear and Nonlinear Equations ! SIAM 1995 ! ! ! In this sample program the index space of the discretized ! computational domain is first numbered sequentially in a standard way, ! then the corresponding vector is distributed according to an HPF BLOCK ! distribution directive. ! ! Boundary conditions are set in a very simple way, by adding ! equations of the form ! ! u(x,y) = rhs(x,y) ! program pde90 use psb_base_mod use psb_prec_mod use psb_krylov_mod use psb_util_mod implicit none ! input parameters character :: cmethd*10, prec*10, afmt*5 integer :: idim, iret ! miscellaneous integer :: iargc,convert_descr,dim, check_descr real(kind(1.d0)), parameter :: one = 1.d0 real(kind(1.d0)) :: t1, t2, tprec, tsolve, t3, t4 ! sparse matrix and preconditioner type(psb_dspmat_type) :: a, l, u, h type(psb_dprec_type) :: pre ! descriptor type(psb_desc_type) :: desc_a, desc_a_out ! dense matrices real(kind(1.d0)), allocatable :: b(:), x(:), d(:),ld(:) integer, allocatable :: work(:) ! blacs parameters integer :: ictxt, iam, np ! solver parameters integer :: iter, itmax,ierr,itrace, methd,iprec, istopc,& & iparm(20), ml, novr real(kind(1.d0)) :: err, eps, rparm(20) ! other variables integer :: i,info integer :: internal, m,ii character(len=10) :: ptype character(len=20) :: name,ch_err if(psb_get_errstatus().ne.0) goto 9999 info=0 name='pde90' call psb_set_errverbosity(2) call psb_set_erraction(0) call psb_init(ictxt) call psb_info(ictxt,iam,np) if (iam < 0) then ! This should not happen, but just in case call psb_exit(ictxt) stop endif ! ! get parameters ! call get_parms(ictxt,cmethd,iprec,novr,afmt,idim,istopc,itmax,itrace,ml) ! ! allocate and fill in the coefficient matrix, rhs and initial guess ! call psb_barrier(ictxt) t1 = psb_wtime() call create_matrix(idim,a,b,x,desc_a,part_block,ictxt,afmt,info) t2 = psb_wtime() - t1 if(info.ne.0) then info=4010 ch_err='create_matrix' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if call psb_amx(ictxt,t2) if (iam == 0) write(*,'("Overall matrix creation time : ",es10.4)')t2 if (iam == 0) write(*,'(" ")') ! ! prepare the preconditioner. ! if(iam == psb_root_) write(0,'("Setting preconditioner to : ",a)')pr_to_str(iprec) select case(iprec) case(noprec_) call psb_precset(pre,'noprec',info) case(diagsc_) call psb_precset(pre,'diagsc',info) case(bja_) call psb_precset(pre,'ilu',info) case default call psb_precset(pre,'ilu',info) end select call psb_barrier(ictxt) t1 = psb_wtime() call psb_precbld(a,desc_a,pre,info) if(info.ne.0) then info=4010 ch_err='psb_precbld' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if tprec = psb_wtime()-t1 call psb_amx(ictxt,tprec) if (iam == 0) write(*,'("Preconditioner time : ",es10.4)')tprec if (iam == 0) write(*,'(" ")') ! ! iterative method parameters ! if(iam == psb_root_) write(*,'("Calling iterative method ",a)')cmethd call psb_barrier(ictxt) t1 = psb_wtime() eps = 1.d-9 call psb_krylov(cmethd,a,pre,b,x,eps,desc_a,info,& & itmax=itmax,iter=iter,err=err,itrace=itrace,istop=istopc,irst=ml) if(info.ne.0) then info=4010 ch_err='solver routine' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if call psb_barrier(ictxt) t2 = psb_wtime() - t1 call psb_amx(ictxt,t2) if (iam == 0) then write(*,'(" ")') write(*,'("Time to solve matrix : ",es10.4)')t2 write(*,'("Time per iteration : ",es10.4)')t2/iter write(*,'("Number of iterations : ",i0)')iter write(*,'("Error on exit : ",es10.4)')err write(*,'("Info on exit : ",i0)')info end if ! ! cleanup storage and exit ! call psb_gefree(b,desc_a,info) call psb_gefree(x,desc_a,info) call psb_spfree(a,desc_a,info) call psb_precfree(pre,info) call psb_cdfree(desc_a,info) if(info.ne.0) then info=4010 ch_err='free routine' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if 9999 continue if(info /= 0) then call psb_error(ictxt) end if call psb_exit(ictxt) stop contains ! ! get iteration parameters from the command line ! subroutine get_parms(ictxt,cmethd,iprec,novr,afmt,idim,istopc,itmax,itrace,ml) integer :: ictxt character :: cmethd*10, afmt*5 integer :: idim, iret, istopc,itmax,itrace,ml, iprec, novr character*40 :: charbuf integer :: iargc, np, iam external iargc integer :: intbuf(10), ip call psb_info(ictxt, iam, np) if (iam==0) then read(*,*) ip if (ip.ge.3) then read(*,*) cmethd read(*,*) iprec read(*,*) novr read(*,*) afmt ! convert strings in array do i = 1, len(cmethd) intbuf(i) = iachar(cmethd(i:i)) end do ! broadcast parameters to all processors call psb_bcast(ictxt,intbuf(1:10)) ! broadcast parameters to all processors call psb_bcast(ictxt,iprec) call psb_bcast(ictxt,novr) do i = 1, len(afmt) intbuf(i) = iachar(afmt(i:i)) end do call psb_bcast(ictxt,intbuf(1:10)) read(*,*) idim if (ip.ge.4) then read(*,*) istopc else istopc=1 endif if (ip.ge.5) then read(*,*) itmax else itmax=500 endif if (ip.ge.6) then read(*,*) itrace else itrace=-1 endif if (ip.ge.7) then read(*,*) ml else ml=1 endif ! broadcast parameters to all processors intbuf(1) = idim intbuf(2) = istopc intbuf(3) = itmax intbuf(4) = itrace intbuf(5) = ml call psb_bcast(ictxt,intbuf(1:5)) write(*,'("Solving matrix : ell1")') write(*,'("Grid dimensions : ",i4,"x",i4,"x",i4)')idim,idim,idim write(*,'("Number of processors : ",i0)')np write(*,'("Data distribution : BLOCK")') write(*,'("Preconditioner : ",a)')pr_to_str(iprec) if(iprec.gt.2) write(*,'("Overlapping levels : ",i0)')novr write(*,'("Iterative method : ",a)')cmethd write(*,'(" ")') else ! wrong number of parameter, print an error message and exit call pr_usage(0) call psb_abort(ictxt) stop 1 endif else call psb_bcast(ictxt,intbuf(1:10)) do i = 1, 10 cmethd(i:i) = achar(intbuf(i)) end do call psb_bcast(ictxt,iprec) call psb_bcast(ictxt,novr) call psb_bcast(ictxt,intbuf(1:10)) do i = 1, 5 afmt(i:i) = achar(intbuf(i)) end do call psb_bcast(ictxt,intbuf(1:5)) idim = intbuf(1) istopc = intbuf(2) itmax = intbuf(3) itrace = intbuf(4) ml = intbuf(5) end if return end subroutine get_parms ! ! print an error message ! subroutine pr_usage(iout) integer :: iout write(iout,*)'incorrect parameter(s) found' write(iout,*)' usage: pde90 methd prec dim & &[istop itmax itrace]' write(iout,*)' where:' write(iout,*)' methd: cgstab tfqmr cgs' write(iout,*)' prec : ilu diagsc none' write(iout,*)' dim number of points along each axis' write(iout,*)' the size of the resulting linear ' write(iout,*)' system is dim**3' write(iout,*)' istop stopping criterion 1, 2 or 3 [1] ' write(iout,*)' itmax maximum number of iterations [500] ' write(iout,*)' itrace 0 (no tracing, default) or ' write(iout,*)' >= 0 do tracing every itrace' write(iout,*)' iterations ' end subroutine pr_usage ! ! subroutine to allocate and fill in the coefficient matrix and ! the rhs. ! subroutine create_matrix(idim,a,b,t,desc_a,parts,ictxt,afmt,info) ! ! discretize the partial diferential equation ! ! b1 dd(u) b2 dd(u) b3 dd(u) a1 d(u) a2 d(u) a3 d(u) ! - ------ - ------ - ------ - ----- - ------ - ------ + a4 u ! dxdx dydy dzdz dx dy dz ! ! = 0 ! ! boundary condition: dirichlet ! 0< x,y,z<1 ! ! u(x,y,z)(2b1+2b2+2b3+a1+a2+a3)+u(x-1,y,z)(-b1-a1)+u(x,y-1,z)(-b2-a2)+ ! + u(x,y,z-1)(-b3-a3)-u(x+1,y,z)b1-u(x,y+1,z)b2-u(x,y,z+1)b3 use psb_base_mod implicit none integer :: idim integer, parameter :: nbmax=10 real(kind(1.d0)), allocatable :: b(:),t(:) type(psb_desc_type) :: desc_a integer :: ictxt, info character :: afmt*5 interface ! .....user passed subroutine..... subroutine parts(global_indx,n,np,pv,nv) implicit none integer, intent(in) :: global_indx, n, np integer, intent(out) :: nv integer, intent(out) :: pv(*) end subroutine parts end interface ! local variables type(psb_dspmat_type) :: a real(kind(1.d0)) :: zt(nbmax),glob_x,glob_y,glob_z integer :: m,n,nnz,glob_row,j integer :: x,y,z,counter,ia,i,indx_owner integer :: np, iam integer :: element integer :: nv, inv integer, allocatable :: irow(:),icol(:) real(kind(1.d0)), allocatable :: val(:) integer, allocatable :: prv(:) ! deltah dimension of each grid cell ! deltat discretization time real(kind(1.d0)) :: deltah real(kind(1.d0)),parameter :: rhs=0.d0,one=1.d0,zero=0.d0 real(kind(1.d0)) :: t1, t2, t3, tins, tasb real(kind(1.d0)) :: a1, a2, a3, a4, b1, b2, b3 external :: a1, a2, a3, a4, b1, b2, b3 integer :: nb, ir1, ir2, ipr, err_act logical :: own ! common area character(len=20) :: name, ch_err info = 0 name = 'create_matrix' call psb_erractionsave(err_act) call psb_info(ictxt, iam, np) deltah = 1.d0/(idim-1) ! initialize array descriptor and sparse matrix storage. provide an ! estimate of the number of non zeroes m = idim*idim*idim n = m nnz = ((n*9)/(np)) if(iam == psb_root_) write(0,'("Generating Matrix (size=",i0x,")...")')n call psb_cdall(n,n,parts,ictxt,desc_a,info) call psb_spall(a,desc_a,info,nnz=nnz) ! define rhs from boundary conditions; also build initial guess call psb_geall(b,desc_a,info) call psb_geall(t,desc_a,info) if(info.ne.0) then info=4010 ch_err='allocation rout.' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if ! we build an auxiliary matrix consisting of one row at a ! time; just a small matrix. might be extended to generate ! a bunch of rows per call. ! allocate(val(20*nbmax),irow(20*nbmax),& &icol(20*nbmax),prv(np),stat=info) if (info.ne.0 ) then info=4000 call psb_errpush(info,name) goto 9999 endif tins = 0.d0 call psb_barrier(ictxt) t1 = psb_wtime() ! loop over rows belonging to current process in a block ! distribution. ! icol(1)=1 do glob_row = 1, n call parts(glob_row,n,np,prv,nv) do inv = 1, nv indx_owner = prv(inv) if (indx_owner == iam) then ! local matrix pointer element=1 ! compute gridpoint coordinates if (mod(glob_row,(idim*idim)) == 0) then x = glob_row/(idim*idim) else x = glob_row/(idim*idim)+1 endif if (mod((glob_row-(x-1)*idim*idim),idim) == 0) then y = (glob_row-(x-1)*idim*idim)/idim else y = (glob_row-(x-1)*idim*idim)/idim+1 endif z = glob_row-(x-1)*idim*idim-(y-1)*idim ! glob_x, glob_y, glob_x coordinates glob_x=x*deltah glob_y=y*deltah glob_z=z*deltah ! check on boundary points zt(1) = 0.d0 ! internal point: build discretization ! ! term depending on (x-1,y,z) ! if (x==1) then val(element)=-b1(glob_x,glob_y,glob_z)& & -a1(glob_x,glob_y,glob_z) val(element) = val(element)/(deltah*& & deltah) zt(1) = exp(-glob_y**2-glob_z**2)*(-val(element)) else val(element)=-b1(glob_x,glob_y,glob_z)& & -a1(glob_x,glob_y,glob_z) val(element) = val(element)/(deltah*& & deltah) icol(element)=(x-2)*idim*idim+(y-1)*idim+(z) element=element+1 endif ! term depending on (x,y-1,z) if (y==1) then val(element)=-b2(glob_x,glob_y,glob_z)& & -a2(glob_x,glob_y,glob_z) val(element) = val(element)/(deltah*& & deltah) zt(1) = exp(-glob_y**2-glob_z**2)*exp(-glob_x)*(-val(element)) else val(element)=-b2(glob_x,glob_y,glob_z)& & -a2(glob_x,glob_y,glob_z) val(element) = val(element)/(deltah*& & deltah) icol(element)=(x-1)*idim*idim+(y-2)*idim+(z) element=element+1 endif ! term depending on (x,y,z-1) if (z==1) then val(element)=-b3(glob_x,glob_y,glob_z)& & -a3(glob_x,glob_y,glob_z) val(element) = val(element)/(deltah*& & deltah) zt(1) = exp(-glob_y**2-glob_z**2)*exp(-glob_x)*(-val(element)) else val(element)=-b3(glob_x,glob_y,glob_z)& & -a3(glob_x,glob_y,glob_z) val(element) = val(element)/(deltah*& & deltah) icol(element)=(x-1)*idim*idim+(y-1)*idim+(z-1) element=element+1 endif ! term depending on (x,y,z) val(element)=2*b1(glob_x,glob_y,glob_z)& & +2*b2(glob_x,glob_y,glob_z)& & +2*b3(glob_x,glob_y,glob_z)& & +a1(glob_x,glob_y,glob_z)& & +a2(glob_x,glob_y,glob_z)& & +a3(glob_x,glob_y,glob_z) val(element) = val(element)/(deltah*& & deltah) icol(element)=(x-1)*idim*idim+(y-1)*idim+(z) element=element+1 ! term depending on (x,y,z+1) if (z==idim) then val(element)=-b1(glob_x,glob_y,glob_z) val(element) = val(element)/(deltah*& & deltah) zt(1) = exp(-glob_y**2-glob_z**2)*exp(-glob_x)*(-val(element)) else val(element)=-b1(glob_x,glob_y,glob_z) val(element) = val(element)/(deltah*& & deltah) icol(element)=(x-1)*idim*idim+(y-1)*idim+(z+1) element=element+1 endif ! term depending on (x,y+1,z) if (y==idim) then val(element)=-b2(glob_x,glob_y,glob_z) val(element) = val(element)/(deltah*& & deltah) zt(1) = exp(-glob_y**2-glob_z**2)*exp(-glob_x)*(-val(element)) else val(element)=-b2(glob_x,glob_y,glob_z) val(element) = val(element)/(deltah*& & deltah) icol(element)=(x-1)*idim*idim+(y)*idim+(z) element=element+1 endif ! term depending on (x+1,y,z) if (x