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1 Introduction

The PSBLAS library, developed with the aim to facilitate the parallelization of
computationally intensive scientific applications, is designed to address parallel
implementation of iterative solvers for sparse linear systems through the dis-
tributed memory paradigm. It includes routines for multiplying sparse matrices
by dense matrices, solving block diagonal systems with triangular diagonal en-
tries, preprocessing sparse matrices, and contains additional routines for dense
matrix operations. The current implementation of PSBLAS addresses a dis-
tributed memory execution model operating with message passing.

The PSBLAS library is internally implemented in a mixture of Fortran 77
and Fortran 95 [21] programming languages. A similar approach has been advo-
cated by a number of authors, e.g. [20]. Moreover, the Fortran 95 facilities for
dynamic memory management and interface overloading greatly enhance the
usability of the PSBLAS subroutines. In this way, the library can take care
of runtime memory requirements that are quite difficult or even impossible to
predict at implementation or compilation time. In the current release we rely
on the availability of the so-called allocatable extensions, specified in TR 15581.
Strictly speaking they are outside the Fortran 95 standard; however they have
been included in the Fortran 2003 language standard, and are available in prc-
tically all Fortran 95 compilers on the market, including the GCC compiler
from the Free Software Foundation (as of version 4.2). The presentation of the
PSBLAS library follows the general structure of the proposal for serial Sparse
BLAS [15, 16], which in its turn is based on the proposal for BLAS on dense
matrices [1, 2, 3].

The applicability of sparse iterative solvers to many different areas causes
some terminology problems because the same concept may be denoted through
different names depending on the application area. The PSBLAS features pre-
sented in this document will be discussed referring to a finite difference dis-
cretization of a Partial Differential Equation (PDE). However, the scope of the
library is wider than that: for example, it can be applied to finite element dis-
cretizations of PDEs, and even to different classes of problems such as nonlinear
optimization, for example in optimal control problems.

The design of a solver for sparse linear systems is driven by many con-
flicting objectives, such as limiting occupation of storage resources, exploiting
regularities in the input data, exploiting hardware characteristics of the par-
allel platform. To achieve an optimal communication to computation ratio on
distributed memory machines it is essential to keep the data locality as high as
possible; this can be done through an appropriate data allocation strategy. The
choice of the preconditioner is another very important factor that affects effi-
ciency of the implemented application. Optimal data distribution requirements
for a given preconditioner may conflict with distribution requirements of the rest
of the solver. Finding the optimal trade-off may be very difficult because it is
application dependent. Possible solution to these problems and other important
inputs to the development of the PSBLAS software package has come from an
established experience in applying the PSBLAS solvers to computational fluid
dynamics applications.



2 General overview

The PSBLAS library is designed to handle the implementation of iterative
solvers for sparse linear systems on distributed memory parallel computers.
The system coefficient matrix A must be square; it may be real or complex,
nonsymmetric, and its sparsity pattern needs not to be symmetric. The serial
computation parts are based on the serial sparse BLAS, so that any extension
made to the data structures of the serial kernels is available to the parallel ver-
sion. The overall design and parallelization strategy have been influenced by
the structure of the ScaLAPACK parallel library. The layered structure of the
PSBLAS library is shown in figure 1 ; lower layers of the library indicate an
encapsulation relationship with upper layers. The ongoing discussion focuses
on the Fortran 95 layer immediately below the application layer. The serial
parts of the computation on each process are executed through calls to the
serial sparse BLAS subroutines. In a similar way, the inter-process message
exchanges are implemented through the Basic Linear Algebra Communication
Subroutines (BLACS) library [14] that guarantees a portable and efficient com-
munication layer. The Message Passing Interface code is encapsulated within
the BLACS layer. However, in some cases, MPI routines are directly used ei-
ther to improve efficiency or to implement communication patterns for which
the BLACS package doesn’t provide any method.

In any case we provide wrappers around the BLACS routines so that the
user does not need to delve into their details (see Sec. 7).

Figure 1: PSBLAS library components hierarchy.

The type of linear system matrices that we address typically arise in the
numerical solution of PDEs; in such a context, it is necessary to pay special
attention to the structure of the problem from which the application originates.
The nonzero pattern of a matrix arising from the discretization of a PDE is in-
fluenced by various factors, such as the shape of the domain, the discretization
strategy, and the equation/unknown ordering. The matrix itself can be inter-
preted as the adjacency matrix of the graph associated with the discretization
mesh.

The distribution of the coefficient matrix for the linear system is based on the
“owner computes” rule: the variable associated to each mesh point is assigned to
a process that will own the corresponding row in the coefficient matrix and will
carry out all related computations. This allocation strategy is equivalent to a



partition of the discretization mesh into sub-domains. Our library supports any
distribution that keeps together the coefficients of each matrix row; there are no
other constraints on the variable assignment. This choice is consistent with data
distributions commonly used in ScaLAPACK such as CYCLIC(N) and BLOCK, as
well as completely arbitrary assignments of equation indices to processes. In
particular it is consistent with the usage of graph partitioning tools commonly
available in the literature, e.g. METIS [19]. Dense vectors conform to sparse
matrices, that is, the entries of a vector follow the same distribution of the
matrix rows.

We assume that the sparse matrix is built in parallel, where each process
generates its own portion. We never require that the entire matrix be available
on a single node. However, it is possible to hold the entire matrix in one process
and distribute it explicitly!, even though the resulting bottleneck would make
this option unattractive in most cases.

2.1 Basic Nomenclature

Our computational model implies that the data allocation on the parallel dis-
tributed memory machine is guided by the structure of the physical model, and
specifically by the discretization mesh of the PDE.

Each point of the discretization mesh will have (at least) one associated
equation/variable, and therefore one index. We say that point ¢ depends on
point j if the equation for a variable associated with ¢ contains a term in 7,
or equivalently if a;; # 0. After the partition of the discretization mesh into
sub-domains assigned to the parallel processes, we classify the points of a given
sub-domain as following.

Internal. An internal point of a given domain depends only on points of the
same domain. If all points of a domain are assigned to one process, then a
computational step (e.g., a matrix-vector product) of the equations asso-
ciated with the internal points requires no data items from other domains
and no communications.

Boundary. A point of a given domain is a boundary point if it depends on
points belonging to other domains.

Halo. A halo point for a given domain is a point belonging to another domain
such that there is a boundary point which depends on it. Whenever per-
forming a computational step, such as a matrix-vector product, the values
associated with halo points are requested from other domains. A bound-
ary point of a given domain is a halo point for (at least) another domain;
therefore the cardinality of the boundary points set denotes the amount
of data sent to other domains.

Overlap. An overlap point is a boundary point assigned to multiple domains.
Any operation that involves an overlap point has to be replicated for each
assignment.

Overlap points do not usually exist in the basic data distribution, but they are
a feature of Domain Decomposition Schwarz preconditioners which we are in
the process of including in our distribution [6, 11].

In our prototype implementation we provide sample scatter/gather routines.



We denote the sets of internal, boundary and halo points for a given subdo-
main by Z, B and ‘H. Each subdomain is assigned to one process; each process
usually owns one subdomain, although the user may choose to assign more than
one subdomain to a process. If each process i owns one subdomain, the number
of rows in the local sparse matrix is |Z;| + |B;|, and the number of local columns
(i.e. those for which there exists at least one non-zero entry in the local rows)
is ‘IZ| + |Bz| + ‘H1|

Domain 2

Internal Domain 1

Boundary
Halo

Figure 2: Point classfication.

This classification of mesh points guides the naming scheme that we adopted
in the library internals and in the data structures. We explicitly note that
“Halo” points are also often called “ghost” points in the literature.

2.2 Library contents

The PSBLAS library consists of various classes of subroutines:
Computational routines comprising:

e Sparse matrix by dense matrix product;

e Sparse triangular systems solution for block diagonal matrices;

Vector and matrix norms;
e Dense matrix sums;

e Dot products.
Communication routines handling halo and overlap communications;
Data management and auxiliary routines including:

e Parallel environment management

e Communication descriptors allocation;

e Dense and sparse matrix allocation;

e Dense and sparse matrix build and update;

e Sparse matrix and data distribution preprocessing.

Preconditioner routines



Iterative methods a subset of Krylov subspace iterative methods

The following naming scheme has been adopted for all the symbols internally
defined in the PSBLAS software package:

e all the symbols (i.e. subroutine names, data types...) are prefixed by psb_
e all the data type names are suffixed by _type
e all the constant values are suffixed by _

e all the subroutine names follow the rule psb_xxname where xx can be
either:

— ge: the routine is related to dense data,
— sp: the routine is related to sparse data,

— cd: the routine is related to communication descriptor (see 3).

For example the psb_geins, psb_spins and psb_cdins perform the same
action (see 6) on dense matrices, sparse matrices and communication de-
scriptors respectively. Interface overloading allows the usage of the same
subroutine interfaces for both real and complex data.

In the description of the subroutines, arguments or argument entries are classi-
fied as:

global For input arguments, the value must be the same on all processes partici-
pating in the subroutine call; for output arguments the value is guaranteed
to be the same.

local Each process has its own value(s) independently.

2.3 Application structure

The main underlying principle of the PSBLAS library is that the library objects
are created and exist with reference to a discretized space to which there corre-
sponds an index space and a matrix sparsity pattern. As an example, consider
a cell-centered finite-volume discretization of the Navier-Stokes equations on a
simulation domain; the index space 1...n is isomorphic to the set of cell cen-
ters, whereas the pattern of the associated linear system matrix is isomorphic
to the adjacency graph imposed on the discretization mesh by the discretization
stencil.

Thus the first order of business is to establish an index space, and this is
done with a call to psb_cdall in which we specify the size of the index space
n and the allocation of the elements of the index space to the various processes
making up the MPI (virtual) parallel machine.

The index space is partitioned among processes, and this creates a mapping
from the “global” numbering 1...n to a numbering “local” to each process; each
process ¢ will own a certain subset 1. .. nrow,, each element of which corresponds
to a certain element of 1...n. The user does not set explicitly this mapping;
when the application needs to indicate to which element of the index space a
certain item is related, such as the row and column index of a matrix coefficient,



it does so in the “global” numbering, and the library will translate into the
appropriate “local” numbering.

For a given index space 1...n there are many possible associated topologies,
i.e. many different discretization stencils; thus the description of the index space
is not completed until the user has defined a sparsity pattern, either explicitly
through psb_cdins or implicitly through psb_spins. The descriptor is finalized
with a call to psb_cdasb and a sparse matrix with a call to psb_spasb. After
psb_cdasb each process ¢ will have defined a set of “halo” (or “ghost”) indices
nrow, +1...1¢] , denoting elements of the index space that are not assigned
to process i; however the variables associated with them are needed to complete
computations associated with the sparse matrix A, and thus they have to be
fetched from (neighbouring) processes. The descriptor of the index space is
built exactly for the purpose of properly sequencing the communication steps
required to achieve this objective.

A simple application structure will walk through the index space allocation,
matrix/vector creation and linear system solution as follows:

1. Initialize parallel environment with psb_init
2. Initialize index space with psb_cdall
3. Allocate sparse matrix and dense vectors with psb_spall and psb_geall

4. Loop over all local rows, generate matrix and vector entries, and insert
them with psb_spins and psb_geins

5. Assemble the various entities:

(a) psb_cdasb
(b) psb_spasb
(c) psb_geasb

6. Choose the preconditioner to be used with psb_precset and build it with
psb_precbld

7. Call the iterative method of choice, e.g. psb_bicgstab

This is the structure of the sample program test/pargen/ppde90.£90.
For a simulation in which the same discretization mesh is used over multiple
time steps, the following structure may be more appropriate:

1. Initialize parallel environment with psb_init
2. Initialize index space with psb_cdall

3. Loop over the topology of the discretization mesh and build the descriptor
with psb_cdins

4. Assemble the descriptor with psb_cdasb
5. Allocate the sparse matrices and dense vectors with psb_spall and psb_geall

6. Loop over the time steps:



(a) If after first time step, reinitialize the sparse matrix with psb_sprn;
also zero out the dense vectors;

(b) Loop over the mesh, generate the coefficients and insert/update them
with psb_spins and psb_geins

(¢) Assemble with psb_spasb and psb_geasb
(d) Choose and build preconditioner with psb_precset and psb_precbld
(e) Call the iterative method of choice, e.g. psb_bicgstab

The insertion routines will be called as many times as needed; they only need
to be called on the data that is actually allocated to the current process, i.e.
each process generates its own data.

In principle there is no specific order in the calls to psb_spins, nor is there
a requirement to build a matrix row in its entirety before calling the routine;
this allows the application programmer to walk through the discretization mesh
element by element, generating the main part of a given matrix row but also
contributions to the rows corresponding to neighbouring elements.

From a functional point of view it is even possible to execute one call for
each nonzero coefficient; however this would have a substantial computational
overhead. It is therefore advisable to pack a certain amount of data into each call
to the insertion routine, say touching on a few tens of rows; the best performng
value would depend on both the architecture of the computer being used and
on the problem structure. At the opposite extreme, it would be possible to
generate the entire part of a coefficient matrix residing on a process and pass it
in a single call to psb_spins; this, however, would entail a doubling of memory
occupation, and thus would be almost always far from optimal.

2.4 Programming model

The PSBLAS librarary is based on the Single Program Multiple Data (SPMD)
programming model: each process participating in the computation performs
the same actions on a chunk of data. Parallelism is thus data-driven.

Because of this structure, practically all subroutines must be called simul-
taneously by all processes participating in the computation, i.e each subroutine
call acts implicitly as a synchronization point. The exceptions to this rule are:

e The insertion routines psb_cdins, psb_spins and psb_geins;
e The error handling routines.

In particular, as per the discussion in the previous section, the insertion routines
may be called a different number of times on each process, depending on the
data distribution chosen by the user.



3 Data Structures

In this chapter we illustrate the data structures used for definition of routines
interfaces. They include data structures for sparse matrices, communication
descriptors and preconditioners.

All the data types and subroutine interfaces are defined in the module
psb_base_mod; this will have to be included by every user subroutine that makes
use of the library.

3.1 Descriptor data structure

All the general matrix informations and elements to be exchanged among pro-
cesses are stored within a data structure of the type psb_desc_type. Every
structure of this type is associated to a sparse matrix, it contains data about
general matrix informations and elements to be exchanged among processes.
It is not necessary for the user to know the internal structure of psb_desc_type,

it is set in a transparent mode by the tools routines of Sec. 6 while creating a
new sparse matrix, and its fields may be accessed if necessary via appropriate
routines; nevertheless we include its description for the curious reader:

matrix_data includes general information about matrix and process grid. More
precisely:

matrix_data[psb_dec_type_] Identifies the decomposition type (global);
the actual values are internally defined, so they should never be ac-
cessed directly.

matrix_data[psb_ctxt_] Communication context associated with the pro-
cesses comprised in the virtual parallel machine (global).

matrix_data[psb_m_] Total number of equations (global).
matrix_data[psb_n_] Total number of variables (global).

matrix_data[psb_n_row_] Number of grid variables owned by the cur-
rent process (local); equivalent to the number of local rows in the
sparse coefficient matrix.

matrix_data[psb_n_col_] Total number of grid variables read by the cur-
rent process (local); equivalent to the number of local columns in the
sparse coefficient matrix. They include the halo.

Specified as: an allocatable integer array of dimension psb_mdata_size_.

halo_index A list of the halo and boundary elements for the current process
to be exchanged with other processes; for each processes with which it is
necessary to communicate:

Process identifier;

Number of points to be received;

Indices of points to be received;

Number of points to be sent;

gl W

Indices of points to be sent;



The list may contain an arbitrary number of groups; its end is marked by
a-1.
Specified as: an allocatable integer array of rank one.

ovrlap_index A list of the overlap elements for the current process, organized
in groups like the previous vector:

Process identifier;

Number of points to be received;

Indices of points to be received;

Number of points to be sent;

v W

Indices of points to be sent;

The list may contain an arbitrary number of groups; its end is marked by
a-1.
Specified as: an allocatable integer array of rank one.

ovrlap_index For all overlap points belonging to th ecurrent process:

1. Overlap point index;

2. Number of processes sharing that overlap points;

The list may contain an arbitrary number of groups; its end is marked by
a-1.
Specified as: an allocatable integer array of rank one.

loc_to_glob each element i of this array contains global identifier of the local
variable .
Specified as: an allocatable integer array of rank one.

glob_to_loc if global variable ¢ is read by current process then element i con-
tains local index correpondent to global variable ¢; else element ¢ contains
-1 (NULL) value.
Specified as: an allocatabled integer array of rank one.

The Fortran95 definition for psb_desc_type structures is as follows:

type psb_desc_type
integer, allocatable :: matrix_data(:), halo_index(:)
integer, allocatable :: overlap_elem(:), overlap_index(:)
integer, allocatable :: loc_to_glob(:), glob_to_loc(:)
end type psb_desc_type

Figure 3: The PSBLAS defined data type that contains the communication
descriptor.

A communication descriptor associated with a sparse matrix has a state,
which can take the following values:



Build: State entered after the first allocation, and before the first assembly; in
this state it is possible to add communication requirements among different
processes.

Assembled: State entered after the assembly; computations using the associ-
ated sparse matrix, such as matrix-vector products, are only possible in
this state.

3.1.1 Named Constants

psb_none_ Generic no-op;

psb_nohalo_ Do not fetch halo elements;

psb_halo_ Fetch halo elements from neighbouring processes;

psb_sum_ Sum overlapped elements

psb_avg_ Average overlapped elements

psb_dec_type_ Entry holding decomposition type (in desc_almatrix_data)
psb_m_ Entry holding total number of rows

psb_n_ Entry holding total number of columns

psb_n_row_ Entry holding the number of rows stored in the current process
psb_n_col_ Entry holding the number of columns stored in the current process
psb_ctxt_ Entry holding a copy of the BLACS communication context

psb_desc_asb_ State of the descriptor: assembled, i.e. suitable for computa-
tional tasks.

psb_desc_bld_ State of the descriptor: build, must be assembled before com-
putational use.

3.2 Sparse Matrix data structure

The psb_spmat_type data structure contains all information about local portion
of the sparse matrix and its storage mode. Most of these fields are set by the
tools routines when inserting a new sparse matrix; the user needs only choose,
if he/she so whishes, a specific matrix storage mode.

aspk Contains values of the local distributed sparse matrix.
Specified as: an allocatable array of rank one of type corresponding to
matrix entries type.

ial Holds integer information on distributed sparse matrix. Actual information
will depend on data format used.
Specified as: an allocatable integer array of rank one.
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ia2 Holds integer information on distributed sparse matrix. Actual information
will depend on data format used.
Specified as: an allocatable integer array of rank one.

infoa On entry can hold auxiliary information on distributed sparse matrix.
Actual information will depend on data format used.
Specified as: an integer array of length psb_ifasize_.

fida Defines the format of the distributed sparse matrix.
Specified as: a string of length 5

descra Describe the characteristic of the distributed sparse matrix.
Specified as: array of character of length 9.

pl Specifies the local row permutation of distributed sparse matrix. If pl(1) is
equal to 0, then there isn’t row permutation.
Specified as: an allocatable integer array of dimension equal to number of
local row (matrix_data[psb-n_row_])

pr Specifies the local column permutation of distributed sparse matrix. If
PR(1) is equal to 0, then there isn’t columnm permutation.
Specified as: an allocatable integer array of dimension equal to number of
local row (matrix_data[psb_n_col ])

m Number of rows; if row indices are stored explicitly, as in Coordinate Storage,
should be greater than or equal to the maximum row index actually present
in the sparse matrix. Specified as: integer variable.

k Number of columns; if column indices are stored explicitly, as in Coordinate
Storage or Compressed Sparse Rows, should be greater than or equal to the
maximum column index actually present in the sparse matrix. Specified
as: integer variable.

FORTRANOS5 interface for distributed sparse matrices containing double preci-
sion real entries is defined as in figure 4.

type psb_dspmat_type

integer :tm, k

character :: fida(5)

character  :: descra(10)

integer :: infoa(psb_ifa_size_)
real(kind(1.d0)), allocatable :: aspk(:)
integer, allocatable :: ial(:), ia2(:)

integer, allocatable :: pr(:), pl(:)
end type psb_dspmat_type

Figure 4: The PSBLAS defined data type that contains a sparse matrix.

The following two cases are among the most commonly used:

11



fida=“CSR” Compressed storage by rows. In this case the following should
hold:

1. ia2(i) contains the index of the first element of row i; the last
element of the sparse matrix is thus stored at index ia2(m+1)—1. It
should contain m+1 entries in nondecreasing order (strictly increasing,
if there are no empty rows).

2. ial(j) contains the column index and aspk(j) contains the corre-
sponding coeflicient value, for all ia2(1) < j <ia2(m+1) — 1.

fida=“COO0O” Coordinate storage. In this case the following should hold:

1. infoa(1) contains the number of nonzero elements in the matrix;

2. For all 1 < j <infoa(1), the coefficient, row index and column index
are stored into apsk(j), ial(j) and ia2(j) respectively.

A sparse matrix has an associated state, which can take the following values:

Build: State entered after the first allocation, and before the first assembly; in
this state it is possible to add nonzero entries.

Assembled: State entered after the assembly; computations using the sparse
matrix, such as matrix-vector products, are only possible in this state;

Update: State entered after a reinitalization; this is used to handle applications
in which the same sparsity pattern is used multiple times with different
coeflicients. In this state it is only possible to enter coefficients for already
existing nonzero entries.

3.2.1 Named Constants

psb_dupl_ovwrt_ Duplicate coefficients should be overwritten (i.e. ignore du-
plications)

psb_dupl_add_ Duplicate coefficients should be added;

psb_dupl_err_ Duplicate coefficients should trigger an error conditino
psb_upd_dfit_ Default update strategy for matrix coefficients;
psb_upd_srch_ Update strategy based on search into the data structure;
psb_upd_perm_ Update strategy based on additional permutation data (see

tools routine description).

3.3 Preconditioner data structure

Our library offers support for many different types of preconditioning schemes.
Besides the simple well known preconditioners like Diagonal Scaling or Block
Jacobi with either incomplete factorization ILU(0) or complete LU factorization.
We also provide an experimental package of complex preconditioning methods
like the Additive Schwarz and Multilevel Additive Schwarz; these last precon-
ditioners will be described in a separate document.

12



A preconditioner is held in the psb_prec_type data structure which depends
on the psb_base_prec reported in figure 5. The psb_base_prec data type may
contain a simple preconditioning matrix with the associated communication de-
scriptor which may be different than the system communication descriptor in
the case of parallel preconditioners like the Additive Schwarz one. Then the
psb_prec_type may contain more than one preconditioning matrix like in the
case of Two-Level (in general Multi-Level) preconditioners. The user can choose
the type of preconditioner to be used by means of the psb_precset subroutine;
once the type of preconditioning method is specified, along with all the param-
eters that characterize it, the preconditioner data structure can be built using
the psb_precbld subroutine. This data structure wants to be flexible enough
to easily allow the implementation of new kind of preconditioners. The values
contained in the iprcparm and dprcparm define tha type of preconditioner along
with all the parameters related to it; thus, iprcparm and dprcparm define how
the other records have to be interpreted.

type psb_dbaseprc_type

type (psb_dspmat_type), allocatable :: av(:)

real (kind(1.d0)), allocatable c:d(:)

type (psb_desc_type) :: desc_data , desc_ac
integer, allocatable :: iprcparm(:)
real(kind(1.d0)), allocatable :: dprcparm(:)

integer, allocatable :: perm(:), invperm(:)
integer, allocatable :: mlia(:), nlaggr(:)
type (psb_dspmat_type), pointer :: base_a => null() !
type (psb_desc_type), pointer :: base_desc => null() !
real (kind(1.d0)), allocatable 1t dorig(:)

end type psb_dbaseprc_type

type psb_dprec_type
type (psb_dbaseprc_type), allocatable :: baseprecv(:)
integer :: prec, base_prec

end type psb_dprec_type

Figure 5: The PSBLAS defined data type that contains a preconditioner.

3.3.1 Named Constants

filu_n_ Incomplete LU factorization with n levels of fill-in; currently only n = 0
is implemented;

f_slu_ Sparse factorization using SuperLU;
f_umf_ Sparse factorization using UMFPACK;

add_ml_prec_ Additive multilevel correction;
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mult_ml_prec_ Multiplicative multilevel correction;
pre_smooth_ Pre-smoothing in applying multiplicative multilevel corrections;
post_smooth_ Post-smoothing in applying multiplicative multilevel corrections;

smooth_both_ Two-sided (i.e. symmetric) smoothing in applying multiplica-
tive multilevel corrections;

mat_distr_ Coarse matrix distributed among processes

mat_repl_ Coarse matrix replicated among processes
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4 Computational routines
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psb_geaxpby—General Dense Matrix Sum

This subroutine is an interface to the computational kernel for dense matrix
sum:

y—ar+fy
Syntax
call psb_geaxpby (alpha, z, beta, y, desc_a, info)
z, Yy, a, B Subroutine
Long Precision Real psb_geaxpby
Long Precision Complex psb_geaxpby
Table 1: Data types
On Entry

alpha the scalar a.
Scope: global
Type: required
Specified as: a number of the data type indicated in Table 1.

x the local portion of global dense matrix x.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of type specified
in Table 1. The rank of z must be the same of y.

beta the scalar (.
Scope: global
Type: required
Specified as: a number of the data type indicated in Table 1.

y the local portion of the global dense matrix y.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of the type
indicated in Table 1. The rank of ¥ must be the same of z.

desc_a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb_desc_type.

On Return
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y the local portion of result submatrix y.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of the type
indicated in Table 1.

info the local portion of result submatrix y.
Scope: local
Type: required
An integer value that contains an error code.
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psb_gedot—Dot Product

This function computes dot product between two vectors x and .
If x and y are double precision real vectors computes dot-product as:

dot — zTy

Else if x and y are double precision complex vectors then computes dot-product
as:
dot — zfy

Syntax
psb_gedot (z, y, desc_a, info)
dot, x, y Function
Long Precision Real psb_gedot
Long Precision Complex psb_gedot
Table 2: Data types
On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Specified as: an array of rank one or two containing numbers of type
specified in Table 2. The rank of x must be the same of y.

y the local portion of global dense matrix y.
Scope: local
Type: required
Specified as: an array of rank one or two containing numbers of type
specified in Table 2. The rank of y must be the same of x.

desc_a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb_desc_type.

On Return

Function value is the dot product of subvectors z and y.
Scope: global
Specified as: a number of the data type indicated in Table 2.
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info the local portion of result submatrix .
Scope: local

Type: required
An integer value that contains an error code.
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psb_gedot—Generalized Dot Product

This subroutine computes a series of dot products among the columns of two
dense matrices x and y:
T

res(i) — x(:,4)" y(:, 1)

If the matrices are complex, then the usual convention applies, i.e. the conjugate
transpose of x is used. If x and y are of rank one, then res is a scalar, else it is
a rank one array.

Syntax
psb_gedot (res, z, y, desc-a, info)
res, x, y Subroutine
Long Precision Real psb_gedot
Long Precision Complex psb_gedot
Table 3: Data types
On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Specified as: an array of rank one or two containing numbers of type
specified in Table 3. The rank of x must be the same of y.

y the local portion of global dense matrix y.
Scope: local
Type: required
Specified as: an array of rank one or two containing numbers of type
specified in Table 3. The rank of y must be the same of x.

desc_a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb_desc_type.

On Return

res is the dot product of subvectors x and y.
Scope: global
Specified as: a number or a rank-one array of the data type indicated in
Table 2.
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info Scope: local
Type: required
An integer value that contains an error code.
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psb_geamax—Infinity-Norm of Vector

This function computes the infinity-norm of a vector x.
If x is a double precision real vector computes infinity norm as:

amaz «— max | ;|
K2

else if x is a double precision complex vector then computes infinity-norm as:

amaz «— max (|re(x;)| + |im(x;)])

Syntax
psb_geamax (z, desc_a, info)
amazx T Function
Long Precision Real Long Precision Real psb_geamax

Long Precision Real Long Precision Complex psb_geamax

Table 4: Data types

On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of type specified
in Table 4.

desc_a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb_desc_type.

On Return

Function value is the infinity norm of subvector z.
Scope: global
Specified as: a long precision real number.

info Scope: global
Type: required
An integer value that contains an error code.
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psb_geamax—~Generalized Infinity Norm

This subroutine computes a series of infinity norms on the columns of a dense
matrix x:
res(i) «— max |z(k, )]

Syntax
psb_geamax (res, z, desc-a, info)
res T Subroutine
Long Precision Real Long Precision Real psb_geamax

Long Precision Real Long Precision Complex psb_geamax

Table 5: Data types

On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of type specified
in Table 5.

desc_a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb_desc_type.

On Return

res is the infinity norm of the columns of x.
Scope: global
Specified as: a number or a rank-one array of long precision real numbers.

info Scope: local
Type: required
An integer value that contains an error code.
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psb_geasum—1-Norm of Vector

This function computes the 1-norm of a vector x.
If x is a double precision real vector computes 1-norm as:

asum — ||z;||
else if = ic double precision complex vector then computes 1-norm as:

asum — [lre(z)|y + [lim(z)]x

Syntax
psb_geasum (z, desc_a, info)
asum x Function
Long Precision Real Long Precision Real psb_geasum

Long Precision Real Long Precision Complex psb_geasum

Table 6: Data types

On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of type specified
in Table 6.

desc_a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb_desc_type.

On Return

Function value is the 1-norm of vector x.
Scope: global
Specified as: a long precision real number.

info Scope: local
Type: required
An integer value that contains an error code.
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psb_genrm2—2-Norm of Vector

This function computes the 2-norm of a vector x.
If x is a double precision real vector computes 2-norm as:

nrm?2 «— VaTx

else if = is double precision complex vector then computes 2-norm as:

nrm2 «— VaHz

nrma2 T Function
Long Precision Real Long Precision Real psb_genrm2
Long Precision Real Long Precision Complex psb_genrm2

Table 7: Data types

Syntax
psb_genrm?2 (z, desc_a, info)

On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of type specified
in Table 7.

desc_a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb_desc_type.

On Return

Function Value is the 2-norm of subvector z.
Scope: global
Type: required
Specified as: a long precision real number.

info Scope: local
Type: required
An integer value that contains an error code.
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psb_spnrmi—Infinity Norm of Sparse Matrix

This function computes the infinity-norm of a matrix A:

nrmi — || Al

where:

A represents the global matrix A

A Function
Long Precision Real psb_spnrmi
Long Precision Complex psb_spnrmi

Table 8: Data types

Syntax
psb_spnrmi (A, desc_a, info)

On Entry

a the local portion of the global sparse matrix A.
Scope: local
Type: required
Specified as: a structured data of type psb_spmat_type.

desc_a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb_desc_type.

On Return

Function value is the infinity-norm of sparse submatrix A.
Scope: global
Specified as: a long precision real number.

info Scope: local
Type: required
An integer value that contains an error code.
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psb_spmm—Sparse Matrix by Dense Matrix
Product

This subroutine computes the Sparse Matrix by Dense Matrix Product:

Y — aP. AP.x + 63/ (1)
Y — aPrATch + /By (2)
Yy — a-PrAHPcm + 5y (3)

where:
x is the global dense submatrix z.
y is the global dense submatrix y.
A is the global sparse submatrix A

P,, P. are the permutation matrices.

Az, oy, a Subroutine
Long Precision Real psb_spmm
Long Precision Complex psb_spmm

Table 9: Data types

Syntax
CALL psb_spmm (alpha, a, z, beta, y, desc_a, info)
CALL psb_spmm (alpha, a, x, beta, y,desc_a, info, trans, work)

On Entry

alpha the scalar a.
Scope: global
Type: required
Specified as: a number of the data type indicated in Table 9.

a the local portion of the sparse matrix A.
Scope: local
Type: required
Specified as: a structured data of type psb_spmat_type.

x the local portion of global dense matrix x.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of type specified
in Table 9. The rank of x must be the same of y.
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beta the scalar (.
Scope: global
Type: required
Specified as: a number of the data type indicated in Table 9.

y the local portion of global dense matrix y.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of type specified
in Table 9. The rank of y¥ must be the same of z.

desc_a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb_desc_type.

trans indicate what kind of operation to perform.

trans = N the operation is specified by equation 1
trans = T the operation is specified by equation 2

trans = C the operation is specified by equation 3

Scope: global

Type: optional

Default: trans = N

Specified as: a character variable.

work work array.
Scope: local
Type: optional
Specified as: a rank one array of the same type of z and y with the
TARGET attribute.

On Return

y the local portion of result submatrix y.
Scope: local
Type: required
Specified as: an array of rank one or two containing numbers of type
specified in Table 9.

info Scope: local

Type: required
An integer value that contains an error code.
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psb_spsm—Triangular System Solve

This subroutine computes the Triangular System Solve:

aP, T 'P.x + By
aDP, T 'P.x + By
aP,. T 'P.Dx + By
aP, T TP.x+ By
aDP, T TP.a + gy
aP, T~TP.Dz + By
aP, T HP.x+ By
aDP, T 2P+ By
aP, T~ P.Dz + By

QR Rl R R e w
rT1rTr1r1 111

where:
z is the global dense submatrix z. .
y is the global dense submatrix ¥. .
T is the global sparse block triangular submatrix T'
D is the scaling diagonal matrix.

P,, P. are the permutation matrices.

Syntax
CALL psb_spsm (alpha, t, z, beta, y, desc_a, info)

CALL psb_spsm
(alpha, t, z, beta, y, desc_a, info, trans, unit, choice, diag, work)

T, z,y, D, a, Subroutine
Long Precision Real psb_spsm
Long Precision Complex psb_spsm

Table 10: Data types

On Entry
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alpha the scalar a.
Scope: global
Type: required
Specified as: a number of the data type indicated in Table 10.

t the global portion of the sparse matrix 7.
Scope: local
Type: required
Specified as: a structured data type specified in § 3.

x the local portion of global dense matrix x.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of type specified
in Table 10. The rank of x must be the same of .

beta the scalar (.
Scope: global
Type: required
Specified as: a number of the data type indicated in Table 10.

y the local portion of global dense matrix y.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of type specified
in Table 10. The rank of y must be the same of x.

desc_a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb_desc_type.

trans specify with unitd the operation to perform.

trans = N’ the operation is with no transposed matrix

trans = T’ the operation is with transposed matrix.

trans = ’C’ the operation is with conjugate transposed matrix.
Scope: global

Type: optional

Default: trans = N

Specified as: a character variable.

unitd specify with trans the operation to perform.

unitd = U’ the operation is with no scaling
unitd = ’L’ the operation is with left scaling
unitd = ’R’ the operation is with right scaling.
Scope: global

Type: optional

Default: unitd = U

Specified as: a character variable.
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choice specifies the update of overlap elements to be performed on exit:

psb_none_
psb_sum_
psb_avg_

psb_square_root_

Scope: global

Type: optional

Default: psb_avg_

Specified as: an integer variable.

diag the diagonal scaling matrix.
Scope: local
Type: optional
Default: diag(1) = 1(noscaling)
Specified as: a rank one array containing numbers of the type indicated
in Table 10.

work a work array.
Scope: local
Type: optional
Specified as: a rank one array of the same type of  with the TARGET
attribute.

On Return

y the local portion of global dense matrix y.
Scope: local
Type: required
Specified as: an array of rank one or two containing numbers of type
specified in Table 10.

info Scope: local

Type: required
An integer value that contains an error code.
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5 Communication routines

The routines in this chapter implement various global communication operators
on vectors associated with a discretization mesh. For auxiliary communication
routines not tied to a discretization space see 6.
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psb_halo—Halo Data Communication

These subroutines gathers the values of the halo elements, and (optionally) scale
the result:

T — ax
where:
x is a global dense submatrix.
Qa, T Subroutine
Long Precision Real psb_halo

Long Precision Complex psb_halo

Table 11: Data types

Syntax
CALL psb_halo (z, desc_a, info)
CALL psb_halo (z, desc-a, info, alpha, work)

On Entry

x global dense matrix x.
Scope: local
Type: required
Specified as: a rank one or two array with the TARGET attribute con-
taining numbers of type specified in Table 11.

desc_a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb_desc_type.

alpha the scalar a.
Scope: global
Type: optional
Default: alpha =1
Specified as: a number of the data type indicated in Table 11.

work the work array.
Scope: local
Type: optional
Specified as: a rank one array of the same type of x with the POINTER
attribute.
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On Return

x global dense result matrix x.
Scope: local
Type: required
Returned as: a rank one or two array containing numbers of type specified
in Table 11.

info the local portion of result submatrix y.
Scope: local
Type: required
An integer value that contains an error code.
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psb_ovrl—Overlap Update

These subroutines applies an overlap operator to the input vector:
T — Qx

where:

z is the global dense submatrix x

Q is the overlap operator; it is the composition of two operators P, and PT.

T Subroutine
Long Precision Real psb_ovrl
Long Precision Complex psb_ovrl

Table 12: Data types

Syntax

CALL psb_ovrl (z, desc_a, info)
CALL psb_ovrl (z, desc_a, info, update=update_type, work=work)

On Entry

x global dense matrix z.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of type specified
in Table 12.

desc_a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb_desc_type.

update Update operator.

update = psb_none_ Do nothing;

update = psb_add_ Sum overlap entries, i.e. apply PT;
update = psb_avg_ Average overlap entries, i.e. apply P,PT;
Scope: global

Default: update_type = psb_avg_

Scope: global
Specified as: a integer variable.
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work the work array.
Scope: local
Type: optional
Specified as: a one dimensional array of the same type of z.

On Return

x global dense result matrix x.
Scope: local
Type: required
Specified as: an array of rank one or two containing numbers of type
specified in Table 12.

info the local portion of result submatrix y.
Scope: local
Type: required
An integer value that contains an error code.

Usage notes

1. If there is no overlap in the data distribution associated with the descrip-
tor, no operations are performed;

2. The operator PT performs the reduction sum of overlap elements; it is a
“prolongation” operator PT that replicates overlap elements, accounting
for the physical replication of data;

3. The operator P, performs a scaling on the overlap elements by the amount
of replication; thus, when combined with the reduction operator, it imple-
ments the average of replicated elements over all of their instances.
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psb_gather—Gather GGlobal Dense Matrix

These subroutines collect the portions of global dense matrix distributed over
all process into one single array stored on one process.

glob_z — collect(loc_x;)
where:
glob_x is the global submatrix glob-iy:iy+m—1,jy:jy+n—1
loc_x; is the local portion of global dense matrix on process i.

collect is the collect function.

Ty Subroutine
Long Precision Real psb_gather
Long Precision Complex psb_gather

Table 13: Data types

Syntax

call psb_gather (glob_x, loc_z, desc_a, info, root, iglobx, jglobx, ilocz, jlocz, k)

Syntax

call psb_gather (glob_z, loc_z, desc_a, info, root, iglobz, ilocx)

On Entry

loc_x the local portion of global dense matrix glob_z.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of the type
indicated in Table 13.

desc_a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb_desc_type.

root The process that holds the global copy. If root = —1 all the processes will
have a copy of the global vector.
Scope: global
Type: optional
Specified as: an integer variable 0 < iz < np.
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iglobx Row index to define a submatrix in glob_x into which gather the local
pieces.
Scope: global
Type: optional
Specified as: an integer variable 1 < iz < matriz_data(psb-m_).

jglobx Column index to define a submatrix in glob_x into which gather the
local pieces.
Scope: global
Type: optional
Specified as: an integer variable.

ilocx Row index to define a submatrix in loc_x that has to be gathered into
glob_x.
Scope: local
Type: optional
Specified as: an integer variable.

jlocx Columns index to define a submatrix in loc_x that has to be gathered
into glob_x.
Scope: global
Type: optional
Specified as: an integer variable.

k The number of columns to gather.
Scope: global
Type: optional
Specified as: an integer variable.

On Return

glob_x The array where the local parts must be gathered.
Scope: global
Type: required
Specified as: a rank one or two array.

info the local portion of result submatrix y.
Scope: local
Type: required
An integer value that contains an error code.
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psb_scatter—Scatter Global Dense Matrix

These subroutines scatters the portions of global dense matrix owned by a pro-
cess to all the processes in the processes grid.

loc_x; < scatter(glob_x;)
where:
glob_x is the global submatrix glob_Tiy:iy+m—1,jy:jy+n—1
loc_x; is the local portion of global dense matrix on process i.

scatter is the scatter function.

Ty Subroutine
Long Precision Real psb_scatter
Long Precision Complex psb_scatter

Table 14: Data types

Syntax

call psb_scatter (glob_x, loc_z, desc_a, info, root, iglobzx, jglobz, ilocx, jlocz, k)

Syntax

call psb_scatter (glob_x, loc_z, desc_a, info, root, iglobz, ilocz)

On Entry

glob_x The array that must be scattered into local pieces.
Scope: global
Type: required
Specified as: a rank one or two array.

desc_a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb_desc_type.

root The process that holds the global copy. If root = —1 all the processes
have a copy of the global vector.
Scope: global
Type: optional
Specified as: an integer variable 0 < iz < np.
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iglobx Row index to define a submatrix in glob_x that has to be scattered into
local pieces.
Scope: global
Type: optional
Specified as: an integer variable 1 < iz < matriz_data(psb-m_).

jglobx Column index to define a submatrix in glob_x that has to be scattered
into local pieces.
Scope: global
Type: optional
Specified as: an integer variable.

ilocx Row index to define a submatrix in loc_x into which scatter the local
piece of glob_x.
Scope: local
Type: optional
Specified as: an integer variable.

jlocx Columns index to define a submatrix in loc_x into which scatter the local
piece of glob_x.
Scope: global
Type: optional
Specified as: an integer variable.

k The number of columns to scatter.
Scope: global
Type: optional
Specified as: an integer variable.

On Return

loc_x the local portion of global dense matrix glob_x.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of the type
indicated in Table 14.

info the local portion of result submatrix y.
Scope: local
Type: required
An integer value that contains an error code.
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6 Data management routines
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psb_cdall—Allocates a communication
descriptor

Syntax

call psb_cdall (icontzt, desc_a, info,mg,parts)
Syntax

call psb_cdall (icontzt, desc-a, info,vg,flag)
Syntax

call psb_cdall (icontzt, desc_a, info,vl)

This subroutine initializes the communication descriptor associated with an in-
dex space. Exactly one of the optional arguments parts, vg, vl must be speci-
fied, thereby choosing the specific initialization strategy:

On Entry

icontxt the communication context.
Scope:global.
Type:required.
Specified as: an integer value.

vg Data allocation: each index i € {1...mg} is allocated to process vg(s).
Scope:global.
Type:optional.
Specified as: an integer array.

flag Specifies whether entries in vg are zero- or one-based. Scope:global.
Type:optional.
Specified as: an integer value 0, 1, default 0.

mg the (global) number of rows of the problem.
Scope:global.
Type:optional.
Specified as: an integer value. It is required if parts is specified.

parts the subroutine that defines the partitioning scheme.
Scope:global.
Type:required.
Specified as: a subroutine.

vl Data allocation: the set of global indices belonging to the calling process.
Scope:local.
Type:optional.
Specified as: an integer array.
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On Return

desc_a the communication descriptor.
Scope:local.
Type:required.
Specified as: a structured data of type psb_desc_type.

info Error code. Scope: local
Type: required
Specified as: an integer variable.

Notes

1. Exactly one of the optional arguments parts, vg, vl must be specified,
thereby choosing the initialization strategy as follows:

parts In this case we have a subroutine that takes as input a index and
the total number of indices in the space, and produces in output a
vector containing the set of processes (usually with just one entry)
to which the index should be assigned. If this argument is specified,
then it is mandatory to also specify the argument mg.

vg In this case the association between an index and a process is specified
via an integer vector; the size of the index space is equal to the size
of vg, and each index i is assigned to the process vg(i). The vector
vg must be identical on all calling processes; its entries may have the
ranges (0...np —1) or (1...np) according to the value of flag.

vl In this case we are specifying the list of indices assigned to the current
process; thus, the global problem size mg is given by the sum of the
sizes of the individual vectors v1 specified on the calling processes.
The subroutine will check that each entry in the global index space
(1...myg) is specified exactly once.

2. On exit from this routine the descriptor is in the build state
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psb_cdins—Communication descriptor insert
routine

Syntax
call psb_cdins (nz, ia, ja, desc_a, info)

On Entry

nz the number of points being inserted.
Scope: local.
Type: required.
Specified as: an