\section{Iterative Methods} \label{sec:methods} In this chapter we provide routines for preconditioners and iterative methods. The interfaces for Krylov subspace methods are available in the module \verb|psb_krylov_mod|. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Krylov Methods driver routine % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subroutine{psb\_krylov \label{krylov}}{Krylov Methods Driver Routine} This subroutine is a driver that provides a general interface for all the Krylov-Subspace family methods implemented in PSBLAS-2.0. The stopping criterion is the normwise backward error, in the infinity norm, i.e. the iteration is stopped when \[ err = \frac{\|r_i\|}{(\|A\|\|x_i\|+\|b\|)} < eps \] or the 2-norm residual reduction \[ err = \frac{\|r_i\|}{\|b\|_2} < eps \] according to the value passed through the istop argument (see later). In the above formulae, $x_i$ is the tentative solution and $r_i=b-Ax_i$ the corresponding residual at the $i$-th iteration. \syntax{call psb\_krylov}{method,a,prec,b,x,eps,desc\_a,info,itmax,iter,err,itrace,istop} \begin{description} \item[\bf On Entry] \item[method] a string that defines the iterative method to be used. Valid values in PSBLAS-2.0 are: \begin{description} \item[CG]: the Conjugate gradient method; \item[CGS]:the Conjugate Gradient Stabilized method; \item[BICG]: the Bi-Conjugate Gradient method; \item[BICGSTAB]: the Bi-Conjugate Gradient Stabilized method; \item[BICGSTABL]: the Bi-Conjugate Gradient Stabilized method with restarting; \item[RGMRES]: the Generalized Minimal Residual method with restarting. \end{description} \item[a] the local portion of global sparse matrix $A$. \\ Scope: {\bf local} \\ Type: {\bf required}\\ Specified as: a structured data of type \spdata. \item[prec] The data structure containing the preconditioner.\\ Scope: {\bf local} \\ Type: {\bf required}\\ Specified as: a structured data of type \precdata. \item[b] The RHS vector. \\ Scope: {\bf local} \\ Type: {\bf required}\\ Specified as: a rank one array. \item[x] The initial guess. \\ Scope: {\bf local} \\ Type: {\bf required}\\ Specified as: a rank one array. \item[eps] The stopping tolerance. \\ Scope: {\bf global} \\ Type: {\bf required}\\ Specified as: a real number. \item[desc\_a] contains data structures for communications.\\ Scope: {\bf local} \\ Type: {\bf required}\\ Specified as: a structured data of type \descdata. \item[itmax] The maximum number of iterations to perform.\\ Scope: {\bf global} \\ Type: {\bf optional}\\ Default: $itmax = 1000$.\\ Specified as: an integer variable $itmax \ge 1$. \item[itrace] If $>0$ print out an informational message about convergence every $itrace$ iterations.\\ Scope: {\bf global} \\ Type: {\bf optional}\\ \item[istop] An integer specifying the stopping criterion.\\ Scope: {\bf global} \\ Type: {\bf optional}.\\ Values: 1: use the normwise backward error, 2: use the scaled 2-norm of the residual. Default: 1. \item[\bf On Return] \item[x] The computed solution. \\ Scope: {\bf local} \\ Type: {\bf required}\\ Specified as: a rank one array. \item[iter] The number of iterations performed.\\ Scope: {\bf global} \\ Type: {\bf optional}\\ Returned as: an integer variable. \item[err] The convergence estimate on exit.\\ Scope: {\bf global} \\ Type: {\bf optional}\\ Returned as: a real number. \item[info] Error code.\\ Scope: {\bf local} \\ Type: {\bf required} \\ An integer value; 0 means no error has been detected. \end{description} %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% % %% % CG %% % %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% \subroutine{psb\_cg \label{cg}}{CG Iterative Method} %% This subroutine implements the CG method with restarting. The %% stopping criterion is the normwise backward error, in the infinity %% norm, i.e. the iteration is stopped when %% \[ \frac{\|r\|}{(\|A\|\|x\|+\|b\|)} < eps \] %% or %% \[ \frac{\|r_i\|}{\|b\|_2} < eps \] %% according to the value passed through the istop argument (see later). %% \syntax{call psb\_cg}{a,prec,b,x,eps,desc\_a,info,itmax,iter,err,itrace,istop} %% \begin{description} %% \item[\bf On Entry] %% \item[a] the local portion of global sparse matrix %% $A$. \\ %% Scope: {\bf local} \\ %% Type: {\bf required}\\ %% Specified as: a structured data of type \spdata. %% \item[prec] The data structure containing the preconditioner.\\ %% Scope: {\bf local} \\ %% Type: {\bf required}\\ %% Specified as: a structured data of type \precdata. %% \item[b] The RHS vector. \\ %% Scope: {\bf local} \\ %% Type: {\bf required}\\ %% Specified as: a rank one array. %% \item[x] The initial guess. \\ %% Scope: {\bf local} \\ %% Type: {\bf required}\\ %% Specified as: a rank one array. %% \item[eps] The stopping tolerance. \\ %% Scope: {\bf global} \\ %% Type: {\bf required}\\ %% Specified as: a real number. %% \item[desc\_a] contains data structures for communications.\\ %% Scope: {\bf local} \\ %% Type: {\bf required}\\ %% Specified as: a structured data of type \descdata. %% \item[itmax] The maximum number of iterations to perform.\\ %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% Default: $itmax = 1000$.\\ %% Specified as: an integer variable $itmax \ge 1$. %% \item[itrace] If $>0$ print out an informational message about %% convergence every $itrace$ iterations.\\ %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% \item[istop] An integer specifying the stopping criterion.\\ %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% \item[\bf On Return] %% \item[x] The computed solution. \\ %% Scope: {\bf local} \\ %% Type: {\bf required}\\ %% Specified as: a rank one array. %% \item[iter] The number of iterations performed.\\ %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% Returned as: an integer variable. %% \item[err] The error estimate on exit.\\ %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% Returned as: a real number. %% \item[info] Error code.\\ %% Scope: {\bf local} \\ %% Type: {\bf required} \\ %% An integer value; 0 means no error has been detected. %% \end{description} %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% % %% % CGS %% % %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% \subroutine{psb\_cgs \label{cgs}}{CGS Iterative Method} %% This subroutine implements the CGS method with restarting. The %% stopping criterion is the normwise backward error, in the infinity %% norm, i.e. the iteration is stopped when %% \[ \frac{\|r\|}{(\|A\|\|x\|+\|b\|)} < eps \] %% or %% \[ \frac{\|r_i\|}{\|b\|_2} < eps \] %% according to the value passed through the istop argument (see later). %% \syntax{call psb\_cgs}{a,prec,b,x,eps,desc\_a,info,itmax,iter,err,itrace,istop} %% \begin{description} %% \item[\bf On Entry] %% \item[a] the local portion of global sparse matrix %% $A$. \\ %% Scope: {\bf local} \\ %% Type: {\bf required}\\ %% Specified as: a structured data of type \spdata. %% \item[prec] The data structure containing the preconditioner.\\ %% Scope: {\bf local} \\ %% Type: {\bf required}\\ %% Specified as: a structured data of type \precdata. %% \item[b] The RHS vector. \\ %% Scope: {\bf local} \\ %% Type: {\bf required}\\ %% Specified as: a rank one array. %% \item[x] The initial guess. \\ %% Scope: {\bf local} \\ %% Type: {\bf required}\\ %% Specified as: a rank one array. %% \item[eps] The stopping tolerance. \\ %% Scope: {\bf global} \\ %% Type: {\bf required}\\ %% Specified as: a real number. %% \item[desc\_a] contains data structures for communications.\\ %% Scope: {\bf local} \\ %% Type: {\bf required}\\ %% Specified as: a structured data of type \descdata. %% \item[itmax] The maximum number of iterations to perform.\\ %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% Default: $itmax = 1000$.\\ %% Specified as: an integer variable $itmax \ge 1$. %% \item[itrace] If $>0$ print out an informational message about %% convergence every $itrace$ iterations.\\ %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% \item[istop] An integer specifying the stopping criterion.\\ %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% \item[\bf On Return] %% \item[x] The computed solution. \\ %% Scope: {\bf local} \\ %% Type: {\bf required}\\ %% Specified as: a rank one array. %% \item[iter] The number of iterations performed.\\ %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% Returned as: an integer variable. %% \item[err] The error estimate on exit.\\ %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% Returned as: a real number. %% \item[info] Error code.\\ %% Scope: {\bf local} \\ %% Type: {\bf required} \\ %% An integer value; 0 means no error has been detected. %% \end{description} %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% % %% % BiCG %% % %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% \subroutine{psb\_bicg \label{bicg}}{BiCG Iterative Method} %% This subroutine implements the BiCG method with restarting. The %% stopping criterion is the normwise backward error, in the infinity %% norm, i.e. the iteration is stopped when %% \[ \frac{\|r\|}{(\|A\|\|x\|+\|b\|)} < eps \] %% or %% \[ \frac{\|r_i\|}{\|b\|_2} < eps \] %% according to the value passed through the istop argument (see later). %% \syntax{call psb\_bicg}{a,prec,b,x,eps,desc\_a,info,itmax,iter,err,itrace,istop} %% \begin{description} %% \item[\bf On Entry] %% \item[a] the local portion of global sparse matrix %% $A$. \\ %% Scope: {\bf local} \\ %% Type: {\bf required}\\ %% Specified as: a structured data of type \spdata. %% \item[prec] The data structure containing the preconditioner.\\ %% Scope: {\bf local} \\ %% Type: {\bf required}\\ %% Specified as: a structured data of type \precdata. %% \item[b] The RHS vector. \\ %% Scope: {\bf local} \\ %% Type: {\bf required}\\ %% Specified as: a rank one array. %% \item[x] The initial guess. \\ %% Scope: {\bf local} \\ %% Type: {\bf required}\\ %% Specified as: a rank one array. %% \item[eps] The stopping tolerance. \\ %% Scope: {\bf global} \\ %% Type: {\bf required}\\ %% Specified as: a real number. %% \item[desc\_a] contains data structures for communications.\\ %% Scope: {\bf local} \\ %% Type: {\bf required}\\ %% Specified as: a structured data of type \descdata. %% \item[itmax] The maximum number of iterations to perform.\\ %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% Default: $itmax = 1000$.\\ %% Specified as: an integer variable $itmax \ge 1$. %% \item[itrace] If $>0$ print out an informational message about %% convergence every $itrace$ iterations.\\ %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% \item[istop] An integer specifying the stopping criterion.\\ %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% \item[\bf On Return] %% \item[x] The computed solution. \\ %% Scope: {\bf local} \\ %% Type: {\bf required}\\ %% Specified as: a rank one array. %% \item[iter] The number of iterations performed.\\ %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% Returned as: an integer variable. %% \item[err] The error estimate on exit.\\ %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% Returned as: a real number. %% \item[info] Error code.\\ %% Scope: {\bf local} \\ %% Type: {\bf required} \\ %% An integer value; 0 means no error has been detected. %% \end{description} %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% % %% % BiCGSTAB %% % %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% \subroutine{psb\_bicgstab \label{bicgstab}}{BiCGSTAB Iterative Method} %% This subroutine implements the BiCGSTAB method with restarting. The %% stopping criterion is the normwise backward error, in the infinity %% norm, i.e. the iteration is stopped when %% \[ \frac{\|r\|}{(\|A\|\|x\|+\|b\|)} < eps \] %% or %% \[ \frac{\|r_i\|}{\|b\|_2} < eps \] %% according to the value passed through the istop argument (see later). %% \syntax{call psb\_bicgstab}{a,prec,b,x,eps,desc\_a,info,itmax,iter,err,itrace,istop} %% \begin{description} %% \item[\bf On Entry] %% \item[a] the local portion of global sparse matrix %% $A$. \\ %% Scope: {\bf local} \\ %% Type: {\bf required}\\ %% Specified as: a structured data of type \spdata. %% \item[prec] The data structure containing the preconditioner.\\ %% Scope: {\bf local} \\ %% Type: {\bf required}\\ %% Specified as: a structured data of type \precdata. %% \item[b] The RHS vector. \\ %% Scope: {\bf local} \\ %% Type: {\bf required}\\ %% Specified as: a rank one array. %% \item[x] The initial guess. \\ %% Scope: {\bf local} \\ %% Type: {\bf required}\\ %% Specified as: a rank one array. %% \item[eps] The stopping tolerance. \\ %% Scope: {\bf global} \\ %% Type: {\bf required}\\ %% Specified as: a real number. %% \item[desc\_a] contains data structures for communications.\\ %% Scope: {\bf local} \\ %% Type: {\bf required}\\ %% Specified as: a structured data of type \descdata. %% \item[itmax] The maximum number of iterations to perform.\\ %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% Default: $itmax = 1000$.\\ %% Specified as: an integer variable $itmax \ge 1$. %% \item[itrace] If $>0$ print out an informational message about %% convergence every $itrace$ iterations.\\ %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% \item[istop] An integer specifying the stopping criterion.\\ %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% \item[\bf On Return] %% \item[x] The computed solution. \\ %% Scope: {\bf local} \\ %% Type: {\bf required}\\ %% Specified as: a rank one array. %% \item[iter] The number of iterations performed.\\ %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% Returned as: an integer variable. %% \item[err] The error estimate on exit.\\ %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% Returned as: a real number. %% \item[info] Error code.\\ %% Scope: {\bf local} \\ %% Type: {\bf required} \\ %% An integer value; 0 means no error has been detected. %% \end{description} %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% % %% % BiCGSTAB(L) %% % %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% \subroutine{psb\_bicgstabl \label{bicgstabl}}{BiCGSTAB-$l$ Iterative Method} %% This subroutine implements the BiCGSTAB-$l$ method with restarting. The %% stopping criterion is the normwise backward error, in the infinity %% norm, i.e. the iteration is stopped when %% \[ \frac{\|r\|}{(\|A\|\|x\|+\|b\|)} < eps \] %% or %% \[ \frac{\|r_i\|}{\|b\|_2} < eps \] %% according to the value passed through the istop argument (see later). %% \syntax{call psb\_bicgstab}{a,prec,b,x,eps,desc\_a,info,itmax,iter,err,itrace,irst,istop} %% \begin{description} %% \item[\bf On Entry] %% \item[a] the local portion of global sparse matrix %% $A$. \\ %% Scope: {\bf local} \\ %% Type: {\bf required}\\ %% Specified as: a structured data of type \spdata. %% \item[prec] The data structure containing the preconditioner.\\ %% Scope: {\bf local} \\ %% Type: {\bf required}\\ %% Specified as: a structured data of type \precdata. %% \item[b] The RHS vector. \\ %% Scope: {\bf local} \\ %% Type: {\bf required}\\ %% Specified as: a rank one array. %% \item[x] The initial guess. \\ %% Scope: {\bf local} \\ %% Type: {\bf required}\\ %% Specified as: a rank one array. %% \item[eps] The stopping tolerance. \\ %% Scope: {\bf global} \\ %% Type: {\bf required}\\ %% Specified as: a real number. %% \item[desc\_a] contains data structures for communications.\\ %% Scope: {\bf local} \\ %% Type: {\bf required}\\ %% Specified as: a structured data of type \descdata. %% \item[itmax] The maximum number of iterations to perform.\\ %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% Default: $itmax = 1000$.\\ %% Specified as: an integer variable $itmax \ge 1$. %% \item[itrace] If $>0$ print out an informational message about %% convergence every $itrace$ iterations.\\ %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% \item[irst] An integer specifying the restarting iteration.\\ %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% \item[istop] An integer specifying the stopping criterion.\\ %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% \item[\bf On Return] %% \item[x] The computed solution. \\ %% Scope: {\bf local} \\ %% Type: {\bf required}\\ %% Specified as: a rank one array. %% \item[iter] The number of iterations performed.\\ %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% Returned as: an integer variable. %% \item[err] The error estimate on exit.\\ %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% Returned as: a real number. %% \item[info] Error code.\\ %% Scope: {\bf local} \\ %% Type: {\bf required} \\ %% An integer value; 0 means no error has been detected. %% \end{description} %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% % %% % GMRES %% % %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% \subroutine{psb\_gmres \label{gmres}}{GMRES Iterative Method} %% This subroutine implements the GMRES method with restarting. The %% stopping criterion is the normwise backward error, in the infinity %% norm, i.e. the iteration is stopped when %% \[ \frac{\|r\|}{(\|A\|\|x\|+\|b\|)} < eps \] %% or %% \[ \frac{\|r_i\|}{\|b\|_2} < eps \] %% according to the value passed through the istop argument (see later). %% \syntax{call psb\_gmres}{a,prec,b,x,eps,desc\_a,info,itmax,iter,err,itrace,irst,istop} %% \begin{description} %% \item[\bf On Entry] %% \item[a] the local portion of global sparse matrix %% $A$. \\ %% Scope: {\bf local} \\ %% Type: {\bf required}\\ %% Specified as: a structured data of type \spdata. %% \item[prec] The data structure containing the preconditioner.\\ %% Scope: {\bf local} \\ %% Type: {\bf required}\\ %% Specified as: a structured data of type \precdata. %% \item[b] The RHS vector. \\ %% Scope: {\bf local} \\ %% Type: {\bf required}\\ %% Specified as: a rank one array. %% \item[x] The initial guess. \\ %% Scope: {\bf local} \\ %% Type: {\bf required}\\ %% Specified as: a rank one array. %% \item[eps] The stopping tolerance. \\ %% Scope: {\bf global} \\ %% Type: {\bf required}\\ %% Specified as: a real number. %% \item[desc\_a] contains data structures for communications.\\ %% Scope: {\bf local} \\ %% Type: {\bf required}\\ %% Specified as: a structured data of type \descdata. %% \item[itmax] The maximum number of iterations to perform.\\ %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% Default: $itmax = 1000$.\\ %% Specified as: an integer variable $itmax \ge 1$. %% \item[itrace] If $>0$ print out an informational message about %% convergence every $itrace$ iterations.\\ %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% \item[irst] An integer specifying the restart iteration.\\ %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% \item[istop] An integer specifying the stopping criterion.\\ %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% \item[\bf On Return] %% \item[x] The computed solution. \\ %% Scope: {\bf local} \\ %% Type: {\bf required}\\ %% Specified as: a rank one array. %% \item[iter] The number of iterations performed.\\ %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% Returned as: an integer variable. %% \item[err] The error estimate on exit.\\ %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% Returned as: a real number. %% \item[info] Error code.\\ %% Scope: {\bf local} \\ %% Type: {\bf required} \\ %% An integer value; 0 means no error has been detected. %% \end{description} %%% Local Variables: %%% mode: latex %%% TeX-master: "userguide" %%% End: