You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
psblas3/base/serial/aux/dasrx.f90

409 lines
11 KiB
Fortran

!!$
!!$ Parallel Sparse BLAS version 2.2
!!$ (C) Copyright 2006/2007/2008
!!$ Salvatore Filippone University of Rome Tor Vergata
!!$ Alfredo Buttari University of Rome Tor Vergata
!!$
!!$ Redistribution and use in source and binary forms, with or without
!!$ modification, are permitted provided that the following conditions
!!$ are met:
!!$ 1. Redistributions of source code must retain the above copyright
!!$ notice, this list of conditions and the following disclaimer.
!!$ 2. Redistributions in binary form must reproduce the above copyright
!!$ notice, this list of conditions, and the following disclaimer in the
!!$ documentation and/or other materials provided with the distribution.
!!$ 3. The name of the PSBLAS group or the names of its contributors may
!!$ not be used to endorse or promote products derived from this
!!$ software without specific written permission.
!!$
!!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
!!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
!!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
!!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS
!!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
!!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
!!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
!!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
!!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
!!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
!!$ POSSIBILITY OF SUCH DAMAGE.
!!$
!!$
subroutine dasrx(n,x,indx,dir,flag)
use psb_serial_mod
implicit none
!
! Quicksort on absolute value with indices into original positions.
! Adapted from a number of sources, including Don Knuth's TAOCP.
!
! .. Scalar Arguments ..
integer, intent(in) :: n, dir, flag
real(kind(1.d0)) :: x(n)
integer :: indx(n)
! ..
! .. Local Scalars ..
real(kind(1.d0)) :: piv, xt, xk
integer i, j, ilx, iux, istp, lpiv
integer ixt, n1, n2
integer, parameter :: maxstack=64,nparms=3,ithrs=16
integer :: istack(nparms,maxstack)
! ..
select case(flag)
case(psb_sort_ovw_idx_)
do i=1, n
indx(i) = i
enddo
case(psb_sort_keep_idx_)
! do nothing
case default
write(0,*) 'Error in isrx: invalid flag',flag
end select
!
!
! small inputs will only get through insertion sort.
!
select case(dir)
case(psb_asort_up_)
if (n > ithrs) then
!
! Init stack pointer
!
istp = 1
istack(1,istp) = 1
istack(2,istp) = n
do
if (istp <= 0) exit
ilx = istack(1,istp)
iux = istack(2,istp)
istp = istp - 1
!
! Choose a pivot with median-of-three heuristics, leave it
! in the LPIV location
!
i = ilx
j = iux
lpiv = (i+j)/2
piv = abs(x(lpiv))
if (piv < abs(x(i))) then
xt = x(i)
ixt = indx(i)
x(i) = x(lpiv)
indx(i) = indx(lpiv)
x(lpiv) = xt
indx(lpiv) = ixt
piv = abs(x(lpiv))
endif
if (piv > abs(x(j))) then
xt = x(j)
ixt = indx(j)
x(j) = x(lpiv)
indx(j) = indx(lpiv)
x(lpiv) = xt
indx(lpiv) = ixt
piv = abs(x(lpiv))
endif
if (piv < abs(x(i))) then
xt = x(i)
ixt = indx(i)
x(i) = x(lpiv)
indx(i) = indx(lpiv)
x(lpiv) = xt
indx(lpiv) = ixt
piv = abs(x(lpiv))
endif
!
! now piv is correct; place it into first location
xt = x(i)
ixt = indx(i)
x(i) = x(lpiv)
indx(i) = indx(lpiv)
x(lpiv) = xt
indx(lpiv) = ixt
i = ilx - 1
j = iux + 1
outer_up: do
in_up1: do
i = i + 1
xk = abs(x(i))
if (xk >= piv) exit in_up1
end do in_up1
!
! Ensure finite termination for next loop
!
xt = x(i)
x(i) = piv
in_up2:do
j = j - 1
xk = abs(x(j))
if (xk <= piv) exit in_up2
end do in_up2
x(i) = xt
if (j > i) then
xt = x(i)
ixt = indx(i)
x(i) = x(j)
indx(i) = indx(j)
x(j) = xt
indx(j) = ixt
else
exit outer_up
end if
end do outer_up
if (i == ilx) then
if (x(i) /= piv) then
write(0,*) 'Should never ever get here????!!!!'
stop
endif
i = i + 1
endif
n1 = (i-1)-ilx+1
n2 = iux-(i)+1
if (n1 > n2) then
if (n1 > ithrs) then
istp = istp + 1
istack(1,istp) = ilx
istack(2,istp) = i-1
else
call idasrx_up(n1,x(ilx:i-1),indx(ilx:i-1))
endif
if (n2 > ithrs) then
istp = istp + 1
istack(1,istp) = i
istack(2,istp) = iux
else
call idasrx_up(n2,x(i:iux),indx(i:iux))
endif
else
if (n2 > ithrs) then
istp = istp + 1
istack(1,istp) = i
istack(2,istp) = iux
else
call idasrx_up(n2,x(i:iux),indx(i:iux))
endif
if (n1 > ithrs) then
istp = istp + 1
istack(1,istp) = ilx
istack(2,istp) = i-1
else
call idasrx_up(n1,x(ilx:i-1),indx(ilx:i-1))
endif
endif
enddo
else
call idasrx_up(n,x,indx)
endif
case(psb_asort_down_)
if (n > ithrs) then
!
! Init stack pointer
!
istp = 1
istack(1,istp) = 1
istack(2,istp) = n
do
if (istp <= 0) exit
ilx = istack(1,istp)
iux = istack(2,istp)
istp = istp - 1
!
! Choose a pivot with median-of-three heuristics, leave it
! in the LPIV location
!
i = ilx
j = iux
lpiv = (i+j)/2
piv = abs(x(lpiv))
if (piv > abs(x(i))) then
xt = x(i)
ixt = indx(i)
x(i) = x(lpiv)
indx(i) = indx(lpiv)
x(lpiv) = xt
indx(lpiv) = ixt
piv = abs(x(lpiv))
endif
if (piv < abs(x(j))) then
xt = x(j)
ixt = indx(j)
x(j) = x(lpiv)
indx(j) = indx(lpiv)
x(lpiv) = xt
indx(lpiv) = ixt
piv = abs(x(lpiv))
endif
if (piv > abs(x(i))) then
xt = x(i)
ixt = indx(i)
x(i) = x(lpiv)
indx(i) = indx(lpiv)
x(lpiv) = xt
indx(lpiv) = ixt
piv = abs(x(lpiv))
endif
!
! now piv is correct; place it into first location
xt = x(i)
ixt = indx(i)
x(i) = x(lpiv)
indx(i) = indx(lpiv)
x(lpiv) = xt
indx(lpiv) = ixt
i = ilx - 1
j = iux + 1
outer_dw: do
in_dw1: do
i = i + 1
xk = abs(x(i))
if (xk <= piv) exit in_dw1
end do in_dw1
!
! Ensure finite termination for next loop
!
xt = x(i)
x(i) = piv
in_dw2:do
j = j - 1
xk = abs(x(j))
if (xk >= piv) exit in_dw2
end do in_dw2
x(i) = xt
if (j > i) then
xt = x(i)
ixt = indx(i)
x(i) = x(j)
indx(i) = indx(j)
x(j) = xt
indx(j) = ixt
else
exit outer_dw
end if
end do outer_dw
if (i == ilx) then
if (x(i) /= piv) then
write(0,*) 'Should never ever get here????!!!!'
stop
endif
i = i + 1
endif
n1 = (i-1)-ilx+1
n2 = iux-(i)+1
if (n1 > n2) then
if (n1 > ithrs) then
istp = istp + 1
istack(1,istp) = ilx
istack(2,istp) = i-1
else
call idasrx_dw(n1,x(ilx:i-1),indx(ilx:i-1))
endif
if (n2 > ithrs) then
istp = istp + 1
istack(1,istp) = i
istack(2,istp) = iux
else
call idasrx_dw(n2,x(i:iux),indx(i:iux))
endif
else
if (n2 > ithrs) then
istp = istp + 1
istack(1,istp) = i
istack(2,istp) = iux
else
call idasrx_dw(n2,x(i:iux),indx(i:iux))
endif
if (n1 > ithrs) then
istp = istp + 1
istack(1,istp) = ilx
istack(2,istp) = i-1
else
call idasrx_dw(n1,x(ilx:i-1),indx(ilx:i-1))
endif
endif
enddo
else
call idasrx_dw(n,x,indx)
endif
case default
write(0,*) 'isrx error dir ',dir
end select
return
contains
subroutine idasrx_up(n,x,indx)
implicit none
integer :: n
real(kind(1.d0)) :: x(n)
integer :: indx(n)
integer :: i,j,ix
real(kind(1.d0)) :: xx,xax
do j=n-1,1,-1
if (abs(x(j+1)) < abs(x(j))) then
xx = x(j)
ix = indx(j)
xax = abs(xx)
i=j+1
do
x(i-1) = x(i)
indx(i-1) = indx(i)
i = i+1
if (i>n) exit
if (abs(x(i)) >= xax) exit
end do
x(i-1) = xx
indx(i-1) = ix
endif
enddo
end subroutine idasrx_up
subroutine idasrx_dw(n,x,indx)
implicit none
integer :: n
real(kind(1.d0)) :: x(n)
integer :: indx(n)
integer :: i,j,ix
real(kind(1.d0)) :: xx,xax
do j=n-1,1,-1
if (abs(x(j+1)) > abs(x(j))) then
xx = x(j)
ix = indx(j)
xax = abs(xx)
i=j+1
do
x(i-1) = x(i)
indx(i-1) = indx(i)
i = i+1
if (i>n) exit
if (abs(x(i)) <= xax) exit
end do
x(i-1) = xx
indx(i-1) = ix
endif
enddo
end subroutine idasrx_dw
end subroutine dasrx