You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
psblas3/base/modules/psb_s_base_vect_mod.f90

1078 lines
30 KiB
Fortran

!!$
!!$ Parallel Sparse BLAS version 3.0
!!$ (C) Copyright 2006, 2007, 2008, 2009, 2010, 2012
!!$ Salvatore Filippone University of Rome Tor Vergata
!!$ Alfredo Buttari CNRS-IRIT, Toulouse
!!$
!!$ Redistribution and use in source and binary forms, with or without
!!$ modification, are permitted provided that the following conditions
!!$ are met:
!!$ 1. Redistributions of source code must retain the above copyright
!!$ notice, this list of conditions and the following disclaimer.
!!$ 2. Redistributions in binary form must reproduce the above copyright
!!$ notice, this list of conditions, and the following disclaimer in the
!!$ documentation and/or other materials provided with the distribution.
!!$ 3. The name of the PSBLAS group or the names of its contributors may
!!$ not be used to endorse or promote products derived from this
!!$ software without specific written permission.
!!$
!!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
!!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
!!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
!!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS
!!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
!!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
!!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
!!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
!!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
!!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
!!$ POSSIBILITY OF SUCH DAMAGE.
!!$
!!$
!
! package: psb_s_base_vect_mod
!
! This module contains the definition of the psb_s_base_vect type which
! is a container for dense vectors.
! This is encapsulated instead of being just a simple array to allow for
! more complicated situations, such as GPU programming, where the memory
! area we are interested in is not easily accessible from the host/Fortran
! side. It is also meant to be encapsulated in an outer type, to allow
! runtime switching as per the STATE design pattern, similar to the
! sparse matrix types.
!
!
module psb_s_base_vect_mod
use psb_const_mod
use psb_error_mod
!> \namespace psb_base_mod \class psb_s_base_vect_type
!! The psb_s_base_vect_type
!! defines a middle level real(psb_spk_) encapsulated dense vector.
!! The encapsulation is needed, in place of a simple array, to allow
!! for complicated situations, such as GPU programming, where the memory
!! area we are interested in is not easily accessible from the host/Fortran
!! side. It is also meant to be encapsulated in an outer type, to allow
!! runtime switching as per the STATE design pattern, similar to the
!! sparse matrix types.
!!
type psb_s_base_vect_type
!> Values.
real(psb_spk_), allocatable :: v(:)
contains
!
! Constructors/allocators
!
procedure, pass(x) :: bld_x => s_base_bld_x
procedure, pass(x) :: bld_n => s_base_bld_n
generic, public :: bld => bld_x, bld_n
procedure, pass(x) :: all => s_base_all
procedure, pass(x) :: mold => s_base_mold
!
! Insert/set. Assembly and free.
! Assembly does almost nothing here, but is important
! in derived classes.
!
procedure, pass(x) :: ins => s_base_ins
procedure, pass(x) :: zero => s_base_zero
procedure, pass(x) :: asb => s_base_asb
procedure, pass(x) :: free => s_base_free
!
! Sync: centerpiece of handling of external storage.
! Any derived class having extra storage upon sync
! will guarantee that both fortran/host side and
! external side contain the same data. The base
! version is only a placeholder.
!
procedure, pass(x) :: sync => s_base_sync
procedure, pass(x) :: is_host => s_base_is_host
procedure, pass(x) :: is_dev => s_base_is_dev
procedure, pass(x) :: is_sync => s_base_is_sync
procedure, pass(x) :: set_host => s_base_set_host
procedure, pass(x) :: set_dev => s_base_set_dev
procedure, pass(x) :: set_sync => s_base_set_sync
!
! Basic info
procedure, pass(x) :: get_nrows => s_base_get_nrows
procedure, pass(x) :: sizeof => s_base_sizeof
!
! Set/get data from/to an external array; also
! overload assignment.
!
procedure, pass(x) :: get_vect => s_base_get_vect
procedure, pass(x) :: set_scal => s_base_set_scal
procedure, pass(x) :: set_vect => s_base_set_vect
generic, public :: set => set_vect, set_scal
!
! Dot product and AXPBY
!
procedure, pass(x) :: dot_v => s_base_dot_v
procedure, pass(x) :: dot_a => s_base_dot_a
generic, public :: dot => dot_v, dot_a
procedure, pass(y) :: axpby_v => s_base_axpby_v
procedure, pass(y) :: axpby_a => s_base_axpby_a
generic, public :: axpby => axpby_v, axpby_a
!
! Vector by vector multiplication. Need all variants
! to handle multiple requirements from preconditioners
!
procedure, pass(y) :: mlt_v => s_base_mlt_v
procedure, pass(y) :: mlt_a => s_base_mlt_a
procedure, pass(z) :: mlt_a_2 => s_base_mlt_a_2
procedure, pass(z) :: mlt_v_2 => s_base_mlt_v_2
procedure, pass(z) :: mlt_va => s_base_mlt_va
procedure, pass(z) :: mlt_av => s_base_mlt_av
generic, public :: mlt => mlt_v, mlt_a, mlt_a_2, mlt_v_2, mlt_av, mlt_va
!
! Scaling and norms
!
procedure, pass(x) :: scal => s_base_scal
procedure, pass(x) :: nrm2 => s_base_nrm2
procedure, pass(x) :: amax => s_base_amax
procedure, pass(x) :: asum => s_base_asum
!
! Gather/scatter. These are needed for MPI interfacing.
! May have to be reworked.
!
procedure, pass(x) :: gthab => s_base_gthab
procedure, pass(x) :: gthzv => s_base_gthzv
generic, public :: gth => gthab, gthzv
procedure, pass(y) :: sctb => s_base_sctb
generic, public :: sct => sctb
end type psb_s_base_vect_type
public :: psb_s_base_vect
private :: constructor, size_const
interface psb_s_base_vect
module procedure constructor, size_const
end interface psb_s_base_vect
contains
!
! Constructors.
!
!> Function constructor:
!! \brief Constructor from an array
!! \param x(:) input array to be copied
!!
function constructor(x) result(this)
real(psb_spk_) :: x(:)
type(psb_s_base_vect_type) :: this
integer(psb_ipk_) :: info
this%v = x
call this%asb(size(x,kind=psb_ipk_),info)
end function constructor
!> Function constructor:
!! \brief Constructor from size
!! \param n Size of vector to be built.
!!
function size_const(n) result(this)
integer(psb_ipk_), intent(in) :: n
type(psb_s_base_vect_type) :: this
integer(psb_ipk_) :: info
call this%asb(n,info)
end function size_const
!
! Build from a sample
!
!> Function bld_x:
!! \memberof psb_s_base_vect_type
!! \brief Build method from an array
!! \param x(:) input array to be copied
!!
subroutine s_base_bld_x(x,this)
use psb_realloc_mod
real(psb_spk_), intent(in) :: this(:)
class(psb_s_base_vect_type), intent(inout) :: x
integer(psb_ipk_) :: info
call psb_realloc(size(this),x%v,info)
if (info /= 0) then
call psb_errpush(psb_err_alloc_dealloc_,'base_vect_bld')
return
end if
x%v(:) = this(:)
end subroutine s_base_bld_x
!
! Create with size, but no initialization
!
!> Function bld_n:
!! \memberof psb_s_base_vect_type
!! \brief Build method with size (uninitialized data)
!! \param n size to be allocated.
!!
subroutine s_base_bld_n(x,n)
use psb_realloc_mod
integer(psb_ipk_), intent(in) :: n
class(psb_s_base_vect_type), intent(inout) :: x
integer(psb_ipk_) :: info
call psb_realloc(n,x%v,info)
call x%asb(n,info)
end subroutine s_base_bld_n
!> Function base_all:
!! \memberof psb_s_base_vect_type
!! \brief Build method with size (uninitialized data) and
!! allocation return code.
!! \param n size to be allocated.
!! \param info return code
!!
subroutine s_base_all(n, x, info)
use psi_serial_mod
use psb_realloc_mod
implicit none
integer(psb_ipk_), intent(in) :: n
class(psb_s_base_vect_type), intent(out) :: x
integer(psb_ipk_), intent(out) :: info
call psb_realloc(n,x%v,info)
end subroutine s_base_all
!> Function base_mold:
!! \memberof psb_s_base_vect_type
!! \brief Mold method: return a variable with the same dynamic type
!! \param y returned variable
!! \param info return code
!!
subroutine s_base_mold(x, y, info)
use psi_serial_mod
use psb_realloc_mod
implicit none
class(psb_s_base_vect_type), intent(in) :: x
class(psb_s_base_vect_type), intent(out), allocatable :: y
integer(psb_ipk_), intent(out) :: info
allocate(psb_s_base_vect_type :: y, stat=info)
end subroutine s_base_mold
!
! Insert a bunch of values at specified positions.
!
!> Function base_ins:
!! \memberof psb_s_base_vect_type
!! \brief Insert coefficients.
!!
!!
!! Given a list of N pairs
!! (IRL(i),VAL(i))
!! record a new coefficient in X such that
!! X(IRL(1:N)) = VAL(1:N).
!!
!! - the update operation will perform either
!! X(IRL(1:n)) = VAL(1:N)
!! or
!! X(IRL(1:n)) = X(IRL(1:n))+VAL(1:N)
!! according to the value of DUPLICATE.
!!
!!
!! \param n number of pairs in input
!! \param irl(:) the input row indices
!! \param val(:) the input coefficients
!! \param dupl how to treat duplicate entries
!! \param info return code
!!
!
subroutine s_base_ins(n,irl,val,dupl,x,info)
use psi_serial_mod
implicit none
class(psb_s_base_vect_type), intent(inout) :: x
integer(psb_ipk_), intent(in) :: n, dupl
integer(psb_ipk_), intent(in) :: irl(:)
real(psb_spk_), intent(in) :: val(:)
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, isz
info = 0
if (psb_errstatus_fatal()) return
if (.not.allocated(x%v)) then
info = psb_err_invalid_vect_state_
else if (n > min(size(irl),size(val))) then
info = psb_err_invalid_input_
else
isz = size(x%v)
select case(dupl)
case(psb_dupl_ovwrt_)
do i = 1, n
!loop over all val's rows
! row actual block row
if ((1 <= irl(i)).and.(irl(i) <= isz)) then
! this row belongs to me
! copy i-th row of block val in x
x%v(irl(i)) = val(i)
end if
enddo
case(psb_dupl_add_)
do i = 1, n
!loop over all val's rows
if ((1 <= irl(i)).and.(irl(i) <= isz)) then
! this row belongs to me
! copy i-th row of block val in x
x%v(irl(i)) = x%v(irl(i)) + val(i)
end if
enddo
case default
info = 321
! !$ call psb_errpush(info,name)
! !$ goto 9999
end select
end if
if (info /= 0) then
call psb_errpush(info,'base_vect_ins')
return
end if
end subroutine s_base_ins
!
!> Function base_zero
!! \memberof psb_s_base_vect_type
!! \brief Zero out contents
!!
!
subroutine s_base_zero(x)
use psi_serial_mod
implicit none
class(psb_s_base_vect_type), intent(inout) :: x
if (allocated(x%v)) x%v=szero
end subroutine s_base_zero
!
! Assembly.
! For derived classes: after this the vector
! storage is supposed to be in sync.
!
!> Function base_asb:
!! \memberof psb_s_base_vect_type
!! \brief Assemble vector: reallocate as necessary.
!!
!! \param n final size
!! \param info return code
!!
!
subroutine s_base_asb(n, x, info)
use psi_serial_mod
use psb_realloc_mod
implicit none
integer(psb_ipk_), intent(in) :: n
class(psb_s_base_vect_type), intent(inout) :: x
integer(psb_ipk_), intent(out) :: info
if (x%get_nrows() < n) &
& call psb_realloc(n,x%v,info)
if (info /= 0) &
& call psb_errpush(psb_err_alloc_dealloc_,'vect_asb')
end subroutine s_base_asb
!
!> Function base_free:
!! \memberof psb_s_base_vect_type
!! \brief Free vector
!!
!! \param info return code
!!
!
subroutine s_base_free(x, info)
use psi_serial_mod
use psb_realloc_mod
implicit none
class(psb_s_base_vect_type), intent(inout) :: x
integer(psb_ipk_), intent(out) :: info
info = 0
if (allocated(x%v)) deallocate(x%v, stat=info)
if (info /= 0) call &
& psb_errpush(psb_err_alloc_dealloc_,'vect_free')
end subroutine s_base_free
!
! The base version of SYNC & friends does nothing, it's just
! a placeholder.
!
!
!> Function base_sync:
!! \memberof psb_s_base_vect_type
!! \brief Sync: base version is a no-op.
!!
!
subroutine s_base_sync(x)
implicit none
class(psb_s_base_vect_type), intent(inout) :: x
end subroutine s_base_sync
!
!> Function base_set_host:
!! \memberof psb_s_base_vect_type
!! \brief Set_host: base version is a no-op.
!!
!
subroutine s_base_set_host(x)
implicit none
class(psb_s_base_vect_type), intent(inout) :: x
end subroutine s_base_set_host
!
!> Function base_set_dev:
!! \memberof psb_s_base_vect_type
!! \brief Set_dev: base version is a no-op.
!!
!
subroutine s_base_set_dev(x)
implicit none
class(psb_s_base_vect_type), intent(inout) :: x
end subroutine s_base_set_dev
!
!> Function base_set_sync:
!! \memberof psb_s_base_vect_type
!! \brief Set_sync: base version is a no-op.
!!
!
subroutine s_base_set_sync(x)
implicit none
class(psb_s_base_vect_type), intent(inout) :: x
end subroutine s_base_set_sync
!
!> Function base_is_dev:
!! \memberof psb_s_base_vect_type
!! \brief Is vector on external device .
!!
!
function s_base_is_dev(x) result(res)
implicit none
class(psb_s_base_vect_type), intent(in) :: x
logical :: res
res = .false.
end function s_base_is_dev
!
!> Function base_is_host
!! \memberof psb_s_base_vect_type
!! \brief Is vector on standard memory .
!!
!
function s_base_is_host(x) result(res)
implicit none
class(psb_s_base_vect_type), intent(in) :: x
logical :: res
res = .true.
end function s_base_is_host
!
!> Function base_is_sync
!! \memberof psb_s_base_vect_type
!! \brief Is vector on sync .
!!
!
function s_base_is_sync(x) result(res)
implicit none
class(psb_s_base_vect_type), intent(in) :: x
logical :: res
res = .true.
end function s_base_is_sync
!
! Size info.
!
!
!> Function base_get_nrows
!! \memberof psb_s_base_vect_type
!! \brief Number of entries
!!
!
function s_base_get_nrows(x) result(res)
implicit none
class(psb_s_base_vect_type), intent(in) :: x
integer(psb_ipk_) :: res
res = 0
if (allocated(x%v)) res = size(x%v)
end function s_base_get_nrows
!
!> Function base_get_sizeof
!! \memberof psb_s_base_vect_type
!! \brief Size in bytes
!!
!
function s_base_sizeof(x) result(res)
implicit none
class(psb_s_base_vect_type), intent(in) :: x
integer(psb_long_int_k_) :: res
! Force 8-byte integers.
res = (1_psb_long_int_k_ * psb_sizeof_sp) * x%get_nrows()
end function s_base_sizeof
!
!
!
!> Function base_get_vect
!! \memberof psb_s_base_vect_type
!! \brief Extract a copy of the contents
!!
!
function s_base_get_vect(x) result(res)
class(psb_s_base_vect_type), intent(inout) :: x
real(psb_spk_), allocatable :: res(:)
integer(psb_ipk_) :: info
if (.not.allocated(x%v)) return
call x%sync()
allocate(res(x%get_nrows()),stat=info)
if (info /= 0) then
call psb_errpush(psb_err_alloc_dealloc_,'base_get_vect')
return
end if
res(:) = x%v(:)
end function s_base_get_vect
!
! Reset all values
!
!
!> Function base_set_scal
!! \memberof psb_s_base_vect_type
!! \brief Set all entries
!! \param val The value to set
!!
subroutine s_base_set_scal(x,val)
class(psb_s_base_vect_type), intent(inout) :: x
real(psb_spk_), intent(in) :: val
integer(psb_ipk_) :: info
x%v = val
end subroutine s_base_set_scal
!
!> Function base_set_vect
!! \memberof psb_s_base_vect_type
!! \brief Set all entries
!! \param val(:) The vector to be copied in
!!
subroutine s_base_set_vect(x,val)
class(psb_s_base_vect_type), intent(inout) :: x
real(psb_spk_), intent(in) :: val(:)
integer(psb_ipk_) :: nr
integer(psb_ipk_) :: info
if (allocated(x%v)) then
nr = min(size(x%v),size(val))
x%v(1:nr) = val(1:nr)
else
x%v = val
end if
end subroutine s_base_set_vect
!
! Dot products
!
!
!> Function base_dot_v
!! \memberof psb_s_base_vect_type
!! \brief Dot product by another base_vector
!! \param n Number of entries to be considere
!! \param y The other (base_vect) to be multiplied by
!!
function s_base_dot_v(n,x,y) result(res)
implicit none
class(psb_s_base_vect_type), intent(inout) :: x, y
integer(psb_ipk_), intent(in) :: n
real(psb_spk_) :: res
real(psb_spk_), external :: sdot
res = szero
!
! Note: this is the base implementation.
! When we get here, we are sure that X is of
! TYPE psb_s_base_vect.
! If Y is not, throw the burden on it, implicitly
! calling dot_a
!
select type(yy => y)
type is (psb_s_base_vect_type)
res = sdot(n,x%v,1,y%v,1)
class default
res = y%dot(n,x%v)
end select
end function s_base_dot_v
!
! Base workhorse is good old BLAS1
!
!
!> Function base_dot_a
!! \memberof psb_s_base_vect_type
!! \brief Dot product by a normal array
!! \param n Number of entries to be considere
!! \param y(:) The array to be multiplied by
!!
function s_base_dot_a(n,x,y) result(res)
implicit none
class(psb_s_base_vect_type), intent(inout) :: x
real(psb_spk_), intent(in) :: y(:)
integer(psb_ipk_), intent(in) :: n
real(psb_spk_) :: res
real(psb_spk_), external :: sdot
res = sdot(n,y,1,x%v,1)
end function s_base_dot_a
!
! AXPBY is invoked via Y, hence the structure below.
!
!
!
!> Function base_axpby_v
!! \memberof psb_s_base_vect_type
!! \brief AXPBY by a (base_vect) y=alpha*x+beta*y
!! \param m Number of entries to be considere
!! \param alpha scalar alpha
!! \param x The class(base_vect) to be added
!! \param beta scalar alpha
!! \param info return code
!!
subroutine s_base_axpby_v(m,alpha, x, beta, y, info)
use psi_serial_mod
implicit none
integer(psb_ipk_), intent(in) :: m
class(psb_s_base_vect_type), intent(inout) :: x
class(psb_s_base_vect_type), intent(inout) :: y
real(psb_spk_), intent (in) :: alpha, beta
integer(psb_ipk_), intent(out) :: info
select type(xx => x)
type is (psb_s_base_vect_type)
call psb_geaxpby(m,alpha,x%v,beta,y%v,info)
class default
call y%axpby(m,alpha,x%v,beta,info)
end select
end subroutine s_base_axpby_v
!
! AXPBY is invoked via Y, hence the structure below.
!
!
!> Function base_axpby_a
!! \memberof psb_s_base_vect_type
!! \brief AXPBY by a normal array y=alpha*x+beta*y
!! \param m Number of entries to be considere
!! \param alpha scalar alpha
!! \param x(:) The array to be added
!! \param beta scalar alpha
!! \param info return code
!!
subroutine s_base_axpby_a(m,alpha, x, beta, y, info)
use psi_serial_mod
implicit none
integer(psb_ipk_), intent(in) :: m
real(psb_spk_), intent(in) :: x(:)
class(psb_s_base_vect_type), intent(inout) :: y
real(psb_spk_), intent (in) :: alpha, beta
integer(psb_ipk_), intent(out) :: info
call psb_geaxpby(m,alpha,x,beta,y%v,info)
end subroutine s_base_axpby_a
!
! Multiple variants of two operations:
! Simple multiplication Y(:) = X(:)*Y(:)
! blas-like: Z(:) = alpha*X(:)*Y(:)+beta*Z(:)
!
! Variants expanded according to the dynamic type
! of the involved entities
!
!
!> Function base_mlt_a
!! \memberof psb_s_base_vect_type
!! \brief Vector entry-by-entry multiply by a base_vect array y=x*y
!! \param x The class(base_vect) to be multiplied by
!! \param info return code
!!
subroutine s_base_mlt_v(x, y, info)
use psi_serial_mod
implicit none
class(psb_s_base_vect_type), intent(inout) :: x
class(psb_s_base_vect_type), intent(inout) :: y
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, n
info = 0
select type(xx => x)
type is (psb_s_base_vect_type)
n = min(size(y%v), size(xx%v))
do i=1, n
y%v(i) = y%v(i)*xx%v(i)
end do
class default
call y%mlt(x%v,info)
end select
end subroutine s_base_mlt_v
!
!> Function base_mlt_a
!! \memberof psb_s_base_vect_type
!! \brief Vector entry-by-entry multiply by a normal array y=x*y
!! \param x(:) The array to be multiplied by
!! \param info return code
!!
subroutine s_base_mlt_a(x, y, info)
use psi_serial_mod
implicit none
real(psb_spk_), intent(in) :: x(:)
class(psb_s_base_vect_type), intent(inout) :: y
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, n
info = 0
n = min(size(y%v), size(x))
do i=1, n
y%v(i) = y%v(i)*x(i)
end do
end subroutine s_base_mlt_a
!
!> Function base_mlt_a_2
!! \memberof psb_s_base_vect_type
!! \brief AXPBY-like Vector entry-by-entry multiply by normal arrays
!! z=beta*z+alpha*x*y
!! \param alpha
!! \param beta
!! \param x(:) The array to be multiplied b
!! \param y(:) The array to be multiplied by
!! \param info return code
!!
subroutine s_base_mlt_a_2(alpha,x,y,beta,z,info)
use psi_serial_mod
implicit none
real(psb_spk_), intent(in) :: alpha,beta
real(psb_spk_), intent(in) :: y(:)
real(psb_spk_), intent(in) :: x(:)
class(psb_s_base_vect_type), intent(inout) :: z
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, n
info = 0
n = min(size(z%v), size(x), size(y))
!!$ write(0,*) 'Mlt_a_2: ',n
if (alpha == szero) then
if (beta == sone) then
return
else
do i=1, n
z%v(i) = beta*z%v(i)
end do
end if
else
if (alpha == sone) then
if (beta == szero) then
do i=1, n
z%v(i) = y(i)*x(i)
end do
else if (beta == sone) then
do i=1, n
z%v(i) = z%v(i) + y(i)*x(i)
end do
else
do i=1, n
z%v(i) = beta*z%v(i) + y(i)*x(i)
end do
end if
else if (alpha == -sone) then
if (beta == szero) then
do i=1, n
z%v(i) = -y(i)*x(i)
end do
else if (beta == sone) then
do i=1, n
z%v(i) = z%v(i) - y(i)*x(i)
end do
else
do i=1, n
z%v(i) = beta*z%v(i) - y(i)*x(i)
end do
end if
else
if (beta == szero) then
do i=1, n
z%v(i) = alpha*y(i)*x(i)
end do
else if (beta == sone) then
do i=1, n
z%v(i) = z%v(i) + alpha*y(i)*x(i)
end do
else
do i=1, n
z%v(i) = beta*z%v(i) + alpha*y(i)*x(i)
end do
end if
end if
end if
end subroutine s_base_mlt_a_2
!
!> Function base_mlt_v_2
!! \memberof psb_s_base_vect_type
!! \brief AXPBY-like Vector entry-by-entry multiply by class(base_vect)
!! z=beta*z+alpha*x*y
!! \param alpha
!! \param beta
!! \param x The class(base_vect) to be multiplied b
!! \param y The class(base_vect) to be multiplied by
!! \param info return code
!!
subroutine s_base_mlt_v_2(alpha,x,y,beta,z,info,conjgx,conjgy)
use psi_serial_mod
use psb_string_mod
implicit none
real(psb_spk_), intent(in) :: alpha,beta
class(psb_s_base_vect_type), intent(inout) :: x
class(psb_s_base_vect_type), intent(inout) :: y
class(psb_s_base_vect_type), intent(inout) :: z
integer(psb_ipk_), intent(out) :: info
character(len=1), intent(in), optional :: conjgx, conjgy
integer(psb_ipk_) :: i, n
logical :: conjgx_, conjgy_
info = 0
if (.not.psb_s_is_complex_) then
call z%mlt(alpha,x%v,y%v,beta,info)
else
conjgx_=.false.
if (present(conjgx)) conjgx_ = (psb_toupper(conjgx)=='C')
conjgy_=.false.
if (present(conjgy)) conjgy_ = (psb_toupper(conjgy)=='C')
if (conjgx_) x%v=(x%v)
if (conjgy_) y%v=(y%v)
call z%mlt(alpha,x%v,y%v,beta,info)
if (conjgx_) x%v=(x%v)
if (conjgy_) y%v=(y%v)
end if
end subroutine s_base_mlt_v_2
subroutine s_base_mlt_av(alpha,x,y,beta,z,info)
use psi_serial_mod
implicit none
real(psb_spk_), intent(in) :: alpha,beta
real(psb_spk_), intent(in) :: x(:)
class(psb_s_base_vect_type), intent(inout) :: y
class(psb_s_base_vect_type), intent(inout) :: z
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, n
info = 0
call z%mlt(alpha,x,y%v,beta,info)
end subroutine s_base_mlt_av
subroutine s_base_mlt_va(alpha,x,y,beta,z,info)
use psi_serial_mod
implicit none
real(psb_spk_), intent(in) :: alpha,beta
real(psb_spk_), intent(in) :: y(:)
class(psb_s_base_vect_type), intent(inout) :: x
class(psb_s_base_vect_type), intent(inout) :: z
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, n
info = 0
call z%mlt(alpha,y,x,beta,info)
end subroutine s_base_mlt_va
!
! Simple scaling
!
!> Function base_scal
!! \memberof psb_s_base_vect_type
!! \brief Scale all entries x = alpha*x
!! \param alpha The multiplier
!!
subroutine s_base_scal(alpha, x)
use psi_serial_mod
implicit none
class(psb_s_base_vect_type), intent(inout) :: x
real(psb_spk_), intent (in) :: alpha
if (allocated(x%v)) x%v = alpha*x%v
end subroutine s_base_scal
!
! Norms 1, 2 and infinity
!
!> Function base_nrm2
!! \memberof psb_s_base_vect_type
!! \brief 2-norm |x(1:n)|_2
!! \param n how many entries to consider
function s_base_nrm2(n,x) result(res)
implicit none
class(psb_s_base_vect_type), intent(inout) :: x
integer(psb_ipk_), intent(in) :: n
real(psb_spk_) :: res
real(psb_spk_), external :: snrm2
res = snrm2(n,x%v,1)
end function s_base_nrm2
!
!> Function base_amax
!! \memberof psb_s_base_vect_type
!! \brief infinity-norm |x(1:n)|_\infty
!! \param n how many entries to consider
function s_base_amax(n,x) result(res)
implicit none
class(psb_s_base_vect_type), intent(inout) :: x
integer(psb_ipk_), intent(in) :: n
real(psb_spk_) :: res
res = maxval(abs(x%v(1:n)))
end function s_base_amax
!
!> Function base_asum
!! \memberof psb_s_base_vect_type
!! \brief 1-norm |x(1:n)|_1
!! \param n how many entries to consider
function s_base_asum(n,x) result(res)
implicit none
class(psb_s_base_vect_type), intent(inout) :: x
integer(psb_ipk_), intent(in) :: n
real(psb_spk_) :: res
res = sum(abs(x%v(1:n)))
end function s_base_asum
!
! Gather: Y = beta * Y + alpha * X(IDX(:))
!
!
!> Function base_gthab
!! \memberof psb_s_base_vect_type
!! \brief gather into an array
!! Y = beta * Y + alpha * X(IDX(:))
!! \param n how many entries to consider
!! \param idx(:) indices
!! \param alpha
!! \param beta
subroutine s_base_gthab(n,idx,alpha,x,beta,y)
use psi_serial_mod
integer(psb_ipk_) :: n, idx(:)
real(psb_spk_) :: alpha, beta, y(:)
class(psb_s_base_vect_type) :: x
call x%sync()
call psi_gth(n,idx,alpha,x%v,beta,y)
end subroutine s_base_gthab
!
! shortcut alpha=1 beta=0
!
!> Function base_gthzv
!! \memberof psb_s_base_vect_type
!! \brief gather into an array special alpha=1 beta=0
!! Y = X(IDX(:))
!! \param n how many entries to consider
!! \param idx(:) indices
subroutine s_base_gthzv(n,idx,x,y)
use psi_serial_mod
integer(psb_ipk_) :: n, idx(:)
real(psb_spk_) :: y(:)
class(psb_s_base_vect_type) :: x
call x%sync()
call psi_gth(n,idx,x%v,y)
end subroutine s_base_gthzv
!
! Scatter:
! Y(IDX(:)) = beta*Y(IDX(:)) + X(:)
!
!
!> Function base_sctb
!! \memberof psb_s_base_vect_type
!! \brief scatter into a class(base_vect)
!! Y(IDX(:)) = beta * Y(IDX(:)) + X(:)
!! \param n how many entries to consider
!! \param idx(:) indices
!! \param beta
!! \param x(:)
subroutine s_base_sctb(n,idx,x,beta,y)
use psi_serial_mod
integer(psb_ipk_) :: n, idx(:)
real(psb_spk_) :: beta, x(:)
class(psb_s_base_vect_type) :: y
call y%sync()
call psi_sct(n,idx,x,beta,y%v)
call y%set_host()
end subroutine s_base_sctb
end module psb_s_base_vect_mod