You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
psblas3/test/pargen/psb_s_pde2d.f90

830 lines
25 KiB
Fortran

!
! Parallel Sparse BLAS version 3.5
! (C) Copyright 2006-2018
! Salvatore Filippone
! Alfredo Buttari
!
! Redistribution and use in source and binary forms, with or without
! modification, are permitted provided that the following conditions
! are met:
! 1. Redistributions of source code must retain the above copyright
! notice, this list of conditions and the following disclaimer.
! 2. Redistributions in binary form must reproduce the above copyright
! notice, this list of conditions, and the following disclaimer in the
! documentation and/or other materials provided with the distribution.
! 3. The name of the PSBLAS group or the names of its contributors may
! not be used to endorse or promote products derived from this
! software without specific written permission.
!
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
! ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
! TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS
! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
! POSSIBILITY OF SUCH DAMAGE.
!
!
! File: psb_s_pde2d.f90
!
! Program: psb_s_pde2d
! This sample program solves a linear system obtained by discretizing a
! PDE with Dirichlet BCs.
!
!
! The PDE is a general second order equation in 2d
!
! a1 dd(u) a2 dd(u) b1 d(u) b2 d(u)
! - ------ - ------ ----- + ------ + c u = f
! dxdx dydy dx dy
!
! with Dirichlet boundary conditions
! u = g
!
! on the unit square 0<=x,y<=1.
!
!
! Note that if b1=b2=c=0., the PDE is the Laplace equation.
!
! There are three choices available for data distribution:
! 1. A simple BLOCK distribution
! 2. A ditribution based on arbitrary assignment of indices to processes,
! typically from a graph partitioner
! 3. A 2D distribution in which the unit square is partitioned
! into rectangles, each one assigned to a process.
!
module psb_s_pde2d_mod
use psb_base_mod, only : psb_spk_, psb_ipk_, psb_desc_type,&
& psb_sspmat_type, psb_s_vect_type, szero,&
& psb_s_base_sparse_mat, psb_s_base_vect_type, psb_i_base_vect_type
interface
function s_func_2d(x,y) result(val)
import :: psb_spk_
real(psb_spk_), intent(in) :: x,y
real(psb_spk_) :: val
end function s_func_2d
end interface
interface psb_gen_pde2d
module procedure psb_s_gen_pde2d
end interface psb_gen_pde2d
contains
function s_null_func_2d(x,y) result(val)
real(psb_spk_), intent(in) :: x,y
real(psb_spk_) :: val
val = szero
end function s_null_func_2d
!
! functions parametrizing the differential equation
!
!
! Note: b1 and b2 are the coefficients of the first
! derivative of the unknown function. The default
! we apply here is to have them zero, so that the resulting
! matrix is symmetric/hermitian and suitable for
! testing with CG and FCG.
! When testing methods for non-hermitian matrices you can
! change the B1/B2 functions to e.g. sone/sqrt((2*sone))
!
function b1(x,y)
use psb_base_mod, only : psb_spk_, sone, szero
implicit none
real(psb_spk_) :: b1
real(psb_spk_), intent(in) :: x,y
b1=szero
end function b1
function b2(x,y)
use psb_base_mod, only : psb_spk_, sone, szero
implicit none
real(psb_spk_) :: b2
real(psb_spk_), intent(in) :: x,y
b2=szero
end function b2
function c(x,y)
use psb_base_mod, only : psb_spk_, sone, szero
implicit none
real(psb_spk_) :: c
real(psb_spk_), intent(in) :: x,y
c=0.d0
end function c
function a1(x,y)
use psb_base_mod, only : psb_spk_, sone, szero
implicit none
real(psb_spk_) :: a1
real(psb_spk_), intent(in) :: x,y
a1=sone/80
end function a1
function a2(x,y)
use psb_base_mod, only : psb_spk_, sone, szero
implicit none
real(psb_spk_) :: a2
real(psb_spk_), intent(in) :: x,y
a2=sone/80
end function a2
function g(x,y)
use psb_base_mod, only : psb_spk_, sone, szero
implicit none
real(psb_spk_) :: g
real(psb_spk_), intent(in) :: x,y
g = szero
if (x == sone) then
g = sone
else if (x == szero) then
g = exp(-y**2)
end if
end function g
!
! subroutine to allocate and fill in the coefficient matrix and
! the rhs.
!
subroutine psb_s_gen_pde2d(ictxt,idim,a,bv,xv,desc_a,afmt,info,&
& f,amold,vmold,imold,partition,nrl,iv)
use psb_base_mod
use psb_util_mod
!
! Discretizes the partial differential equation
!
! a1 dd(u) a2 dd(u) b1 d(u) b2 d(u)
! - ------ - ------ + ----- + ------ + c u = f
! dxdx dydy dx dy
!
! with Dirichlet boundary conditions
! u = g
!
! on the unit square 0<=x,y<=1.
!
!
! Note that if b1=b2=c=0., the PDE is the Laplace equation.
!
implicit none
integer(psb_ipk_) :: idim
type(psb_sspmat_type) :: a
type(psb_s_vect_type) :: xv,bv
type(psb_desc_type) :: desc_a
integer(psb_ipk_) :: ictxt, info
character(len=*) :: afmt
procedure(s_func_2d), optional :: f
class(psb_s_base_sparse_mat), optional :: amold
class(psb_s_base_vect_type), optional :: vmold
class(psb_i_base_vect_type), optional :: imold
integer(psb_ipk_), optional :: partition, nrl,iv(:)
! Local variables.
integer(psb_ipk_), parameter :: nb=20
type(psb_s_csc_sparse_mat) :: acsc
type(psb_s_coo_sparse_mat) :: acoo
type(psb_s_csr_sparse_mat) :: acsr
real(psb_spk_) :: zt(nb),x,y,z
integer(psb_ipk_) :: nnz,nr,nlr,i,j,ii,ib,k, partition_
integer(psb_lpk_) :: m,n,glob_row,nt
integer(psb_ipk_) :: ix,iy,iz,ia,indx_owner
! For 2D partition
! Note: integer control variables going directly into an MPI call
! must be 4 bytes, i.e. psb_mpk_
integer(psb_mpk_) :: npdims(2), npp, minfo
integer(psb_ipk_) :: npx,npy,iamx,iamy,mynx,myny
integer(psb_ipk_), allocatable :: bndx(:),bndy(:)
! Process grid
integer(psb_ipk_) :: np, iam
integer(psb_ipk_) :: icoeff
integer(psb_lpk_), allocatable :: irow(:),icol(:),myidx(:)
real(psb_spk_), allocatable :: val(:)
! deltah dimension of each grid cell
! deltat discretization time
real(psb_spk_) :: deltah, sqdeltah, deltah2
real(psb_spk_), parameter :: rhs=szero,one=sone,zero=szero
real(psb_dpk_) :: t0, t1, t2, t3, tasb, talc, ttot, tgen, tcdasb
integer(psb_ipk_) :: err_act
procedure(s_func_2d), pointer :: f_
character(len=20) :: name, ch_err,tmpfmt
info = psb_success_
name = 'create_matrix'
call psb_erractionsave(err_act)
call psb_info(ictxt, iam, np)
if (present(f)) then
f_ => f
else
f_ => s_null_func_2d
end if
deltah = sone/(idim+2)
sqdeltah = deltah*deltah
deltah2 = (2*sone)* deltah
if (present(partition)) then
if ((1<= partition).and.(partition <= 3)) then
partition_ = partition
else
write(*,*) 'Invalid partition choice ',partition,' defaulting to 3'
partition_ = 3
end if
else
partition_ = 3
end if
! initialize array descriptor and sparse matrix storage. provide an
! estimate of the number of non zeroes
m = (1_psb_lpk_)*idim*idim
n = m
nnz = ((n*7)/(np))
if(iam == psb_root_) write(psb_out_unit,'("Generating Matrix (size=",i0,")...")')n
t0 = psb_wtime()
select case(partition_)
case(1)
! A BLOCK partition
if (present(nrl)) then
nr = nrl
else
!
! Using a simple BLOCK distribution.
!
nt = (m+np-1)/np
nr = max(0,min(nt,m-(iam*nt)))
end if
nt = nr
call psb_sum(ictxt,nt)
if (nt /= m) then
write(psb_err_unit,*) iam, 'Initialization error ',nr,nt,m
info = -1
call psb_barrier(ictxt)
call psb_abort(ictxt)
return
end if
!
! First example of use of CDALL: specify for each process a number of
! contiguous rows
!
call psb_cdall(ictxt,desc_a,info,nl=nr)
myidx = desc_a%get_global_indices()
nlr = size(myidx)
case(2)
! A partition defined by the user through IV
if (present(iv)) then
if (size(iv) /= m) then
write(psb_err_unit,*) iam, 'Initialization error: wrong IV size',size(iv),m
info = -1
call psb_barrier(ictxt)
call psb_abort(ictxt)
return
end if
else
write(psb_err_unit,*) iam, 'Initialization error: IV not present'
info = -1
call psb_barrier(ictxt)
call psb_abort(ictxt)
return
end if
!
! Second example of use of CDALL: specify for each row the
! process that owns it
!
call psb_cdall(ictxt,desc_a,info,vg=iv)
myidx = desc_a%get_global_indices()
nlr = size(myidx)
case(3)
! A 2-dimensional partition
! A nifty MPI function will split the process list
npdims = 0
call mpi_dims_create(np,2,npdims,info)
npx = npdims(1)
npy = npdims(2)
allocate(bndx(0:npx),bndy(0:npy))
! We can reuse idx2ijk for process indices as well.
call idx2ijk(iamx,iamy,iam,npx,npy,base=0)
! Now let's split the 2D square in rectangles
call dist1Didx(bndx,idim,npx)
mynx = bndx(iamx+1)-bndx(iamx)
call dist1Didx(bndy,idim,npy)
myny = bndy(iamy+1)-bndy(iamy)
! How many indices do I own?
nlr = mynx*myny
allocate(myidx(nlr))
! Now, let's generate the list of indices I own
nr = 0
do i=bndx(iamx),bndx(iamx+1)-1
do j=bndy(iamy),bndy(iamy+1)-1
nr = nr + 1
call ijk2idx(myidx(nr),i,j,idim,idim)
end do
end do
if (nr /= nlr) then
write(psb_err_unit,*) iam,iamx,iamy, 'Initialization error: NR vs NLR ',&
& nr,nlr,mynx,myny
info = -1
call psb_barrier(ictxt)
call psb_abort(ictxt)
end if
!
! Third example of use of CDALL: specify for each process
! the set of global indices it owns.
!
call psb_cdall(ictxt,desc_a,info,vl=myidx)
case default
write(psb_err_unit,*) iam, 'Initialization error: should not get here'
info = -1
call psb_barrier(ictxt)
call psb_abort(ictxt)
return
end select
if (info == psb_success_) call psb_spall(a,desc_a,info,nnz=nnz)
! define rhs from boundary conditions; also build initial guess
if (info == psb_success_) call psb_geall(xv,desc_a,info)
if (info == psb_success_) call psb_geall(bv,desc_a,info)
call psb_barrier(ictxt)
talc = psb_wtime()-t0
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='allocation rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
! we build an auxiliary matrix consisting of one row at a
! time; just a small matrix. might be extended to generate
! a bunch of rows per call.
!
allocate(val(20*nb),irow(20*nb),&
&icol(20*nb),stat=info)
if (info /= psb_success_ ) then
info=psb_err_alloc_dealloc_
call psb_errpush(info,name)
goto 9999
endif
! loop over rows belonging to current process in a block
! distribution.
call psb_barrier(ictxt)
t1 = psb_wtime()
do ii=1, nlr,nb
ib = min(nb,nlr-ii+1)
icoeff = 1
do k=1,ib
i=ii+k-1
! local matrix pointer
glob_row=myidx(i)
! compute gridpoint coordinates
call idx2ijk(ix,iy,glob_row,idim,idim)
! x, y coordinates
x = (ix-1)*deltah
y = (iy-1)*deltah
zt(k) = f_(x,y)
! internal point: build discretization
!
! term depending on (x-1,y)
!
val(icoeff) = -a1(x,y)/sqdeltah-b1(x,y)/deltah2
if (ix == 1) then
zt(k) = g(szero,y)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix-1,iy,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y-1)
val(icoeff) = -a2(x,y)/sqdeltah-b2(x,y)/deltah2
if (iy == 1) then
zt(k) = g(x,szero)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix,iy-1,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y)
val(icoeff)=(2*sone)*(a1(x,y) + a2(x,y))/sqdeltah + c(x,y)
call ijk2idx(icol(icoeff),ix,iy,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
! term depending on (x,y+1)
val(icoeff)=-a2(x,y)/sqdeltah+b2(x,y)/deltah2
if (iy == idim) then
zt(k) = g(x,sone)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix,iy+1,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x+1,y)
val(icoeff)=-a1(x,y)/sqdeltah+b1(x,y)/deltah2
if (ix==idim) then
zt(k) = g(sone,y)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix+1,iy,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
end do
call psb_spins(icoeff-1,irow,icol,val,a,desc_a,info)
if(info /= psb_success_) exit
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),bv,desc_a,info)
if(info /= psb_success_) exit
zt(:)=szero
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),xv,desc_a,info)
if(info /= psb_success_) exit
end do
tgen = psb_wtime()-t1
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='insert rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
deallocate(val,irow,icol)
call psb_barrier(ictxt)
t1 = psb_wtime()
call psb_cdasb(desc_a,info,mold=imold)
tcdasb = psb_wtime()-t1
call psb_barrier(ictxt)
t1 = psb_wtime()
if (info == psb_success_) then
if (present(amold)) then
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,mold=amold)
else
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,afmt=afmt)
end if
end if
call psb_barrier(ictxt)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
if (info == psb_success_) call psb_geasb(xv,desc_a,info,mold=vmold)
if (info == psb_success_) call psb_geasb(bv,desc_a,info,mold=vmold)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
tasb = psb_wtime()-t1
call psb_barrier(ictxt)
ttot = psb_wtime() - t0
call psb_amx(ictxt,talc)
call psb_amx(ictxt,tgen)
call psb_amx(ictxt,tasb)
call psb_amx(ictxt,ttot)
if(iam == psb_root_) then
tmpfmt = a%get_fmt()
write(psb_out_unit,'("The matrix has been generated and assembled in ",a3," format.")')&
& tmpfmt
write(psb_out_unit,'("-allocation time : ",es12.5)') talc
write(psb_out_unit,'("-coeff. gen. time : ",es12.5)') tgen
write(psb_out_unit,'("-desc asbly time : ",es12.5)') tcdasb
write(psb_out_unit,'("- mat asbly time : ",es12.5)') tasb
write(psb_out_unit,'("-total time : ",es12.5)') ttot
end if
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(ictxt,err_act)
return
end subroutine psb_s_gen_pde2d
end module psb_s_pde2d_mod
program psb_s_pde2d
use psb_base_mod
use psb_prec_mod
use psb_krylov_mod
use psb_util_mod
use psb_s_pde2d_mod
implicit none
! input parameters
character(len=20) :: kmethd, ptype
character(len=5) :: afmt
integer(psb_ipk_) :: idim
integer(psb_epk_) :: system_size
! miscellaneous
real(psb_spk_), parameter :: one = sone
real(psb_dpk_) :: t1, t2, tprec
! sparse matrix and preconditioner
type(psb_sspmat_type) :: a
type(psb_sprec_type) :: prec
! descriptor
type(psb_desc_type) :: desc_a
! dense vectors
type(psb_s_vect_type) :: xxv,bv
! parallel environment
integer(psb_ipk_) :: ictxt, iam, np
! solver parameters
integer(psb_ipk_) :: iter, itmax,itrace, istopc, irst, ipart
integer(psb_epk_) :: amatsize, precsize, descsize, d2size
real(psb_spk_) :: err, eps
! other variables
integer(psb_ipk_) :: info, i
character(len=20) :: name,ch_err
character(len=40) :: fname
info=psb_success_
call psb_init(ictxt)
call psb_info(ictxt,iam,np)
if (iam < 0) then
! This should not happen, but just in case
call psb_exit(ictxt)
stop
endif
if(psb_errstatus_fatal()) goto 9999
name='pde2d90'
call psb_set_errverbosity(itwo)
!
! Hello world
!
if (iam == psb_root_) then
write(*,*) 'Welcome to PSBLAS version: ',psb_version_string_
write(*,*) 'This is the ',trim(name),' sample program'
end if
!
! get parameters
!
call get_parms(ictxt,kmethd,ptype,afmt,idim,istopc,itmax,itrace,irst,ipart)
!
! allocate and fill in the coefficient matrix, rhs and initial guess
!
call psb_barrier(ictxt)
t1 = psb_wtime()
call psb_gen_pde2d(ictxt,idim,a,bv,xxv,desc_a,afmt,info,partition=ipart)
call psb_barrier(ictxt)
t2 = psb_wtime() - t1
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='psb_gen_pde2d'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
if (iam == psb_root_) write(psb_out_unit,'("Overall matrix creation time : ",es12.5)')t2
if (iam == psb_root_) write(psb_out_unit,'(" ")')
!
! prepare the preconditioner.
!
if(iam == psb_root_) write(psb_out_unit,'("Setting preconditioner to : ",a)')ptype
call prec%init(ictxt,ptype,info)
call psb_barrier(ictxt)
t1 = psb_wtime()
call prec%build(a,desc_a,info)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='psb_precbld'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
tprec = psb_wtime()-t1
call psb_amx(ictxt,tprec)
if (iam == psb_root_) write(psb_out_unit,'("Preconditioner time : ",es12.5)')tprec
if (iam == psb_root_) write(psb_out_unit,'(" ")')
call prec%descr()
!
! iterative method parameters
!
if(iam == psb_root_) write(psb_out_unit,'("Calling iterative method ",a)')kmethd
call psb_barrier(ictxt)
t1 = psb_wtime()
eps = 1.d-6
call psb_krylov(kmethd,a,prec,bv,xxv,eps,desc_a,info,&
& itmax=itmax,iter=iter,err=err,itrace=itrace,istop=istopc,irst=irst)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='solver routine'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
call psb_barrier(ictxt)
t2 = psb_wtime() - t1
call psb_amx(ictxt,t2)
amatsize = a%sizeof()
descsize = desc_a%sizeof()
precsize = prec%sizeof()
system_size = desc_a%get_global_rows()
call psb_sum(ictxt,amatsize)
call psb_sum(ictxt,descsize)
call psb_sum(ictxt,precsize)
if (iam == psb_root_) then
write(psb_out_unit,'(" ")')
write(psb_out_unit,'("Number of processes : ",i12)')np
write(psb_out_unit,'("Linear system size : ",i12)') system_size
write(psb_out_unit,'("Time to solve system : ",es12.5)')t2
write(psb_out_unit,'("Time per iteration : ",es12.5)')t2/iter
write(psb_out_unit,'("Number of iterations : ",i12)')iter
write(psb_out_unit,'("Convergence indicator on exit : ",es12.5)')err
write(psb_out_unit,'("Info on exit : ",i12)')info
write(psb_out_unit,'("Total memory occupation for A: ",i12)')amatsize
write(psb_out_unit,'("Total memory occupation for PREC: ",i12)')precsize
write(psb_out_unit,'("Total memory occupation for DESC_A: ",i12)')descsize
write(psb_out_unit,'("Storage format for A: ",a)') a%get_fmt()
write(psb_out_unit,'("Storage format for DESC_A: ",a)') desc_a%get_fmt()
end if
!
! cleanup storage and exit
!
call psb_gefree(bv,desc_a,info)
call psb_gefree(xxv,desc_a,info)
call psb_spfree(a,desc_a,info)
call prec%free(info)
call psb_cdfree(desc_a,info)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='free routine'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
call psb_exit(ictxt)
stop
9999 call psb_error(ictxt)
stop
contains
!
! get iteration parameters from standard input
!
subroutine get_parms(ictxt,kmethd,ptype,afmt,idim,istopc,itmax,itrace,irst,ipart)
integer(psb_ipk_) :: ictxt
character(len=*) :: kmethd, ptype, afmt
integer(psb_ipk_) :: idim, istopc,itmax,itrace,irst,ipart
integer(psb_ipk_) :: np, iam
integer(psb_ipk_) :: ip, inp_unit
character(len=1024) :: filename
call psb_info(ictxt, iam, np)
if (iam == 0) then
if (command_argument_count()>0) then
call get_command_argument(1,filename)
inp_unit = 30
open(inp_unit,file=filename,action='read',iostat=info)
if (info /= 0) then
write(psb_err_unit,*) 'Could not open file ',filename,' for input'
call psb_abort(ictxt)
stop
else
write(psb_err_unit,*) 'Opened file ',trim(filename),' for input'
end if
else
inp_unit=psb_inp_unit
end if
read(inp_unit,*) ip
if (ip >= 3) then
read(inp_unit,*) kmethd
read(inp_unit,*) ptype
read(inp_unit,*) afmt
read(inp_unit,*) idim
if (ip >= 4) then
read(inp_unit,*) ipart
else
ipart = 3
endif
if (ip >= 5) then
read(inp_unit,*) istopc
else
istopc=1
endif
if (ip >= 6) then
read(inp_unit,*) itmax
else
itmax=500
endif
if (ip >= 7) then
read(inp_unit,*) itrace
else
itrace=-1
endif
if (ip >= 8) then
read(inp_unit,*) irst
else
irst=1
endif
write(psb_out_unit,'("Solving matrix : ell1")')
write(psb_out_unit,'("Grid dimensions : ",i5," x ",i5)')idim,idim
write(psb_out_unit,'("Number of processors : ",i0)') np
select case(ipart)
case(1)
write(psb_out_unit,'("Data distribution : BLOCK")')
case(3)
write(psb_out_unit,'("Data distribution : 2D")')
case default
ipart = 3
write(psb_out_unit,'("Unknown data distrbution, defaulting to 2D")')
end select
write(psb_out_unit,'("Preconditioner : ",a)') ptype
write(psb_out_unit,'("Iterative method : ",a)') kmethd
write(psb_out_unit,'(" ")')
else
! wrong number of parameter, print an error message and exit
call pr_usage(izero)
call psb_abort(ictxt)
stop 1
endif
if (inp_unit /= psb_inp_unit) then
close(inp_unit)
end if
end if
! broadcast parameters to all processors
call psb_bcast(ictxt,kmethd)
call psb_bcast(ictxt,afmt)
call psb_bcast(ictxt,ptype)
call psb_bcast(ictxt,idim)
call psb_bcast(ictxt,ipart)
call psb_bcast(ictxt,istopc)
call psb_bcast(ictxt,itmax)
call psb_bcast(ictxt,itrace)
call psb_bcast(ictxt,irst)
return
end subroutine get_parms
!
! print an error message
!
subroutine pr_usage(iout)
integer(psb_ipk_) :: iout
write(iout,*)'incorrect parameter(s) found'
write(iout,*)' usage: pde2d90 methd prec dim &
&[ipart istop itmax itrace]'
write(iout,*)' where:'
write(iout,*)' methd: cgstab cgs rgmres bicgstabl'
write(iout,*)' prec : bjac diag none'
write(iout,*)' dim number of points along each axis'
write(iout,*)' the size of the resulting linear '
write(iout,*)' system is dim**2'
write(iout,*)' ipart data partition 1 3 '
write(iout,*)' istop stopping criterion 1, 2 '
write(iout,*)' itmax maximum number of iterations [500] '
write(iout,*)' itrace <=0 (no tracing, default) or '
write(iout,*)' >= 1 do tracing every itrace'
write(iout,*)' iterations '
end subroutine pr_usage
end program psb_s_pde2d