You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
psblas3/base/modules/psb_s_base_mat_mod.f90

1765 lines
62 KiB
Fortran

!!$
!!$ Parallel Sparse BLAS version 3.1
!!$ (C) Copyright 2006, 2007, 2008, 2009, 2010, 2012, 2013
!!$ Salvatore Filippone University of Rome Tor Vergata
!!$ Alfredo Buttari CNRS-IRIT, Toulouse
!!$
!!$ Redistribution and use in source and binary forms, with or without
!!$ modification, are permitted provided that the following conditions
!!$ are met:
!!$ 1. Redistributions of source code must retain the above copyright
!!$ notice, this list of conditions and the following disclaimer.
!!$ 2. Redistributions in binary form must reproduce the above copyright
!!$ notice, this list of conditions, and the following disclaimer in the
!!$ documentation and/or other materials provided with the distribution.
!!$ 3. The name of the PSBLAS group or the names of its contributors may
!!$ not be used to endorse or promote products derived from this
!!$ software without specific written permission.
!!$
!!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
!!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
!!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
!!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS
!!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
!!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
!!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
!!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
!!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
!!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
!!$ POSSIBILITY OF SUCH DAMAGE.
!!$
!!$
!
!
module psb_s_base_mat_mod
use psb_base_mat_mod
use psb_s_base_vect_mod
!> \namespace psb_base_mod \class psb_s_base_sparse_mat
!! \extends psb_base_mat_mod::psb_base_sparse_mat
!! The psb_s_base_sparse_mat type, extending psb_base_sparse_mat,
!! defines a middle level real(psb_spk_) sparse matrix object.
!! This class object itself does not have any additional members
!! with respect to those of the base class. No methods can be fully
!! implemented at this level, but we can define the interface for the
!! computational methods requiring the knowledge of the underlying
!! field, such as the matrix-vector product; this interface is defined,
!! but is supposed to be overridden at the leaf level.
!!
!! About the method MOLD: this has been defined for those compilers
!! not yet supporting ALLOCATE( ...,MOLD=...); it's otherwise silly to
!! duplicate "by hand" what is specified in the language (in this case F2008)
!!
type, extends(psb_base_sparse_mat) :: psb_s_base_sparse_mat
contains
!
! Data management methods: defined here, but (mostly) not implemented.
!
procedure, pass(a) :: csput => psb_s_base_csput
procedure, pass(a) :: csgetrow => psb_s_base_csgetrow
procedure, pass(a) :: csgetblk => psb_s_base_csgetblk
procedure, pass(a) :: get_diag => psb_s_base_get_diag
generic, public :: csget => csgetrow, csgetblk
procedure, pass(a) :: csclip => psb_s_base_csclip
procedure, pass(a) :: cp_to_coo => psb_s_base_cp_to_coo
procedure, pass(a) :: cp_from_coo => psb_s_base_cp_from_coo
procedure, pass(a) :: cp_to_fmt => psb_s_base_cp_to_fmt
procedure, pass(a) :: cp_from_fmt => psb_s_base_cp_from_fmt
procedure, pass(a) :: mv_to_coo => psb_s_base_mv_to_coo
procedure, pass(a) :: mv_from_coo => psb_s_base_mv_from_coo
procedure, pass(a) :: mv_to_fmt => psb_s_base_mv_to_fmt
procedure, pass(a) :: mv_from_fmt => psb_s_base_mv_from_fmt
procedure, pass(a) :: mold => psb_s_base_mold
procedure, pass(a) :: clone => psb_s_base_clone
procedure, pass(a) :: make_nonunit => psb_s_base_make_nonunit
!
! Transpose methods: defined here but not implemented.
!
procedure, pass(a) :: transp_1mat => psb_s_base_transp_1mat
procedure, pass(a) :: transp_2mat => psb_s_base_transp_2mat
procedure, pass(a) :: transc_1mat => psb_s_base_transc_1mat
procedure, pass(a) :: transc_2mat => psb_s_base_transc_2mat
!
! Computational methods: defined here but not implemented.
!
procedure, pass(a) :: vect_mv => psb_s_base_vect_mv
procedure, pass(a) :: csmv => psb_s_base_csmv
procedure, pass(a) :: csmm => psb_s_base_csmm
generic, public :: spmm => csmm, csmv, vect_mv
procedure, pass(a) :: in_vect_sv => psb_s_base_inner_vect_sv
procedure, pass(a) :: inner_cssv => psb_s_base_inner_cssv
procedure, pass(a) :: inner_cssm => psb_s_base_inner_cssm
generic, public :: inner_spsm => inner_cssm, inner_cssv, in_vect_sv
procedure, pass(a) :: vect_cssv => psb_s_base_vect_cssv
procedure, pass(a) :: cssv => psb_s_base_cssv
procedure, pass(a) :: cssm => psb_s_base_cssm
generic, public :: spsm => cssm, cssv, vect_cssv
procedure, pass(a) :: scals => psb_s_base_scals
procedure, pass(a) :: scalv => psb_s_base_scal
generic, public :: scal => scals, scalv
procedure, pass(a) :: maxval => psb_s_base_maxval
procedure, pass(a) :: spnmi => psb_s_base_csnmi
procedure, pass(a) :: spnm1 => psb_s_base_csnm1
procedure, pass(a) :: rowsum => psb_s_base_rowsum
procedure, pass(a) :: arwsum => psb_s_base_arwsum
procedure, pass(a) :: colsum => psb_s_base_colsum
procedure, pass(a) :: aclsum => psb_s_base_aclsum
end type psb_s_base_sparse_mat
!> \namespace psb_base_mod \class psb_s_coo_sparse_mat
!! \extends psb_s_base_mat_mod::psb_s_base_sparse_mat
!!
!! psb_s_coo_sparse_mat type and the related methods. This is the
!! reference type for all the format transitions, copies and mv unless
!! methods are implemented that allow the direct transition from one
!! format to another. It is defined here since all other classes must
!! refer to it per the MEDIATOR design pattern.
!!
type, extends(psb_s_base_sparse_mat) :: psb_s_coo_sparse_mat
!> Number of nonzeros.
integer(psb_ipk_) :: nnz
!> Row indices.
integer(psb_ipk_), allocatable :: ia(:)
!> Column indices.
integer(psb_ipk_), allocatable :: ja(:)
!> Coefficient values.
real(psb_spk_), allocatable :: val(:)
contains
!
! Data management methods.
!
procedure, pass(a) :: get_size => s_coo_get_size
procedure, pass(a) :: get_nzeros => s_coo_get_nzeros
procedure, nopass :: get_fmt => s_coo_get_fmt
procedure, pass(a) :: sizeof => s_coo_sizeof
procedure, pass(a) :: reallocate_nz => psb_s_coo_reallocate_nz
procedure, pass(a) :: allocate_mnnz => psb_s_coo_allocate_mnnz
procedure, pass(a) :: cp_to_coo => psb_s_cp_coo_to_coo
procedure, pass(a) :: cp_from_coo => psb_s_cp_coo_from_coo
procedure, pass(a) :: cp_to_fmt => psb_s_cp_coo_to_fmt
procedure, pass(a) :: cp_from_fmt => psb_s_cp_coo_from_fmt
procedure, pass(a) :: mv_to_coo => psb_s_mv_coo_to_coo
procedure, pass(a) :: mv_from_coo => psb_s_mv_coo_from_coo
procedure, pass(a) :: mv_to_fmt => psb_s_mv_coo_to_fmt
procedure, pass(a) :: mv_from_fmt => psb_s_mv_coo_from_fmt
procedure, pass(a) :: csput => psb_s_coo_csput
procedure, pass(a) :: get_diag => psb_s_coo_get_diag
procedure, pass(a) :: csgetrow => psb_s_coo_csgetrow
procedure, pass(a) :: csgetptn => psb_s_coo_csgetptn
procedure, pass(a) :: reinit => psb_s_coo_reinit
procedure, pass(a) :: get_nz_row => psb_s_coo_get_nz_row
procedure, pass(a) :: fix => psb_s_fix_coo
procedure, pass(a) :: trim => psb_s_coo_trim
procedure, pass(a) :: print => psb_s_coo_print
procedure, pass(a) :: free => s_coo_free
procedure, pass(a) :: mold => psb_s_coo_mold
!
! This is COO specific
!
procedure, pass(a) :: set_nzeros => s_coo_set_nzeros
!
! Transpose methods. These are the base of all
! indirection in transpose, together with conversions
! they are sufficient for all cases.
!
procedure, pass(a) :: transp_1mat => s_coo_transp_1mat
procedure, pass(a) :: transc_1mat => s_coo_transc_1mat
!
! Computational methods.
!
procedure, pass(a) :: csmm => psb_s_coo_csmm
procedure, pass(a) :: csmv => psb_s_coo_csmv
procedure, pass(a) :: inner_cssm => psb_s_coo_cssm
procedure, pass(a) :: inner_cssv => psb_s_coo_cssv
procedure, pass(a) :: scals => psb_s_coo_scals
procedure, pass(a) :: scalv => psb_s_coo_scal
procedure, pass(a) :: maxval => psb_s_coo_maxval
procedure, pass(a) :: spnmi => psb_s_coo_csnmi
procedure, pass(a) :: spnm1 => psb_s_coo_csnm1
procedure, pass(a) :: rowsum => psb_s_coo_rowsum
procedure, pass(a) :: arwsum => psb_s_coo_arwsum
procedure, pass(a) :: colsum => psb_s_coo_colsum
procedure, pass(a) :: aclsum => psb_s_coo_aclsum
end type psb_s_coo_sparse_mat
private :: s_coo_get_nzeros, s_coo_set_nzeros, &
& s_coo_get_fmt, s_coo_free, s_coo_sizeof, &
& s_coo_transp_1mat, s_coo_transc_1mat
! == =================
!
! BASE interfaces
!
! == =================
!> Function csput:
!! \memberof psb_s_base_sparse_mat
!! \brief Insert coefficients.
!!
!!
!! Given a list of NZ triples
!! (IA(i),JA(i),VAL(i))
!! record a new coefficient in A such that
!! A(IA(1:nz),JA(1:nz)) = VAL(1:NZ).
!!
!! The internal components IA,JA,VAL are reallocated as necessary.
!! Constraints:
!! - If the matrix A is in the BUILD state, then the method will
!! only work for COO matrices, all other format will throw an error.
!! In this case coefficients are queued inside A for further processing.
!! - If the matrix A is in the UPDATE state, then it can be in any format;
!! the update operation will perform either
!! A(IA(1:nz),JA(1:nz)) = VAL(1:NZ)
!! or
!! A(IA(1:nz),JA(1:nz)) = A(IA(1:nz),JA(1:nz))+VAL(1:NZ)
!! according to the value of DUPLICATE.
!! - Coefficients with (IA(I),JA(I)) outside the ranges specified by
!! IMIN:IMAX,JMIN:JMAX will be ignored.
!!
!! \param nz number of triples in input
!! \param ia(:) the input row indices
!! \param ja(:) the input col indices
!! \param val(:) the input coefficients
!! \param imin minimum row index
!! \param imax maximum row index
!! \param jmin minimum col index
!! \param jmax maximum col index
!! \param info return code
!! \param gtl(:) [none] an array to renumber indices (iren(ia(:)),iren(ja(:))
!!
!
interface
subroutine psb_s_base_csput(nz,ia,ja,val,a,imin,imax,jmin,jmax,info,gtl)
import :: psb_ipk_, psb_s_base_sparse_mat, psb_spk_
class(psb_s_base_sparse_mat), intent(inout) :: a
real(psb_spk_), intent(in) :: val(:)
integer(psb_ipk_), intent(in) :: nz, ia(:), ja(:), imin,imax,jmin,jmax
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_), intent(in), optional :: gtl(:)
end subroutine psb_s_base_csput
end interface
!
!
!> Function csgetrow:
!! \memberof psb_s_base_sparse_mat
!! \brief Get a (subset of) row(s)
!!
!! getrow is the basic method by which the other (getblk, clip) can
!! be implemented.
!!
!! Returns the set
!! NZ, IA(1:nz), JA(1:nz), VAL(1:NZ)
!! each identifying the position of a nonzero in A
!! between row indices IMIN:IMAX;
!! IA,JA are reallocated as necessary.
!!
!! \param imin the minimum row index we are interested in
!! \param imax the minimum row index we are interested in
!! \param nz the number of output coefficients
!! \param ia(:) the output row indices
!! \param ja(:) the output col indices
!! \param val(:) the output coefficients
!! \param info return code
!! \param jmin [1] minimum col index
!! \param jmax [a\%get_ncols()] maximum col index
!! \param iren(:) [none] an array to return renumbered indices (iren(ia(:)),iren(ja(:))
!! \param rscale [false] map [min(ia(:)):max(ia(:))] onto [1:max(ia(:))-min(ia(:))+1]
!! \param cscale [false] map [min(ja(:)):max(ja(:))] onto [1:max(ja(:))-min(ja(:))+1]
!! ( iren cannot be specified with rscale/cscale)
!! \param append [false] append to ia,ja
!! \param nzin [none] if append, then first new entry should go in entry nzin+1
!!
!
interface
subroutine psb_s_base_csgetrow(imin,imax,a,nz,ia,ja,val,info,&
& jmin,jmax,iren,append,nzin,rscale,cscale)
import :: psb_ipk_, psb_s_base_sparse_mat, psb_spk_
class(psb_s_base_sparse_mat), intent(in) :: a
integer(psb_ipk_), intent(in) :: imin,imax
integer(psb_ipk_), intent(out) :: nz
integer(psb_ipk_), allocatable, intent(inout) :: ia(:), ja(:)
real(psb_spk_), allocatable, intent(inout) :: val(:)
integer(psb_ipk_),intent(out) :: info
logical, intent(in), optional :: append
integer(psb_ipk_), intent(in), optional :: iren(:)
integer(psb_ipk_), intent(in), optional :: jmin,jmax, nzin
logical, intent(in), optional :: rscale,cscale
end subroutine psb_s_base_csgetrow
end interface
!
!> Function csgetblk:
!! \memberof psb_s_base_sparse_mat
!! \brief Get a (subset of) row(s)
!!
!! getblk is very similar to getrow, except that the output
!! is packaged in a psb_s_coo_sparse_mat object
!!
!! \param imin the minimum row index we are interested in
!! \param imax the minimum row index we are interested in
!! \param b the output (sub)matrix
!! \param info return code
!! \param jmin [1] minimum col index
!! \param jmax [a\%get_ncols()] maximum col index
!! \param iren(:) [none] an array to return renumbered indices (iren(ia(:)),iren(ja(:))
!! \param rscale [false] map [min(ia(:)):max(ia(:))] onto [1:max(ia(:))-min(ia(:))+1]
!! \param cscale [false] map [min(ja(:)):max(ja(:))] onto [1:max(ja(:))-min(ja(:))+1]
!! ( iren cannot be specified with rscale/cscale)
!! \param append [false] append to ia,ja
!! \param nzin [none] if append, then first new entry should go in entry nzin+1
!!
!
interface
subroutine psb_s_base_csgetblk(imin,imax,a,b,info,&
& jmin,jmax,iren,append,rscale,cscale)
import :: psb_ipk_, psb_s_base_sparse_mat, psb_s_coo_sparse_mat, psb_spk_
class(psb_s_base_sparse_mat), intent(in) :: a
class(psb_s_coo_sparse_mat), intent(inout) :: b
integer(psb_ipk_), intent(in) :: imin,imax
integer(psb_ipk_),intent(out) :: info
logical, intent(in), optional :: append
integer(psb_ipk_), intent(in), optional :: iren(:)
integer(psb_ipk_), intent(in), optional :: jmin,jmax
logical, intent(in), optional :: rscale,cscale
end subroutine psb_s_base_csgetblk
end interface
!
!
!> Function csclip:
!! \memberof psb_s_base_sparse_mat
!! \brief Get a submatrix.
!!
!! csclip is practically identical to getblk.
!! One of them has to go away.....
!!
!! \param b the output submatrix
!! \param info return code
!! \param imin [1] the minimum row index we are interested in
!! \param imax [a%get_nrows()] the minimum row index we are interested in
!! \param jmin [1] minimum col index
!! \param jmax [a\%get_ncols()] maximum col index
!! \param iren(:) [none] an array to return renumbered indices (iren(ia(:)),iren(ja(:))
!! \param rscale [false] map [min(ia(:)):max(ia(:))] onto [1:max(ia(:))-min(ia(:))+1]
!! \param cscale [false] map [min(ja(:)):max(ja(:))] onto [1:max(ja(:))-min(ja(:))+1]
!! ( iren cannot be specified with rscale/cscale)
!! \param append [false] append to ia,ja
!! \param nzin [none] if append, then first new entry should go in entry nzin+1
!!
!
interface
subroutine psb_s_base_csclip(a,b,info,&
& imin,imax,jmin,jmax,rscale,cscale)
import :: psb_ipk_, psb_s_base_sparse_mat, psb_s_coo_sparse_mat, psb_spk_
class(psb_s_base_sparse_mat), intent(in) :: a
class(psb_s_coo_sparse_mat), intent(out) :: b
integer(psb_ipk_),intent(out) :: info
integer(psb_ipk_), intent(in), optional :: imin,imax,jmin,jmax
logical, intent(in), optional :: rscale,cscale
end subroutine psb_s_base_csclip
end interface
!
!> Function get_diag:
!! \memberof psb_s_base_sparse_mat
!! \brief Extract the diagonal of A.
!!
!! D(i) = A(i:i), i=1:min(nrows,ncols)
!!
!! \param d(:) The output diagonal
!! \param info return code.
!
interface
subroutine psb_s_base_get_diag(a,d,info)
import :: psb_ipk_, psb_s_base_sparse_mat, psb_spk_
class(psb_s_base_sparse_mat), intent(in) :: a
real(psb_spk_), intent(out) :: d(:)
integer(psb_ipk_), intent(out) :: info
end subroutine psb_s_base_get_diag
end interface
!
!> Function mold:
!! \memberof psb_s_base_sparse_mat
!! \brief Allocate a class(psb_s_base_sparse_mat) with the
!! same dynamic type as the input.
!! This is equivalent to allocate( mold= ) and is provided
!! for those compilers not yet supporting mold.
!! \param b The output variable
!! \param info return code
!
interface
subroutine psb_s_base_mold(a,b,info)
import :: psb_ipk_, psb_s_base_sparse_mat, psb_long_int_k_
class(psb_s_base_sparse_mat), intent(in) :: a
class(psb_s_base_sparse_mat), intent(inout), allocatable :: b
integer(psb_ipk_), intent(out) :: info
end subroutine psb_s_base_mold
end interface
!
!
!> Function clone:
!! \memberof psb_s_base_sparse_mat
!! \brief Allocate and clone a class(psb_s_base_sparse_mat) with the
!! same dynamic type as the input.
!! This is equivalent to allocate( source= ) except that
!! it should guarantee a deep copy wherever needed.
!! Should also be equivalent to calling mold and then copy,
!! but it can also be implemented by default using cp_to_fmt.
!! \param b The output variable
!! \param info return code
!
interface
subroutine psb_s_base_clone(a,b, info)
import :: psb_ipk_, psb_s_base_sparse_mat, psb_long_int_k_
implicit none
class(psb_s_base_sparse_mat), intent(inout) :: a
class(psb_s_base_sparse_mat), allocatable, intent(inout) :: b
integer(psb_ipk_), intent(out) :: info
end subroutine psb_s_base_clone
end interface
!
!
!> Function make_nonunit:
!! \memberof psb_s_base_make_nonunit
!! \brief Given a matrix for which is_unit() is true, explicitly
!! store the unit diagonal and set is_unit() to false.
!! This is needed e.g. when scaling
!
interface
subroutine psb_s_base_make_nonunit(a)
import :: psb_s_base_sparse_mat
implicit none
class(psb_s_base_sparse_mat), intent(inout) :: a
end subroutine psb_s_base_make_nonunit
end interface
!
!> Function cp_to_coo:
!! \memberof psb_s_base_sparse_mat
!! \brief Copy and convert to psb_s_coo_sparse_mat
!! Invoked from the source object.
!! \param b The output variable
!! \param info return code
!
interface
subroutine psb_s_base_cp_to_coo(a,b,info)
import :: psb_ipk_, psb_s_base_sparse_mat, psb_s_coo_sparse_mat, psb_spk_
class(psb_s_base_sparse_mat), intent(in) :: a
class(psb_s_coo_sparse_mat), intent(inout) :: b
integer(psb_ipk_), intent(out) :: info
end subroutine psb_s_base_cp_to_coo
end interface
!
!> Function cp_from_coo:
!! \memberof psb_s_base_sparse_mat
!! \brief Copy and convert from psb_s_coo_sparse_mat
!! Invoked from the target object.
!! \param b The input variable
!! \param info return code
!
interface
subroutine psb_s_base_cp_from_coo(a,b,info)
import :: psb_ipk_, psb_s_base_sparse_mat, psb_s_coo_sparse_mat, psb_spk_
class(psb_s_base_sparse_mat), intent(inout) :: a
class(psb_s_coo_sparse_mat), intent(in) :: b
integer(psb_ipk_), intent(out) :: info
end subroutine psb_s_base_cp_from_coo
end interface
!
!> Function cp_to_fmt:
!! \memberof psb_s_base_sparse_mat
!! \brief Copy and convert to a class(psb_s_base_sparse_mat)
!! Invoked from the source object. Can be implemented by
!! simply invoking a%cp_to_coo(tmp) and then b%cp_from_coo(tmp).
!! \param b The output variable
!! \param info return code
!
interface
subroutine psb_s_base_cp_to_fmt(a,b,info)
import :: psb_ipk_, psb_s_base_sparse_mat, psb_spk_
class(psb_s_base_sparse_mat), intent(in) :: a
class(psb_s_base_sparse_mat), intent(inout) :: b
integer(psb_ipk_), intent(out) :: info
end subroutine psb_s_base_cp_to_fmt
end interface
!
!> Function cp_from_fmt:
!! \memberof psb_s_base_sparse_mat
!! \brief Copy and convert from a class(psb_s_base_sparse_mat)
!! Invoked from the target object. Can be implemented by
!! simply invoking b%cp_to_coo(tmp) and then a%cp_from_coo(tmp).
!! \param b The output variable
!! \param info return code
!
interface
subroutine psb_s_base_cp_from_fmt(a,b,info)
import :: psb_ipk_, psb_s_base_sparse_mat, psb_spk_
class(psb_s_base_sparse_mat), intent(inout) :: a
class(psb_s_base_sparse_mat), intent(in) :: b
integer(psb_ipk_), intent(out) :: info
end subroutine psb_s_base_cp_from_fmt
end interface
!
!> Function mv_to_coo:
!! \memberof psb_s_base_sparse_mat
!! \brief Convert to psb_s_coo_sparse_mat, freeing the source.
!! Invoked from the source object.
!! \param b The output variable
!! \param info return code
!
interface
subroutine psb_s_base_mv_to_coo(a,b,info)
import :: psb_ipk_, psb_s_base_sparse_mat, psb_s_coo_sparse_mat, psb_spk_
class(psb_s_base_sparse_mat), intent(inout) :: a
class(psb_s_coo_sparse_mat), intent(inout) :: b
integer(psb_ipk_), intent(out) :: info
end subroutine psb_s_base_mv_to_coo
end interface
!
!> Function mv_from_coo:
!! \memberof psb_s_base_sparse_mat
!! \brief Convert from psb_s_coo_sparse_mat, freeing the source.
!! Invoked from the target object.
!! \param b The input variable
!! \param info return code
!
interface
subroutine psb_s_base_mv_from_coo(a,b,info)
import :: psb_ipk_, psb_s_base_sparse_mat, psb_s_coo_sparse_mat, psb_spk_
class(psb_s_base_sparse_mat), intent(inout) :: a
class(psb_s_coo_sparse_mat), intent(inout) :: b
integer(psb_ipk_), intent(out) :: info
end subroutine psb_s_base_mv_from_coo
end interface
!
!> Function mv_to_fmt:
!! \memberof psb_s_base_sparse_mat
!! \brief Convert to a class(psb_s_base_sparse_mat), freeing the source.
!! Invoked from the source object. Can be implemented by
!! simply invoking a%mv_to_coo(tmp) and then b%mv_from_coo(tmp).
!! \param b The output variable
!! \param info return code
!
interface
subroutine psb_s_base_mv_to_fmt(a,b,info)
import :: psb_ipk_, psb_s_base_sparse_mat, psb_spk_
class(psb_s_base_sparse_mat), intent(inout) :: a
class(psb_s_base_sparse_mat), intent(inout) :: b
integer(psb_ipk_), intent(out) :: info
end subroutine psb_s_base_mv_to_fmt
end interface
!
!> Function mv_from_fmt:
!! \memberof psb_s_base_sparse_mat
!! \brief Convert from a class(psb_s_base_sparse_mat), freeing the source.
!! Invoked from the target object. Can be implemented by
!! simply invoking b%mv_to_coo(tmp) and then a%mv_from_coo(tmp).
!! \param b The output variable
!! \param info return code
!
interface
subroutine psb_s_base_mv_from_fmt(a,b,info)
import :: psb_ipk_, psb_s_base_sparse_mat, psb_spk_
class(psb_s_base_sparse_mat), intent(inout) :: a
class(psb_s_base_sparse_mat), intent(inout) :: b
integer(psb_ipk_), intent(out) :: info
end subroutine psb_s_base_mv_from_fmt
end interface
!
!> Function transp:
!! \memberof psb_s_base_sparse_mat
!! \brief Transpose. Can always be implemented by staging through a COO
!! temporary for which transpose is very easy.
!! Copyout version
!! \param b The output variable
!
interface
subroutine psb_s_base_transp_2mat(a,b)
import :: psb_ipk_, psb_s_base_sparse_mat, psb_base_sparse_mat, psb_spk_
class(psb_s_base_sparse_mat), intent(in) :: a
class(psb_base_sparse_mat), intent(out) :: b
end subroutine psb_s_base_transp_2mat
end interface
!
!> Function transc:
!! \memberof psb_s_base_sparse_mat
!! \brief Conjugate Transpose. Can always be implemented by staging through a COO
!! temporary for which transpose is very easy.
!! Copyout version.
!! \param b The output variable
!
interface
subroutine psb_s_base_transc_2mat(a,b)
import :: psb_ipk_, psb_s_base_sparse_mat, psb_base_sparse_mat, psb_spk_
class(psb_s_base_sparse_mat), intent(in) :: a
class(psb_base_sparse_mat), intent(out) :: b
end subroutine psb_s_base_transc_2mat
end interface
!
!> Function transp:
!! \memberof psb_s_base_sparse_mat
!! \brief Transpose. Can always be implemented by staging through a COO
!! temporary for which transpose is very easy.
!! In-place version.
!
interface
subroutine psb_s_base_transp_1mat(a)
import :: psb_ipk_, psb_s_base_sparse_mat, psb_spk_
class(psb_s_base_sparse_mat), intent(inout) :: a
end subroutine psb_s_base_transp_1mat
end interface
!
!> Function transc:
!! \memberof psb_s_base_sparse_mat
!! \brief Conjugate Transpose. Can always be implemented by staging through a COO
!! temporary for which transpose is very easy.
!! In-place version.
!
interface
subroutine psb_s_base_transc_1mat(a)
import :: psb_ipk_, psb_s_base_sparse_mat, psb_spk_
class(psb_s_base_sparse_mat), intent(inout) :: a
end subroutine psb_s_base_transc_1mat
end interface
!
!> Function csmm:
!! \memberof psb_s_base_sparse_mat
!! \brief Product by a dense rank 2 array.
!!
!! Compute
!! Y = alpha*op(A)*X + beta*Y
!!
!! \param alpha Scaling factor for Ax
!! \param A the input sparse matrix
!! \param x(:,:) the input dense X
!! \param beta Scaling factor for y
!! \param y(:,:) the input/output dense Y
!! \param info return code
!! \param trans [N] Whether to use A (N), its transpose (T)
!! or its conjugate transpose (C)
!!
!
interface
subroutine psb_s_base_csmm(alpha,a,x,beta,y,info,trans)
import :: psb_ipk_, psb_s_base_sparse_mat, psb_spk_
class(psb_s_base_sparse_mat), intent(in) :: a
real(psb_spk_), intent(in) :: alpha, beta, x(:,:)
real(psb_spk_), intent(inout) :: y(:,:)
integer(psb_ipk_), intent(out) :: info
character, optional, intent(in) :: trans
end subroutine psb_s_base_csmm
end interface
!> Function csmv:
!! \memberof psb_s_base_sparse_mat
!! \brief Product by a dense rank 1 array.
!!
!! Compute
!! Y = alpha*op(A)*X + beta*Y
!!
!! \param alpha Scaling factor for Ax
!! \param A the input sparse matrix
!! \param x(:) the input dense X
!! \param beta Scaling factor for y
!! \param y(:) the input/output dense Y
!! \param info return code
!! \param trans [N] Whether to use A (N), its transpose (T)
!! or its conjugate transpose (C)
!!
!
interface
subroutine psb_s_base_csmv(alpha,a,x,beta,y,info,trans)
import :: psb_ipk_, psb_s_base_sparse_mat, psb_spk_
class(psb_s_base_sparse_mat), intent(in) :: a
real(psb_spk_), intent(in) :: alpha, beta, x(:)
real(psb_spk_), intent(inout) :: y(:)
integer(psb_ipk_), intent(out) :: info
character, optional, intent(in) :: trans
end subroutine psb_s_base_csmv
end interface
!> Function vect_mv:
!! \memberof psb_s_base_sparse_mat
!! \brief Product by an encapsulated array type(psb_s_vect_type)
!!
!! Compute
!! Y = alpha*op(A)*X + beta*Y
!! Usually the unwrapping of the encapsulated vector is done
!! here, so that all the derived classes need only the
!! versions with the standard arrays.
!! Must be overridden explicitly in case of non standard memory
!! management; an example would be external memory allocation
!! in attached processors such as GPUs.
!!
!!
!! \param alpha Scaling factor for Ax
!! \param A the input sparse matrix
!! \param x the input X
!! \param beta Scaling factor for y
!! \param y the input/output Y
!! \param info return code
!! \param trans [N] Whether to use A (N), its transpose (T)
!! or its conjugate transpose (C)
!!
!
interface
subroutine psb_s_base_vect_mv(alpha,a,x,beta,y,info,trans)
import :: psb_ipk_, psb_s_base_sparse_mat, psb_spk_, psb_s_base_vect_type
class(psb_s_base_sparse_mat), intent(in) :: a
real(psb_spk_), intent(in) :: alpha, beta
class(psb_s_base_vect_type), intent(inout) :: x
class(psb_s_base_vect_type), intent(inout) :: y
integer(psb_ipk_), intent(out) :: info
character, optional, intent(in) :: trans
end subroutine psb_s_base_vect_mv
end interface
!
!> Function cssm:
!! \memberof psb_s_base_sparse_mat
!! \brief Triangular system solve by a dense rank 2 array.
!!
!! Compute
!! Y = alpha*op(A^-1)*X + beta*Y
!!
!! Internal workhorse called by cssm.
!!
!! \param alpha Scaling factor for Ax
!! \param A the input sparse matrix
!! \param x(:,:) the input dense X
!! \param beta Scaling factor for y
!! \param y(:,:) the input/output dense Y
!! \param info return code
!! \param trans [N] Whether to use A (N), its transpose (T)
!! or its conjugate transpose (C)
!!
!
interface
subroutine psb_s_base_inner_cssm(alpha,a,x,beta,y,info,trans)
import :: psb_ipk_, psb_s_base_sparse_mat, psb_spk_
class(psb_s_base_sparse_mat), intent(in) :: a
real(psb_spk_), intent(in) :: alpha, beta, x(:,:)
real(psb_spk_), intent(inout) :: y(:,:)
integer(psb_ipk_), intent(out) :: info
character, optional, intent(in) :: trans
end subroutine psb_s_base_inner_cssm
end interface
!
!> Function cssv:
!! \memberof psb_s_base_sparse_mat
!! \brief Triangular system solve by a dense rank 1 array.
!!
!! Compute
!! Y = alpha*op(A^-1)*X + beta*Y
!!
!! Internal workhorse called by cssv.
!!
!! \param alpha Scaling factor for Ax
!! \param A the input sparse matrix
!! \param x(:) the input dense X
!! \param beta Scaling factor for y
!! \param y(:) the input/output dense Y
!! \param info return code
!! \param trans [N] Whether to use A (N), its transpose (T)
!! or its conjugate transpose (C)
!! \param scale [N] Apply a scaling on Right (R) i.e. ADX
!! or on the Left (L) i.e. DAx
!! \param D(:) [none] Diagonal for scaling.
!!
!
interface
subroutine psb_s_base_inner_cssv(alpha,a,x,beta,y,info,trans)
import :: psb_ipk_, psb_s_base_sparse_mat, psb_spk_
class(psb_s_base_sparse_mat), intent(in) :: a
real(psb_spk_), intent(in) :: alpha, beta, x(:)
real(psb_spk_), intent(inout) :: y(:)
integer(psb_ipk_), intent(out) :: info
character, optional, intent(in) :: trans
end subroutine psb_s_base_inner_cssv
end interface
!
!> Function inner_vect_cssv:
!! \memberof psb_s_base_sparse_mat
!! \brief Triangular system solve by
!! an encapsulated array type(psb_s_vect_type)
!!
!! Compute
!! Y = alpha*op(A^-1)*X + beta*Y
!!
!! Internal workhorse called by vect_cssv.
!! Must be overridden explicitly in case of non standard memory
!! management; an example would be external memory allocation
!! in attached processors such as GPUs.
!!
!!
!! \param alpha Scaling factor for Ax
!! \param A the input sparse matrix
!! \param x the input dense X
!! \param beta Scaling factor for y
!! \param y the input/output dense Y
!! \param info return code
!! \param trans [N] Whether to use A (N), its transpose (T)
!! or its conjugate transpose (C)
!
interface
subroutine psb_s_base_inner_vect_sv(alpha,a,x,beta,y,info,trans)
import :: psb_ipk_, psb_s_base_sparse_mat, psb_spk_, psb_s_base_vect_type
class(psb_s_base_sparse_mat), intent(in) :: a
real(psb_spk_), intent(in) :: alpha, beta
class(psb_s_base_vect_type), intent(inout) :: x, y
integer(psb_ipk_), intent(out) :: info
character, optional, intent(in) :: trans
end subroutine psb_s_base_inner_vect_sv
end interface
!
!> Function cssm:
!! \memberof psb_s_base_sparse_mat
!! \brief Triangular system solve by a dense rank 2 array.
!!
!! Compute
!! Y = alpha*op(A^-1)*X + beta*Y
!!
!! \param alpha Scaling factor for Ax
!! \param A the input sparse matrix
!! \param x(:,:) the input dense X
!! \param beta Scaling factor for y
!! \param y(:,:) the input/output dense Y
!! \param info return code
!! \param trans [N] Whether to use A (N), its transpose (T)
!! or its conjugate transpose (C)
!! \param scale [N] Apply a scaling on Right (R) i.e. ADX
!! or on the Left (L) i.e. DAx
!! \param D(:) [none] Diagonal for scaling.
!!
!
interface
subroutine psb_s_base_cssm(alpha,a,x,beta,y,info,trans,scale,d)
import :: psb_ipk_, psb_s_base_sparse_mat, psb_spk_
class(psb_s_base_sparse_mat), intent(in) :: a
real(psb_spk_), intent(in) :: alpha, beta, x(:,:)
real(psb_spk_), intent(inout) :: y(:,:)
integer(psb_ipk_), intent(out) :: info
character, optional, intent(in) :: trans, scale
real(psb_spk_), intent(in), optional :: d(:)
end subroutine psb_s_base_cssm
end interface
!
!> Function cssv:
!! \memberof psb_s_base_sparse_mat
!! \brief Triangular system solve by a dense rank 1 array.
!!
!! Compute
!! Y = alpha*op(A^-1)*X + beta*Y
!!
!! \param alpha Scaling factor for Ax
!! \param A the input sparse matrix
!! \param x(:) the input dense X
!! \param beta Scaling factor for y
!! \param y(:) the input/output dense Y
!! \param info return code
!! \param trans [N] Whether to use A (N), its transpose (T)
!! or its conjugate transpose (C)
!! \param scale [N] Apply a scaling on Right (R) i.e. ADX
!! or on the Left (L) i.e. DAx
!! \param D(:) [none] Diagonal for scaling.
!!
!
interface
subroutine psb_s_base_cssv(alpha,a,x,beta,y,info,trans,scale,d)
import :: psb_ipk_, psb_s_base_sparse_mat, psb_spk_
class(psb_s_base_sparse_mat), intent(in) :: a
real(psb_spk_), intent(in) :: alpha, beta, x(:)
real(psb_spk_), intent(inout) :: y(:)
integer(psb_ipk_), intent(out) :: info
character, optional, intent(in) :: trans, scale
real(psb_spk_), intent(in), optional :: d(:)
end subroutine psb_s_base_cssv
end interface
!
!> Function vect_cssv:
!! \memberof psb_s_base_sparse_mat
!! \brief Triangular system solve by
!! an encapsulated array type(psb_s_vect_type)
!!
!! Compute
!! Y = alpha*op(A^-1)*X + beta*Y
!!
!! \param alpha Scaling factor for Ax
!! \param A the input sparse matrix
!! \param x the input dense X
!! \param beta Scaling factor for y
!! \param y the input/output dense Y
!! \param info return code
!! \param trans [N] Whether to use A (N), its transpose (T)
!! or its conjugate transpose (C)
!! \param scale [N] Apply a scaling on Right (R) i.e. ADX
!! or on the Left (L) i.e. DAx
!! \param D [none] Diagonal for scaling.
!!
!
interface
subroutine psb_s_base_vect_cssv(alpha,a,x,beta,y,info,trans,scale,d)
import :: psb_ipk_, psb_s_base_sparse_mat, psb_spk_,psb_s_base_vect_type
class(psb_s_base_sparse_mat), intent(in) :: a
real(psb_spk_), intent(in) :: alpha, beta
class(psb_s_base_vect_type), intent(inout) :: x,y
integer(psb_ipk_), intent(out) :: info
character, optional, intent(in) :: trans, scale
class(psb_s_base_vect_type), optional, intent(inout) :: d
end subroutine psb_s_base_vect_cssv
end interface
!
!> Function base_scals:
!! \memberof psb_s_base_sparse_mat
!! \brief Scale a matrix by a single scalar value
!!
!! \param d Scaling factor
!! \param info return code
!
interface
subroutine psb_s_base_scals(d,a,info)
import :: psb_ipk_, psb_s_base_sparse_mat, psb_spk_
class(psb_s_base_sparse_mat), intent(inout) :: a
real(psb_spk_), intent(in) :: d
integer(psb_ipk_), intent(out) :: info
end subroutine psb_s_base_scals
end interface
!
!> Function base_scal:
!! \memberof psb_s_base_sparse_mat
!! \brief Scale a matrix by a vector
!!
!! \param d(:) Scaling vector
!! \param info return code
!! \param side [L] Scale on the Left (rows) or on the Right (columns)
!
interface
subroutine psb_s_base_scal(d,a,info,side)
import :: psb_ipk_, psb_s_base_sparse_mat, psb_spk_
class(psb_s_base_sparse_mat), intent(inout) :: a
real(psb_spk_), intent(in) :: d(:)
integer(psb_ipk_), intent(out) :: info
character, intent(in), optional :: side
end subroutine psb_s_base_scal
end interface
!
!> Function base_maxval:
!! \memberof psb_s_base_sparse_mat
!! \brief Maximum absolute value of all coefficients;
!!
!
interface
function psb_s_base_maxval(a) result(res)
import :: psb_ipk_, psb_s_base_sparse_mat, psb_spk_
class(psb_s_base_sparse_mat), intent(in) :: a
real(psb_spk_) :: res
end function psb_s_base_maxval
end interface
!
!
!> Function base_csnmi:
!! \memberof psb_s_base_sparse_mat
!! \brief Operator infinity norm
!!
!
interface
function psb_s_base_csnmi(a) result(res)
import :: psb_ipk_, psb_s_base_sparse_mat, psb_spk_
class(psb_s_base_sparse_mat), intent(in) :: a
real(psb_spk_) :: res
end function psb_s_base_csnmi
end interface
!
!
!> Function base_csnmi:
!! \memberof psb_s_base_sparse_mat
!! \brief Operator 1-norm
!!
!
interface
function psb_s_base_csnm1(a) result(res)
import :: psb_ipk_, psb_s_base_sparse_mat, psb_spk_
class(psb_s_base_sparse_mat), intent(in) :: a
real(psb_spk_) :: res
end function psb_s_base_csnm1
end interface
!
!
!> Function base_rowsum:
!! \memberof psb_s_base_sparse_mat
!! \brief Sum along the rows
!! \param d(:) The output row sums
!!
!
interface
subroutine psb_s_base_rowsum(d,a)
import :: psb_ipk_, psb_s_base_sparse_mat, psb_spk_
class(psb_s_base_sparse_mat), intent(in) :: a
real(psb_spk_), intent(out) :: d(:)
end subroutine psb_s_base_rowsum
end interface
!
!> Function base_arwsum:
!! \memberof psb_s_base_sparse_mat
!! \brief Absolute value sum along the rows
!! \param d(:) The output row sums
!!
interface
subroutine psb_s_base_arwsum(d,a)
import :: psb_ipk_, psb_s_base_sparse_mat, psb_spk_
class(psb_s_base_sparse_mat), intent(in) :: a
real(psb_spk_), intent(out) :: d(:)
end subroutine psb_s_base_arwsum
end interface
!
!
!> Function base_colsum:
!! \memberof psb_s_base_sparse_mat
!! \brief Sum along the columns
!! \param d(:) The output col sums
!!
!
interface
subroutine psb_s_base_colsum(d,a)
import :: psb_ipk_, psb_s_base_sparse_mat, psb_spk_
class(psb_s_base_sparse_mat), intent(in) :: a
real(psb_spk_), intent(out) :: d(:)
end subroutine psb_s_base_colsum
end interface
!
!> Function base_aclsum:
!! \memberof psb_s_base_sparse_mat
!! \brief Absolute value sum along the columns
!! \param d(:) The output col sums
!!
interface
subroutine psb_s_base_aclsum(d,a)
import :: psb_ipk_, psb_s_base_sparse_mat, psb_spk_
class(psb_s_base_sparse_mat), intent(in) :: a
real(psb_spk_), intent(out) :: d(:)
end subroutine psb_s_base_aclsum
end interface
! == ===============
!
! COO interfaces
!
! == ===============
!
!>
!! \memberof psb_s_coo_sparse_mat
!! \see psb_base_mat_mod::psb_base_reallocate_nz
!
interface
subroutine psb_s_coo_reallocate_nz(nz,a)
import :: psb_ipk_, psb_s_coo_sparse_mat
integer(psb_ipk_), intent(in) :: nz
class(psb_s_coo_sparse_mat), intent(inout) :: a
end subroutine psb_s_coo_reallocate_nz
end interface
!
!>
!! \memberof psb_s_coo_sparse_mat
!! \see psb_base_mat_mod::psb_base_reinit
!
interface
subroutine psb_s_coo_reinit(a,clear)
import :: psb_ipk_, psb_s_coo_sparse_mat
class(psb_s_coo_sparse_mat), intent(inout) :: a
logical, intent(in), optional :: clear
end subroutine psb_s_coo_reinit
end interface
!
!>
!! \memberof psb_s_coo_sparse_mat
!! \see psb_base_mat_mod::psb_base_trim
!
interface
subroutine psb_s_coo_trim(a)
import :: psb_ipk_, psb_s_coo_sparse_mat
class(psb_s_coo_sparse_mat), intent(inout) :: a
end subroutine psb_s_coo_trim
end interface
!
!>
!! \memberof psb_s_coo_sparse_mat
!! \see psb_base_mat_mod::psb_base_allocate_mnnz
!
interface
subroutine psb_s_coo_allocate_mnnz(m,n,a,nz)
import :: psb_ipk_, psb_s_coo_sparse_mat
integer(psb_ipk_), intent(in) :: m,n
class(psb_s_coo_sparse_mat), intent(inout) :: a
integer(psb_ipk_), intent(in), optional :: nz
end subroutine psb_s_coo_allocate_mnnz
end interface
!> \memberof psb_s_coo_sparse_mat
!| \see psb_base_mat_mod::psb_base_mold
interface
subroutine psb_s_coo_mold(a,b,info)
import :: psb_ipk_, psb_s_coo_sparse_mat, psb_s_base_sparse_mat, psb_long_int_k_
class(psb_s_coo_sparse_mat), intent(in) :: a
class(psb_s_base_sparse_mat), intent(inout), allocatable :: b
integer(psb_ipk_), intent(out) :: info
end subroutine psb_s_coo_mold
end interface
!
!> Function print.
!! \memberof psb_s_coo_sparse_mat
!! \brief Print the matrix to file in MatrixMarket format
!!
!! \param iout The unit to write to
!! \param iv [none] Renumbering for both rows and columns
!! \param head [none] Descriptive header for the file
!! \param ivr [none] Row renumbering
!! \param ivc [none] Col renumbering
!!
!
interface
subroutine psb_s_coo_print(iout,a,iv,head,ivr,ivc)
import :: psb_ipk_, psb_s_coo_sparse_mat
integer(psb_ipk_), intent(in) :: iout
class(psb_s_coo_sparse_mat), intent(in) :: a
integer(psb_ipk_), intent(in), optional :: iv(:)
character(len=*), optional :: head
integer(psb_ipk_), intent(in), optional :: ivr(:), ivc(:)
end subroutine psb_s_coo_print
end interface
!
!> Function get_nz_row.
!! \memberof psb_s_coo_sparse_mat
!! \brief How many nonzeros in a row?
!!
!! \param idx The row to search.
!!
!
interface
function psb_s_coo_get_nz_row(idx,a) result(res)
import :: psb_ipk_, psb_s_coo_sparse_mat
class(psb_s_coo_sparse_mat), intent(in) :: a
integer(psb_ipk_), intent(in) :: idx
integer(psb_ipk_) :: res
end function psb_s_coo_get_nz_row
end interface
!
!> Funtion: fix_coo_inner
!! \brief Make sure the entries are sorted and duplicates are handled.
!! Used internally by fix_coo
!! \param nzin Number of entries on input to be handled
!! \param dupl What to do with duplicated entries.
!! \param ia(:) Row indices
!! \param ja(:) Col indices
!! \param val(:) Coefficients
!! \param nzout Number of entries after sorting/duplicate handling
!! \param info return code
!! \param idir [0] Sort in: row major order (0) or col major order (1)
!!
!
interface
subroutine psb_s_fix_coo_inner(nzin,dupl,ia,ja,val,nzout,info,idir)
import :: psb_ipk_, psb_spk_
integer(psb_ipk_), intent(in) :: nzin,dupl
integer(psb_ipk_), intent(inout) :: ia(:), ja(:)
real(psb_spk_), intent(inout) :: val(:)
integer(psb_ipk_), intent(out) :: nzout, info
integer(psb_ipk_), intent(in), optional :: idir
end subroutine psb_s_fix_coo_inner
end interface
!
!> Function fix_coo
!! \memberof psb_s_coo_sparse_mat
!! \brief Make sure the entries are sorted and duplicates are handled.
!! \param info return code
!! \param idir [0] Sort in: row major order (0) or col major order (1)
!!
!
interface
subroutine psb_s_fix_coo(a,info,idir)
import :: psb_ipk_, psb_s_coo_sparse_mat
class(psb_s_coo_sparse_mat), intent(inout) :: a
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_), intent(in), optional :: idir
end subroutine psb_s_fix_coo
end interface
!>
!! \memberof psb_s_coo_sparse_mat
!! \see psb_s_base_mat_mod::psb_s_base_cp_to_coo
interface
subroutine psb_s_cp_coo_to_coo(a,b,info)
import :: psb_ipk_, psb_s_coo_sparse_mat
class(psb_s_coo_sparse_mat), intent(in) :: a
class(psb_s_coo_sparse_mat), intent(inout) :: b
integer(psb_ipk_), intent(out) :: info
end subroutine psb_s_cp_coo_to_coo
end interface
!>
!! \memberof psb_s_coo_sparse_mat
!! \see psb_s_base_mat_mod::psb_s_base_cp_from_coo
interface
subroutine psb_s_cp_coo_from_coo(a,b,info)
import :: psb_ipk_, psb_s_coo_sparse_mat
class(psb_s_coo_sparse_mat), intent(inout) :: a
class(psb_s_coo_sparse_mat), intent(in) :: b
integer(psb_ipk_), intent(out) :: info
end subroutine psb_s_cp_coo_from_coo
end interface
!>
!! \memberof psb_s_coo_sparse_mat
!! \see psb_s_base_mat_mod::psb_s_base_cp_from_coo
!!
interface
subroutine psb_s_cp_coo_to_fmt(a,b,info)
import :: psb_ipk_, psb_s_coo_sparse_mat, psb_s_base_sparse_mat
class(psb_s_coo_sparse_mat), intent(in) :: a
class(psb_s_base_sparse_mat), intent(inout) :: b
integer(psb_ipk_), intent(out) :: info
end subroutine psb_s_cp_coo_to_fmt
end interface
!>
!! \memberof psb_s_coo_sparse_mat
!! \see psb_s_base_mat_mod::psb_s_base_cp_from_fmt
!!
interface
subroutine psb_s_cp_coo_from_fmt(a,b,info)
import :: psb_ipk_, psb_s_coo_sparse_mat, psb_s_base_sparse_mat
class(psb_s_coo_sparse_mat), intent(inout) :: a
class(psb_s_base_sparse_mat), intent(in) :: b
integer(psb_ipk_), intent(out) :: info
end subroutine psb_s_cp_coo_from_fmt
end interface
!>
!! \memberof psb_s_coo_sparse_mat
!! \see psb_s_base_mat_mod::psb_s_base_mv_to_coo
interface
subroutine psb_s_mv_coo_to_coo(a,b,info)
import :: psb_ipk_, psb_s_coo_sparse_mat
class(psb_s_coo_sparse_mat), intent(inout) :: a
class(psb_s_coo_sparse_mat), intent(inout) :: b
integer(psb_ipk_), intent(out) :: info
end subroutine psb_s_mv_coo_to_coo
end interface
!>
!! \memberof psb_s_coo_sparse_mat
!! \see psb_s_base_mat_mod::psb_s_base_mv_from_coo
interface
subroutine psb_s_mv_coo_from_coo(a,b,info)
import :: psb_ipk_, psb_s_coo_sparse_mat
class(psb_s_coo_sparse_mat), intent(inout) :: a
class(psb_s_coo_sparse_mat), intent(inout) :: b
integer(psb_ipk_), intent(out) :: info
end subroutine psb_s_mv_coo_from_coo
end interface
!>
!! \memberof psb_s_coo_sparse_mat
!! \see psb_s_base_mat_mod::psb_s_base_mv_to_fmt
interface
subroutine psb_s_mv_coo_to_fmt(a,b,info)
import :: psb_ipk_, psb_s_coo_sparse_mat, psb_s_base_sparse_mat
class(psb_s_coo_sparse_mat), intent(inout) :: a
class(psb_s_base_sparse_mat), intent(inout) :: b
integer(psb_ipk_), intent(out) :: info
end subroutine psb_s_mv_coo_to_fmt
end interface
!>
!! \memberof psb_s_coo_sparse_mat
!! \see psb_s_base_mat_mod::psb_s_base_mv_from_fmt
interface
subroutine psb_s_mv_coo_from_fmt(a,b,info)
import :: psb_ipk_, psb_s_coo_sparse_mat, psb_s_base_sparse_mat
class(psb_s_coo_sparse_mat), intent(inout) :: a
class(psb_s_base_sparse_mat), intent(inout) :: b
integer(psb_ipk_), intent(out) :: info
end subroutine psb_s_mv_coo_from_fmt
end interface
interface
subroutine psb_s_coo_cp_from(a,b)
import :: psb_ipk_, psb_s_coo_sparse_mat, psb_spk_
class(psb_s_coo_sparse_mat), intent(inout) :: a
type(psb_s_coo_sparse_mat), intent(in) :: b
end subroutine psb_s_coo_cp_from
end interface
interface
subroutine psb_s_coo_mv_from(a,b)
import :: psb_ipk_, psb_s_coo_sparse_mat, psb_spk_
class(psb_s_coo_sparse_mat), intent(inout) :: a
type(psb_s_coo_sparse_mat), intent(inout) :: b
end subroutine psb_s_coo_mv_from
end interface
!> Function csput
!! \memberof psb_s_coo_sparse_mat
!! \brief Add coefficients into the matrix.
!!
!! \param nz Number of entries to be added
!! \param ia(:) Row indices
!! \param ja(:) Col indices
!! \param val(:) Values
!! \param imin Minimum row index to accept
!! \param imax Maximum row index to accept
!! \param jmin Minimum col index to accept
!! \param jmax Maximum col index to accept
!! \param info return code
!! \param gtl [none] Renumbering for rows/columns
!!
!
interface
subroutine psb_s_coo_csput(nz,ia,ja,val,a,imin,imax,jmin,jmax,info,gtl)
import :: psb_ipk_, psb_s_coo_sparse_mat, psb_spk_
class(psb_s_coo_sparse_mat), intent(inout) :: a
real(psb_spk_), intent(in) :: val(:)
integer(psb_ipk_), intent(in) :: nz,ia(:), ja(:),&
& imin,imax,jmin,jmax
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_), intent(in), optional :: gtl(:)
end subroutine psb_s_coo_csput
end interface
!>
!! \memberof psb_s_coo_sparse_mat
!! \see psb_base_mat_mod::psb_base_csgetptn
interface
subroutine psb_s_coo_csgetptn(imin,imax,a,nz,ia,ja,info,&
& jmin,jmax,iren,append,nzin,rscale,cscale)
import :: psb_ipk_, psb_s_coo_sparse_mat, psb_spk_
class(psb_s_coo_sparse_mat), intent(in) :: a
integer(psb_ipk_), intent(in) :: imin,imax
integer(psb_ipk_), intent(out) :: nz
integer(psb_ipk_), allocatable, intent(inout) :: ia(:), ja(:)
integer(psb_ipk_),intent(out) :: info
logical, intent(in), optional :: append
integer(psb_ipk_), intent(in), optional :: iren(:)
integer(psb_ipk_), intent(in), optional :: jmin,jmax, nzin
logical, intent(in), optional :: rscale,cscale
end subroutine psb_s_coo_csgetptn
end interface
!>
!! \memberof psb_s_coo_sparse_mat
!! \see psb_s_base_mat_mod::psb_s_base_csgetrow
interface
subroutine psb_s_coo_csgetrow(imin,imax,a,nz,ia,ja,val,info,&
& jmin,jmax,iren,append,nzin,rscale,cscale)
import :: psb_ipk_, psb_s_coo_sparse_mat, psb_spk_
class(psb_s_coo_sparse_mat), intent(in) :: a
integer(psb_ipk_), intent(in) :: imin,imax
integer(psb_ipk_), intent(out) :: nz
integer(psb_ipk_), allocatable, intent(inout) :: ia(:), ja(:)
real(psb_spk_), allocatable, intent(inout) :: val(:)
integer(psb_ipk_),intent(out) :: info
logical, intent(in), optional :: append
integer(psb_ipk_), intent(in), optional :: iren(:)
integer(psb_ipk_), intent(in), optional :: jmin,jmax, nzin
logical, intent(in), optional :: rscale,cscale
end subroutine psb_s_coo_csgetrow
end interface
!>
!! \memberof psb_s_coo_sparse_mat
!! \see psb_s_base_mat_mod::psb_s_base_cssv
interface
subroutine psb_s_coo_cssv(alpha,a,x,beta,y,info,trans)
import :: psb_ipk_, psb_s_coo_sparse_mat, psb_spk_
class(psb_s_coo_sparse_mat), intent(in) :: a
real(psb_spk_), intent(in) :: alpha, beta, x(:)
real(psb_spk_), intent(inout) :: y(:)
integer(psb_ipk_), intent(out) :: info
character, optional, intent(in) :: trans
end subroutine psb_s_coo_cssv
end interface
!>
!! \memberof psb_s_coo_sparse_mat
!! \see psb_s_base_mat_mod::psb_s_base_cssm
interface
subroutine psb_s_coo_cssm(alpha,a,x,beta,y,info,trans)
import :: psb_ipk_, psb_s_coo_sparse_mat, psb_spk_
class(psb_s_coo_sparse_mat), intent(in) :: a
real(psb_spk_), intent(in) :: alpha, beta, x(:,:)
real(psb_spk_), intent(inout) :: y(:,:)
integer(psb_ipk_), intent(out) :: info
character, optional, intent(in) :: trans
end subroutine psb_s_coo_cssm
end interface
!>
!! \memberof psb_s_coo_sparse_mat
!! \see psb_s_base_mat_mod::psb_s_base_csmv
interface
subroutine psb_s_coo_csmv(alpha,a,x,beta,y,info,trans)
import :: psb_ipk_, psb_s_coo_sparse_mat, psb_spk_
class(psb_s_coo_sparse_mat), intent(in) :: a
real(psb_spk_), intent(in) :: alpha, beta, x(:)
real(psb_spk_), intent(inout) :: y(:)
integer(psb_ipk_), intent(out) :: info
character, optional, intent(in) :: trans
end subroutine psb_s_coo_csmv
end interface
!>
!! \memberof psb_s_coo_sparse_mat
!! \see psb_s_base_mat_mod::psb_s_base_csmm
interface
subroutine psb_s_coo_csmm(alpha,a,x,beta,y,info,trans)
import :: psb_ipk_, psb_s_coo_sparse_mat, psb_spk_
class(psb_s_coo_sparse_mat), intent(in) :: a
real(psb_spk_), intent(in) :: alpha, beta, x(:,:)
real(psb_spk_), intent(inout) :: y(:,:)
integer(psb_ipk_), intent(out) :: info
character, optional, intent(in) :: trans
end subroutine psb_s_coo_csmm
end interface
!>
!! \memberof psb_s_coo_sparse_mat
!! \see psb_s_base_mat_mod::psb_s_base_maxval
interface
function psb_s_coo_maxval(a) result(res)
import :: psb_ipk_, psb_s_coo_sparse_mat, psb_spk_
class(psb_s_coo_sparse_mat), intent(in) :: a
real(psb_spk_) :: res
end function psb_s_coo_maxval
end interface
!>
!! \memberof psb_s_coo_sparse_mat
!! \see psb_s_base_mat_mod::psb_s_base_csnmi
interface
function psb_s_coo_csnmi(a) result(res)
import :: psb_ipk_, psb_s_coo_sparse_mat, psb_spk_
class(psb_s_coo_sparse_mat), intent(in) :: a
real(psb_spk_) :: res
end function psb_s_coo_csnmi
end interface
!>
!! \memberof psb_s_coo_sparse_mat
!! \see psb_s_base_mat_mod::psb_s_base_csnm1
interface
function psb_s_coo_csnm1(a) result(res)
import :: psb_ipk_, psb_s_coo_sparse_mat, psb_spk_
class(psb_s_coo_sparse_mat), intent(in) :: a
real(psb_spk_) :: res
end function psb_s_coo_csnm1
end interface
!>
!! \memberof psb_s_coo_sparse_mat
!! \see psb_s_base_mat_mod::psb_s_base_rowsum
interface
subroutine psb_s_coo_rowsum(d,a)
import :: psb_ipk_, psb_s_coo_sparse_mat, psb_spk_
class(psb_s_coo_sparse_mat), intent(in) :: a
real(psb_spk_), intent(out) :: d(:)
end subroutine psb_s_coo_rowsum
end interface
!>
!! \memberof psb_s_coo_sparse_mat
!! \see psb_s_base_mat_mod::psb_s_base_arwsum
interface
subroutine psb_s_coo_arwsum(d,a)
import :: psb_ipk_, psb_s_coo_sparse_mat, psb_spk_
class(psb_s_coo_sparse_mat), intent(in) :: a
real(psb_spk_), intent(out) :: d(:)
end subroutine psb_s_coo_arwsum
end interface
!>
!! \memberof psb_s_coo_sparse_mat
!! \see psb_s_base_mat_mod::psb_s_base_colsum
interface
subroutine psb_s_coo_colsum(d,a)
import :: psb_ipk_, psb_s_coo_sparse_mat, psb_spk_
class(psb_s_coo_sparse_mat), intent(in) :: a
real(psb_spk_), intent(out) :: d(:)
end subroutine psb_s_coo_colsum
end interface
!>
!! \memberof psb_s_coo_sparse_mat
!! \see psb_s_base_mat_mod::psb_s_base_aclsum
interface
subroutine psb_s_coo_aclsum(d,a)
import :: psb_ipk_, psb_s_coo_sparse_mat, psb_spk_
class(psb_s_coo_sparse_mat), intent(in) :: a
real(psb_spk_), intent(out) :: d(:)
end subroutine psb_s_coo_aclsum
end interface
!>
!! \memberof psb_s_coo_sparse_mat
!! \see psb_s_base_mat_mod::psb_s_base_get_diag
interface
subroutine psb_s_coo_get_diag(a,d,info)
import :: psb_ipk_, psb_s_coo_sparse_mat, psb_spk_
class(psb_s_coo_sparse_mat), intent(in) :: a
real(psb_spk_), intent(out) :: d(:)
integer(psb_ipk_), intent(out) :: info
end subroutine psb_s_coo_get_diag
end interface
!>
!! \memberof psb_s_coo_sparse_mat
!! \see psb_s_base_mat_mod::psb_s_base_scal
interface
subroutine psb_s_coo_scal(d,a,info,side)
import :: psb_ipk_, psb_s_coo_sparse_mat, psb_spk_
class(psb_s_coo_sparse_mat), intent(inout) :: a
real(psb_spk_), intent(in) :: d(:)
integer(psb_ipk_), intent(out) :: info
character, intent(in), optional :: side
end subroutine psb_s_coo_scal
end interface
!>
!! \memberof psb_s_coo_sparse_mat
!! \see psb_s_base_mat_mod::psb_s_base_scals
interface
subroutine psb_s_coo_scals(d,a,info)
import :: psb_ipk_, psb_s_coo_sparse_mat, psb_spk_
class(psb_s_coo_sparse_mat), intent(inout) :: a
real(psb_spk_), intent(in) :: d
integer(psb_ipk_), intent(out) :: info
end subroutine psb_s_coo_scals
end interface
contains
! == ==================================
!
!
!
! Getters
!
!
!
!
!
! == ==================================
function s_coo_sizeof(a) result(res)
implicit none
class(psb_s_coo_sparse_mat), intent(in) :: a
integer(psb_long_int_k_) :: res
res = 8 + 1
res = res + psb_sizeof_sp * size(a%val)
res = res + psb_sizeof_int * size(a%ia)
res = res + psb_sizeof_int * size(a%ja)
end function s_coo_sizeof
function s_coo_get_fmt() result(res)
implicit none
character(len=5) :: res
res = 'COO'
end function s_coo_get_fmt
function s_coo_get_size(a) result(res)
implicit none
class(psb_s_coo_sparse_mat), intent(in) :: a
integer(psb_ipk_) :: res
res = -1
if (allocated(a%ia)) res = size(a%ia)
if (allocated(a%ja)) then
if (res >= 0) then
res = min(res,size(a%ja))
else
res = size(a%ja)
end if
end if
if (allocated(a%val)) then
if (res >= 0) then
res = min(res,size(a%val))
else
res = size(a%val)
end if
end if
end function s_coo_get_size
function s_coo_get_nzeros(a) result(res)
implicit none
class(psb_s_coo_sparse_mat), intent(in) :: a
integer(psb_ipk_) :: res
res = a%nnz
end function s_coo_get_nzeros
! == ==================================
!
!
!
! Setters
!
!
!
!
!
!
! == ==================================
subroutine s_coo_set_nzeros(nz,a)
implicit none
integer(psb_ipk_), intent(in) :: nz
class(psb_s_coo_sparse_mat), intent(inout) :: a
a%nnz = nz
end subroutine s_coo_set_nzeros
! == ==================================
!
!
!
! Data management
!
!
!
!
!
! == ==================================
subroutine s_coo_free(a)
implicit none
class(psb_s_coo_sparse_mat), intent(inout) :: a
if (allocated(a%ia)) deallocate(a%ia)
if (allocated(a%ja)) deallocate(a%ja)
if (allocated(a%val)) deallocate(a%val)
call a%set_null()
call a%set_nrows(izero)
call a%set_ncols(izero)
call a%set_nzeros(izero)
return
end subroutine s_coo_free
! == ==================================
!
!
!
! Computational routines
!
!
!
!
!
!
! == ==================================
subroutine s_coo_transp_1mat(a)
implicit none
class(psb_s_coo_sparse_mat), intent(inout) :: a
integer(psb_ipk_), allocatable :: itemp(:)
integer(psb_ipk_) :: info
call a%psb_s_base_sparse_mat%psb_base_sparse_mat%transp()
call move_alloc(a%ia,itemp)
call move_alloc(a%ja,a%ia)
call move_alloc(itemp,a%ja)
call a%fix(info)
return
end subroutine s_coo_transp_1mat
subroutine s_coo_transc_1mat(a)
implicit none
class(psb_s_coo_sparse_mat), intent(inout) :: a
call a%transp()
! This will morph into conjg() for C and Z
! and into a no-op for S and D, so a conditional
! on a constant ought to take it out completely.
if (psb_s_is_complex_) a%val(:) = (a%val(:))
end subroutine s_coo_transc_1mat
end module psb_s_base_mat_mod