You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
psblas3/base/modules/psb_d_base_vect_mod.f90

808 lines
22 KiB
Fortran

!!$
!!$ Parallel Sparse BLAS version 3.0
!!$ (C) Copyright 2006, 2007, 2008, 2009, 2010, 2012
!!$ Salvatore Filippone University of Rome Tor Vergata
!!$ Alfredo Buttari CNRS-IRIT, Toulouse
!!$
!!$ Redistribution and use in source and binary forms, with or without
!!$ modification, are permitted provided that the following conditions
!!$ are met:
!!$ 1. Redistributions of source code must retain the above copyright
!!$ notice, this list of conditions and the following disclaimer.
!!$ 2. Redistributions in binary form must reproduce the above copyright
!!$ notice, this list of conditions, and the following disclaimer in the
!!$ documentation and/or other materials provided with the distribution.
!!$ 3. The name of the PSBLAS group or the names of its contributors may
!!$ not be used to endorse or promote products derived from this
!!$ software without specific written permission.
!!$
!!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
!!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
!!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
!!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS
!!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
!!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
!!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
!!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
!!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
!!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
!!$ POSSIBILITY OF SUCH DAMAGE.
!!$
!!$
!
! package: psb_d_base_vect_mod
!
! This module contains the definition of the psb_d_base_vect type which
! is a container for dense vectors.
! This is encapsulated instead of being just a simple array to allow for
! more complicated situations, such as GPU programming, where the memory
! area we are interested in is not easily accessible from the host/Fortran
! side. It is also meant to be encapsulated in an outer type, to allow
! runtime switching as per the STATE design pattern, similar to the
! sparse matrix types.
!
!
module psb_d_base_vect_mod
use psb_const_mod
use psb_error_mod
!> \namespace psb_base_mod \class psb_d_base_vect_type
!! The psb_d_base_vect_type
!! defines a middle level real(psb_dpk_) encapsulated dense vector.
!! The encapsulation is needed, in place of a simple array, to allow
!! for complicated situations, such as GPU programming, where the memory
!! area we are interested in is not easily accessible from the host/Fortran
!! side. It is also meant to be encapsulated in an outer type, to allow
!! runtime switching as per the STATE design pattern, similar to the
!! sparse matrix types.
!!
type psb_d_base_vect_type
real(psb_dpk_), allocatable :: v(:)
contains
!
! Constructors/allocators
!
procedure, pass(x) :: bld_x => d_base_bld_x
procedure, pass(x) :: bld_n => d_base_bld_n
generic, public :: bld => bld_x, bld_n
procedure, pass(x) :: all => d_base_all
!
! Insert/set. Assembly and free.
! Assembly does almost nothing here, but is important
! in derived classes.
!
procedure, pass(x) :: ins => d_base_ins
procedure, pass(x) :: zero => d_base_zero
procedure, pass(x) :: asb => d_base_asb
procedure, pass(x) :: free => d_base_free
!
! Sync: centerpiece of handling of external storage.
! Any derived class having extra storage upon sync
! will guarantee that both fortran/host side and
! external side contain the same data. The base
! version is only a placeholder.
!
procedure, pass(x) :: sync => d_base_sync
procedure, pass(x) :: is_host => d_base_is_host
procedure, pass(x) :: is_dev => d_base_is_dev
procedure, pass(x) :: is_sync => d_base_is_sync
procedure, pass(x) :: set_host => d_base_set_host
procedure, pass(x) :: set_dev => d_base_set_dev
procedure, pass(x) :: set_sync => d_base_set_sync
!
! Basic info
procedure, pass(x) :: get_nrows => d_base_get_nrows
procedure, pass(x) :: sizeof => d_base_sizeof
!
! Set/get data from/to an external array; also
! overload assignment.
!
procedure, pass(x) :: get_vect => d_base_get_vect
procedure, pass(x) :: set_scal => d_base_set_scal
procedure, pass(x) :: set_vect => d_base_set_vect
generic, public :: set => set_vect, set_scal
!
! Dot product and AXPBY
!
procedure, pass(x) :: dot_v => d_base_dot_v
procedure, pass(x) :: dot_a => d_base_dot_a
generic, public :: dot => dot_v, dot_a
procedure, pass(y) :: axpby_v => d_base_axpby_v
procedure, pass(y) :: axpby_a => d_base_axpby_a
generic, public :: axpby => axpby_v, axpby_a
!
! Vector by vector multiplication. Need all variants
! to handle multiple requirements from preconditioners
!
procedure, pass(y) :: mlt_v => d_base_mlt_v
procedure, pass(y) :: mlt_a => d_base_mlt_a
procedure, pass(z) :: mlt_a_2 => d_base_mlt_a_2
procedure, pass(z) :: mlt_v_2 => d_base_mlt_v_2
procedure, pass(z) :: mlt_va => d_base_mlt_va
procedure, pass(z) :: mlt_av => d_base_mlt_av
generic, public :: mlt => mlt_v, mlt_a, mlt_a_2, mlt_v_2, mlt_av, mlt_va
!
! Scaling and norms
!
procedure, pass(x) :: scal => d_base_scal
procedure, pass(x) :: nrm2 => d_base_nrm2
procedure, pass(x) :: amax => d_base_amax
procedure, pass(x) :: asum => d_base_asum
!
! Gather/scatter. These are needed for MPI interfacing.
! May have to be reworked.
!
procedure, pass(x) :: gthab => d_base_gthab
procedure, pass(x) :: gthzv => d_base_gthzv
generic, public :: gth => gthab, gthzv
procedure, pass(y) :: sctb => d_base_sctb
generic, public :: sct => sctb
end type psb_d_base_vect_type
public :: psb_d_base_vect
private :: constructor, size_const
interface psb_d_base_vect
module procedure constructor, size_const
end interface psb_d_base_vect
contains
!
! Constructors.
!
function constructor(x) result(this)
real(psb_dpk_) :: x(:)
type(psb_d_base_vect_type) :: this
integer(psb_ipk_) :: info
this%v = x
call this%asb(size(x,kind=psb_ipk_),info)
end function constructor
function size_const(n) result(this)
integer(psb_ipk_), intent(in) :: n
type(psb_d_base_vect_type) :: this
integer(psb_ipk_) :: info
call this%asb(n,info)
end function size_const
!
! Build from a sample
!
subroutine d_base_bld_x(x,this)
use psb_realloc_mod
real(psb_dpk_), intent(in) :: this(:)
class(psb_d_base_vect_type), intent(inout) :: x
integer(psb_ipk_) :: info
call psb_realloc(size(this),x%v,info)
if (info /= 0) then
call psb_errpush(psb_err_alloc_dealloc_,'base_vect_bld')
return
end if
x%v(:) = this(:)
end subroutine d_base_bld_x
!
! Create with size, but no initialization
!
subroutine d_base_bld_n(x,n)
use psb_realloc_mod
integer(psb_ipk_), intent(in) :: n
class(psb_d_base_vect_type), intent(inout) :: x
integer(psb_ipk_) :: info
call psb_realloc(n,x%v,info)
call x%asb(n,info)
end subroutine d_base_bld_n
subroutine d_base_all(n, x, info)
use psi_serial_mod
use psb_realloc_mod
implicit none
integer(psb_ipk_), intent(in) :: n
class(psb_d_base_vect_type), intent(out) :: x
integer(psb_ipk_), intent(out) :: info
call psb_realloc(n,x%v,info)
end subroutine d_base_all
!
! Insert a bunch of values at specified positions.
!
subroutine d_base_ins(n,irl,val,dupl,x,info)
use psi_serial_mod
implicit none
class(psb_d_base_vect_type), intent(inout) :: x
integer(psb_ipk_), intent(in) :: n, dupl
integer(psb_ipk_), intent(in) :: irl(:)
real(psb_dpk_), intent(in) :: val(:)
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i
info = 0
if (psb_errstatus_fatal()) return
if (.not.allocated(x%v)) then
info = psb_err_invalid_vect_state_
else if (n > min(size(irl),size(val))) then
info = psb_err_invalid_input_
else
select case(dupl)
case(psb_dupl_ovwrt_)
do i = 1, n
!loop over all val's rows
! row actual block row
if (irl(i) > 0) then
! this row belongs to me
! copy i-th row of block val in x
x%v(irl(i)) = val(i)
end if
enddo
case(psb_dupl_add_)
do i = 1, n
!loop over all val's rows
if (irl(i) > 0) then
! this row belongs to me
! copy i-th row of block val in x
x%v(irl(i)) = x%v(irl(i)) + val(i)
end if
enddo
case default
info = 321
!!$ call psb_errpush(info,name)
!!$ goto 9999
end select
end if
if (info /= 0) then
call psb_errpush(info,'base_vect_ins')
return
end if
end subroutine d_base_ins
!
subroutine d_base_zero(x)
use psi_serial_mod
implicit none
class(psb_d_base_vect_type), intent(inout) :: x
if (allocated(x%v)) x%v=dzero
end subroutine d_base_zero
!
! Assembly.
! For derived classes: after this the vector
! storage is supposed to be in sync.
!
subroutine d_base_asb(n, x, info)
use psi_serial_mod
use psb_realloc_mod
implicit none
integer(psb_ipk_), intent(in) :: n
class(psb_d_base_vect_type), intent(inout) :: x
integer(psb_ipk_), intent(out) :: info
if (x%get_nrows() < n) &
& call psb_realloc(n,x%v,info)
if (info /= 0) &
& call psb_errpush(psb_err_alloc_dealloc_,'vect_asb')
end subroutine d_base_asb
subroutine d_base_free(x, info)
use psi_serial_mod
use psb_realloc_mod
implicit none
class(psb_d_base_vect_type), intent(inout) :: x
integer(psb_ipk_), intent(out) :: info
info = 0
if (allocated(x%v)) deallocate(x%v, stat=info)
if (info /= 0) call &
& psb_errpush(psb_err_alloc_dealloc_,'vect_free')
end subroutine d_base_free
!
! The base version of SYNC & friends does nothing, it's just
! a placeholder.
!
subroutine d_base_sync(x)
implicit none
class(psb_d_base_vect_type), intent(inout) :: x
end subroutine d_base_sync
subroutine d_base_set_host(x)
implicit none
class(psb_d_base_vect_type), intent(inout) :: x
end subroutine d_base_set_host
subroutine d_base_set_dev(x)
implicit none
class(psb_d_base_vect_type), intent(inout) :: x
end subroutine d_base_set_dev
subroutine d_base_set_sync(x)
implicit none
class(psb_d_base_vect_type), intent(inout) :: x
end subroutine d_base_set_sync
function d_base_is_dev(x) result(res)
implicit none
class(psb_d_base_vect_type), intent(in) :: x
logical :: res
res = .false.
end function d_base_is_dev
function d_base_is_host(x) result(res)
implicit none
class(psb_d_base_vect_type), intent(in) :: x
logical :: res
res = .true.
end function d_base_is_host
function d_base_is_sync(x) result(res)
implicit none
class(psb_d_base_vect_type), intent(in) :: x
logical :: res
res = .true.
end function d_base_is_sync
!
! Size info.
!
function d_base_get_nrows(x) result(res)
implicit none
class(psb_d_base_vect_type), intent(in) :: x
integer(psb_ipk_) :: res
res = 0
if (allocated(x%v)) res = size(x%v)
end function d_base_get_nrows
function d_base_sizeof(x) result(res)
implicit none
class(psb_d_base_vect_type), intent(in) :: x
integer(psb_long_int_k_) :: res
! Force 8-byte integers.
res = (1_psb_long_int_k_ * psb_sizeof_dp) * x%get_nrows()
end function d_base_sizeof
!
! Two versions of extracting an array: one of them
! overload the assignment.
!
function d_base_get_vect(x) result(res)
class(psb_d_base_vect_type), intent(inout) :: x
real(psb_dpk_), allocatable :: res(:)
integer(psb_ipk_) :: info
if (.not.allocated(x%v)) return
call x%sync()
allocate(res(x%get_nrows()),stat=info)
if (info /= 0) then
call psb_errpush(psb_err_alloc_dealloc_,'base_get_vect')
return
end if
res(:) = x%v(:)
end function d_base_get_vect
!
! Reset all values
!
subroutine d_base_set_scal(x,val)
class(psb_d_base_vect_type), intent(inout) :: x
real(psb_dpk_), intent(in) :: val
integer(psb_ipk_) :: info
x%v = val
end subroutine d_base_set_scal
subroutine d_base_set_vect(x,val)
class(psb_d_base_vect_type), intent(inout) :: x
real(psb_dpk_), intent(in) :: val(:)
integer(psb_ipk_) :: nr
integer(psb_ipk_) :: info
if (allocated(x%v)) then
nr = min(size(x%v),size(val))
x%v(1:nr) = val(1:nr)
else
x%v = val
end if
end subroutine d_base_set_vect
!
! Dot products
!
function d_base_dot_v(n,x,y) result(res)
implicit none
class(psb_d_base_vect_type), intent(inout) :: x, y
integer(psb_ipk_), intent(in) :: n
real(psb_dpk_) :: res
real(psb_dpk_), external :: ddot
res = dzero
!
! Note: this is the base implementation.
! When we get here, we are sure that X is of
! TYPE psb_d_base_vect.
! If Y is not, throw the burden on it, implicitly
! calling dot_a
!
select type(yy => y)
type is (psb_d_base_vect_type)
res = ddot(n,x%v,1,y%v,1)
class default
res = y%dot(n,x%v)
end select
end function d_base_dot_v
!
! Base workhorse is good old BLAS1
!
function d_base_dot_a(n,x,y) result(res)
implicit none
class(psb_d_base_vect_type), intent(inout) :: x
real(psb_dpk_), intent(in) :: y(:)
integer(psb_ipk_), intent(in) :: n
real(psb_dpk_) :: res
real(psb_dpk_), external :: ddot
res = ddot(n,y,1,x%v,1)
end function d_base_dot_a
!
! AXPBY is invoked via Y, hence the structure below.
!
subroutine d_base_axpby_v(m,alpha, x, beta, y, info)
use psi_serial_mod
implicit none
integer(psb_ipk_), intent(in) :: m
class(psb_d_base_vect_type), intent(inout) :: x
class(psb_d_base_vect_type), intent(inout) :: y
real(psb_dpk_), intent (in) :: alpha, beta
integer(psb_ipk_), intent(out) :: info
select type(xx => x)
type is (psb_d_base_vect_type)
call psb_geaxpby(m,alpha,x%v,beta,y%v,info)
class default
call y%axpby(m,alpha,x%v,beta,info)
end select
end subroutine d_base_axpby_v
subroutine d_base_axpby_a(m,alpha, x, beta, y, info)
use psi_serial_mod
implicit none
integer(psb_ipk_), intent(in) :: m
real(psb_dpk_), intent(in) :: x(:)
class(psb_d_base_vect_type), intent(inout) :: y
real(psb_dpk_), intent (in) :: alpha, beta
integer(psb_ipk_), intent(out) :: info
call psb_geaxpby(m,alpha,x,beta,y%v,info)
end subroutine d_base_axpby_a
!
! Multiple variants of two operations:
! Simple multiplication Y(:) = X(:)*Y(:)
! blas-like: Z(:) = alpha*X(:)*Y(:)+beta*Z(:)
!
! Variants expanded according to the dynamic type
! of the involved entities
!
subroutine d_base_mlt_v(x, y, info)
use psi_serial_mod
implicit none
class(psb_d_base_vect_type), intent(inout) :: x
class(psb_d_base_vect_type), intent(inout) :: y
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, n
info = 0
select type(xx => x)
type is (psb_d_base_vect_type)
n = min(size(y%v), size(xx%v))
do i=1, n
y%v(i) = y%v(i)*xx%v(i)
end do
class default
call y%mlt(x%v,info)
end select
end subroutine d_base_mlt_v
subroutine d_base_mlt_a(x, y, info)
use psi_serial_mod
implicit none
real(psb_dpk_), intent(in) :: x(:)
class(psb_d_base_vect_type), intent(inout) :: y
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, n
info = 0
n = min(size(y%v), size(x))
do i=1, n
y%v(i) = y%v(i)*x(i)
end do
end subroutine d_base_mlt_a
subroutine d_base_mlt_a_2(alpha,x,y,beta,z,info)
use psi_serial_mod
implicit none
real(psb_dpk_), intent(in) :: alpha,beta
real(psb_dpk_), intent(in) :: y(:)
real(psb_dpk_), intent(in) :: x(:)
class(psb_d_base_vect_type), intent(inout) :: z
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, n
info = 0
n = min(size(z%v), size(x), size(y))
!!$ write(0,*) 'Mlt_a_2: ',n
if (alpha == dzero) then
if (beta == done) then
return
else
do i=1, n
z%v(i) = beta*z%v(i)
end do
end if
else
if (alpha == done) then
if (beta == dzero) then
do i=1, n
z%v(i) = y(i)*x(i)
end do
else if (beta == done) then
do i=1, n
z%v(i) = z%v(i) + y(i)*x(i)
end do
else
do i=1, n
z%v(i) = beta*z%v(i) + y(i)*x(i)
end do
end if
else if (alpha == -done) then
if (beta == dzero) then
do i=1, n
z%v(i) = -y(i)*x(i)
end do
else if (beta == done) then
do i=1, n
z%v(i) = z%v(i) - y(i)*x(i)
end do
else
do i=1, n
z%v(i) = beta*z%v(i) - y(i)*x(i)
end do
end if
else
if (beta == dzero) then
do i=1, n
z%v(i) = alpha*y(i)*x(i)
end do
else if (beta == done) then
do i=1, n
z%v(i) = z%v(i) + alpha*y(i)*x(i)
end do
else
do i=1, n
z%v(i) = beta*z%v(i) + alpha*y(i)*x(i)
end do
end if
end if
end if
end subroutine d_base_mlt_a_2
subroutine d_base_mlt_v_2(alpha,x,y,beta,z,info,conjgx,conjgy)
use psi_serial_mod
use psb_string_mod
implicit none
real(psb_dpk_), intent(in) :: alpha,beta
class(psb_d_base_vect_type), intent(inout) :: x
class(psb_d_base_vect_type), intent(inout) :: y
class(psb_d_base_vect_type), intent(inout) :: z
integer(psb_ipk_), intent(out) :: info
character(len=1), intent(in), optional :: conjgx, conjgy
integer(psb_ipk_) :: i, n
logical :: conjgx_, conjgy_
info = 0
if (.not.psb_d_is_complex_) then
call z%mlt(alpha,x%v,y%v,beta,info)
else
conjgx_=.false.
if (present(conjgx)) conjgx_ = (psb_toupper(conjgx)=='C')
conjgy_=.false.
if (present(conjgy)) conjgy_ = (psb_toupper(conjgy)=='C')
if (conjgx_) x%v=(x%v)
if (conjgy_) y%v=(y%v)
call z%mlt(alpha,x%v,y%v,beta,info)
if (conjgx_) x%v=(x%v)
if (conjgy_) y%v=(y%v)
end if
end subroutine d_base_mlt_v_2
subroutine d_base_mlt_av(alpha,x,y,beta,z,info)
use psi_serial_mod
implicit none
real(psb_dpk_), intent(in) :: alpha,beta
real(psb_dpk_), intent(in) :: x(:)
class(psb_d_base_vect_type), intent(inout) :: y
class(psb_d_base_vect_type), intent(inout) :: z
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, n
info = 0
call z%mlt(alpha,x,y%v,beta,info)
end subroutine d_base_mlt_av
subroutine d_base_mlt_va(alpha,x,y,beta,z,info)
use psi_serial_mod
implicit none
real(psb_dpk_), intent(in) :: alpha,beta
real(psb_dpk_), intent(in) :: y(:)
class(psb_d_base_vect_type), intent(inout) :: x
class(psb_d_base_vect_type), intent(inout) :: z
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, n
info = 0
call z%mlt(alpha,y,x,beta,info)
end subroutine d_base_mlt_va
!
! Simple scaling
!
subroutine d_base_scal(alpha, x)
use psi_serial_mod
implicit none
class(psb_d_base_vect_type), intent(inout) :: x
real(psb_dpk_), intent (in) :: alpha
if (allocated(x%v)) x%v = alpha*x%v
end subroutine d_base_scal
!
! Norms 1, 2 and infinity
!
function d_base_nrm2(n,x) result(res)
implicit none
class(psb_d_base_vect_type), intent(inout) :: x
integer(psb_ipk_), intent(in) :: n
real(psb_dpk_) :: res
real(psb_dpk_), external :: dnrm2
res = dnrm2(n,x%v,1)
end function d_base_nrm2
function d_base_amax(n,x) result(res)
implicit none
class(psb_d_base_vect_type), intent(inout) :: x
integer(psb_ipk_), intent(in) :: n
real(psb_dpk_) :: res
res = maxval(abs(x%v(1:n)))
end function d_base_amax
function d_base_asum(n,x) result(res)
implicit none
class(psb_d_base_vect_type), intent(inout) :: x
integer(psb_ipk_), intent(in) :: n
real(psb_dpk_) :: res
res = sum(abs(x%v(1:n)))
end function d_base_asum
!
! Gather: Y = beta * Y + alpha * X(IDX(:))
!
subroutine d_base_gthab(n,idx,alpha,x,beta,y)
use psi_serial_mod
integer(psb_ipk_) :: n, idx(:)
real(psb_dpk_) :: alpha, beta, y(:)
class(psb_d_base_vect_type) :: x
call x%sync()
call psi_gth(n,idx,alpha,x%v,beta,y)
end subroutine d_base_gthab
!
! shortcut alpha=1 beta=0
!
subroutine d_base_gthzv(n,idx,x,y)
use psi_serial_mod
integer(psb_ipk_) :: n, idx(:)
real(psb_dpk_) :: y(:)
class(psb_d_base_vect_type) :: x
call x%sync()
call psi_gth(n,idx,x%v,y)
end subroutine d_base_gthzv
!
! Scatter:
! Y(IDX(:)) = beta*Y(IDX(:)) + X(:)
!
subroutine d_base_sctb(n,idx,x,beta,y)
use psi_serial_mod
integer(psb_ipk_) :: n, idx(:)
real(psb_dpk_) :: beta, x(:)
class(psb_d_base_vect_type) :: y
call y%sync()
call psi_sct(n,idx,x,beta,y%v)
call y%set_host()
end subroutine d_base_sctb
end module psb_d_base_vect_mod