You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
237 lines
6.2 KiB
Fortran
237 lines
6.2 KiB
Fortran
C
|
|
C Parallel Sparse BLAS version 2.2
|
|
C (C) Copyright 2006/2007/2008
|
|
C Salvatore Filippone University of Rome Tor Vergata
|
|
C Alfredo Buttari University of Rome Tor Vergata
|
|
C
|
|
C Redistribution and use in source and binary forms, with or without
|
|
C modification, are permitted provided that the following conditions
|
|
C are met:
|
|
C 1. Redistributions of source code must retain the above copyright
|
|
C notice, this list of conditions and the following disclaimer.
|
|
C 2. Redistributions in binary form must reproduce the above copyright
|
|
C notice, this list of conditions, and the following disclaimer in the
|
|
C documentation and/or other materials provided with the distribution.
|
|
C 3. The name of the PSBLAS group or the names of its contributors may
|
|
C not be used to endorse or promote products derived from this
|
|
C software without specific written permission.
|
|
C
|
|
C THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
C ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
C TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
C PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS
|
|
C BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
C CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
C SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
C INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
C CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
C ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
C POSSIBILITY OF SUCH DAMAGE.
|
|
C
|
|
C
|
|
subroutine reordvn(nnz,ar,ia1,ia2,idx)
|
|
integer nnz
|
|
integer ia1(*),ia2(*),idx(0:*)
|
|
double precision ar(*)
|
|
integer lp, kk, swapia1, swapia2, lswap
|
|
double precision swapar
|
|
|
|
LP = IDX(0)
|
|
KK = 1
|
|
500 CONTINUE
|
|
IF ((LP.EQ.0).OR.(KK.GT.NNZ)) GOTO 800
|
|
600 CONTINUE
|
|
IF (LP.GE.KK) GOTO 700
|
|
LP = IDX(LP)
|
|
GOTO 600
|
|
700 CONTINUE
|
|
C ... Swap of vectors IA2, IA1, AR ...
|
|
SWAPIA2 = IA2(KK)
|
|
SWAPIA1 = IA1(KK)
|
|
SWAPAR = AR(KK)
|
|
IA2(KK) = IA2(LP)
|
|
IA1(KK) = IA1(LP)
|
|
AR(KK) = AR(LP)
|
|
IA2(LP) = SWAPIA2
|
|
IA1(LP) = SWAPIA1
|
|
AR(LP) = SWAPAR
|
|
LSWAP = IDX(LP)
|
|
IDX(LP) = IDX(KK)
|
|
IDX(KK) = LP
|
|
LP = LSWAP
|
|
KK = KK+1
|
|
GOTO 500
|
|
800 CONTINUE
|
|
return
|
|
end
|
|
subroutine ireordv2(nnz,ia1,ia2,idx)
|
|
integer nnz
|
|
integer ia1(*),ia2(*),idx(0:*)
|
|
integer lp, kk, swapia1, swapia2, lswap
|
|
|
|
LP = IDX(0)
|
|
KK = 1
|
|
500 CONTINUE
|
|
IF ((LP.EQ.0).OR.(KK.GT.NNZ)) GOTO 800
|
|
600 CONTINUE
|
|
IF (LP.GE.KK) GOTO 700
|
|
LP = IDX(LP)
|
|
GOTO 600
|
|
700 CONTINUE
|
|
C ... Swap of vectors IA2, IA1 ..
|
|
SWAPIA2 = IA2(KK)
|
|
SWAPIA1 = IA1(KK)
|
|
IA2(KK) = IA2(LP)
|
|
IA1(KK) = IA1(LP)
|
|
IA2(LP) = SWAPIA2
|
|
IA1(LP) = SWAPIA1
|
|
LSWAP = IDX(LP)
|
|
IDX(LP) = IDX(KK)
|
|
IDX(KK) = LP
|
|
LP = LSWAP
|
|
KK = KK+1
|
|
GOTO 500
|
|
800 CONTINUE
|
|
return
|
|
end
|
|
subroutine ireordv1(nnz,ia1,idx)
|
|
integer nnz
|
|
integer ia1(*),idx(0:*)
|
|
integer lp, kk, swapia1, lswap
|
|
|
|
LP = IDX(0)
|
|
KK = 1
|
|
500 CONTINUE
|
|
IF ((LP.EQ.0).OR.(KK.GT.NNZ)) GOTO 800
|
|
600 CONTINUE
|
|
IF (LP.GE.KK) GOTO 700
|
|
LP = IDX(LP)
|
|
GOTO 600
|
|
700 CONTINUE
|
|
C ... Swap of vectors IA2, IA1, AR ...
|
|
SWAPIA1 = IA1(KK)
|
|
IA1(KK) = IA1(LP)
|
|
IA1(LP) = SWAPIA1
|
|
LSWAP = IDX(LP)
|
|
IDX(LP) = IDX(KK)
|
|
IDX(KK) = LP
|
|
LP = LSWAP
|
|
KK = KK+1
|
|
GOTO 500
|
|
800 CONTINUE
|
|
return
|
|
end
|
|
subroutine reordvn3(nnz,ar,ia1,ia2,ia3,idx)
|
|
integer nnz
|
|
integer ia1(*),ia2(*),ia3(*),idx(0:*)
|
|
double precision ar(*)
|
|
integer lp, kk, swapia1, swapia2, swapia3,lswap
|
|
double precision swapar
|
|
|
|
LP = IDX(0)
|
|
KK = 1
|
|
500 CONTINUE
|
|
IF ((LP.EQ.0).OR.(KK.GT.NNZ)) GOTO 800
|
|
600 CONTINUE
|
|
IF (LP.GE.KK) GOTO 700
|
|
LP = IDX(LP)
|
|
GOTO 600
|
|
700 CONTINUE
|
|
C ... Swap of vectors IA2, IA1, AR ...
|
|
SWAPIA3 = IA3(KK)
|
|
SWAPIA2 = IA2(KK)
|
|
SWAPIA1 = IA1(KK)
|
|
SWAPAR = AR(KK)
|
|
IA3(KK) = IA3(LP)
|
|
IA2(KK) = IA2(LP)
|
|
IA1(KK) = IA1(LP)
|
|
AR(KK) = AR(LP)
|
|
IA3(LP) = SWAPIA3
|
|
IA2(LP) = SWAPIA2
|
|
IA1(LP) = SWAPIA1
|
|
AR(LP) = SWAPAR
|
|
LSWAP = IDX(LP)
|
|
IDX(LP) = IDX(KK)
|
|
IDX(KK) = LP
|
|
LP = LSWAP
|
|
KK = KK+1
|
|
GOTO 500
|
|
800 CONTINUE
|
|
return
|
|
end
|
|
|
|
subroutine zreordvn(nnz,ar,ia1,ia2,idx)
|
|
integer nnz
|
|
integer ia1(*),ia2(*),idx(0:*)
|
|
complex*16 ar(*)
|
|
integer lp, kk, swapia1, swapia2, lswap
|
|
complex*16 swapar
|
|
|
|
LP = IDX(0)
|
|
KK = 1
|
|
500 CONTINUE
|
|
IF ((LP.EQ.0).OR.(KK.GT.NNZ)) GOTO 800
|
|
600 CONTINUE
|
|
IF (LP.GE.KK) GOTO 700
|
|
LP = IDX(LP)
|
|
GOTO 600
|
|
700 CONTINUE
|
|
C ... Swap of vectors IA2, IA1, AR ...
|
|
SWAPIA2 = IA2(KK)
|
|
SWAPIA1 = IA1(KK)
|
|
SWAPAR = AR(KK)
|
|
IA2(KK) = IA2(LP)
|
|
IA1(KK) = IA1(LP)
|
|
AR(KK) = AR(LP)
|
|
IA2(LP) = SWAPIA2
|
|
IA1(LP) = SWAPIA1
|
|
AR(LP) = SWAPAR
|
|
LSWAP = IDX(LP)
|
|
IDX(LP) = IDX(KK)
|
|
IDX(KK) = LP
|
|
LP = LSWAP
|
|
KK = KK+1
|
|
GOTO 500
|
|
800 CONTINUE
|
|
return
|
|
end
|
|
subroutine zreordvn3(nnz,ar,ia1,ia2,ia3,idx)
|
|
integer nnz
|
|
integer ia1(*),ia2(*),ia3(*),idx(0:*)
|
|
complex*16 ar(*)
|
|
integer lp, kk, swapia1, swapia2, swapia3,lswap
|
|
complex*16 swapar
|
|
|
|
LP = IDX(0)
|
|
KK = 1
|
|
500 CONTINUE
|
|
IF ((LP.EQ.0).OR.(KK.GT.NNZ)) GOTO 800
|
|
600 CONTINUE
|
|
IF (LP.GE.KK) GOTO 700
|
|
LP = IDX(LP)
|
|
GOTO 600
|
|
700 CONTINUE
|
|
C ... Swap of vectors IA2, IA1, AR ...
|
|
SWAPIA3 = IA3(KK)
|
|
SWAPIA2 = IA2(KK)
|
|
SWAPIA1 = IA1(KK)
|
|
SWAPAR = AR(KK)
|
|
IA3(KK) = IA3(LP)
|
|
IA2(KK) = IA2(LP)
|
|
IA1(KK) = IA1(LP)
|
|
AR(KK) = AR(LP)
|
|
IA3(LP) = SWAPIA3
|
|
IA2(LP) = SWAPIA2
|
|
IA1(LP) = SWAPIA1
|
|
AR(LP) = SWAPAR
|
|
LSWAP = IDX(LP)
|
|
IDX(LP) = IDX(KK)
|
|
IDX(KK) = LP
|
|
LP = LSWAP
|
|
KK = KK+1
|
|
GOTO 500
|
|
800 CONTINUE
|
|
return
|
|
end
|
|
|