You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
527 lines
20 KiB
Fortran
527 lines
20 KiB
Fortran
***********************************************************************
|
|
* ZSRMV modified for SPARKER *
|
|
* *
|
|
* FUNCTION: Driver for routines performing one of the sparse *
|
|
* matrix vector operations *
|
|
* *
|
|
* y = alpha*op(A)*x + beta*y *
|
|
* *
|
|
* where op(A) is one of: *
|
|
* *
|
|
* op(A) = A or op(A) = A' or *
|
|
* op(A) = conjug(A') or *
|
|
* op(A) = lower or upper part of A *
|
|
* *
|
|
* alpha and beta are scalars. *
|
|
* The data structure of the matrix is related *
|
|
* to the scalar computer. *
|
|
* This is an internal routine called by: *
|
|
* ZCSRMM *
|
|
* *
|
|
* ENTRY-POINT = ZSRMV *
|
|
* *
|
|
* *
|
|
* INPUT = *
|
|
* *
|
|
* *
|
|
* SYMBOLIC NAME: TRANS *
|
|
* POSITION: PARAMETER NO 1. *
|
|
* ATTRIBUTES: CHARACTER*1 *
|
|
* VALUES: 'N' 'T' 'C' 'L' 'M' 'U' 'V' *
|
|
* DESCRIPTION: Specifies the form of op(A) to be used in the *
|
|
* matrix vector multiplications as follows: *
|
|
* *
|
|
* TRANS = 'N' , op( A ) = A. *
|
|
* *
|
|
* TRANS = 'T' , op( A ) = A'. *
|
|
* *
|
|
* TRANS = 'C' , OP( A ) = conjug(A') *
|
|
* *
|
|
* TRANS = 'L' or 'U', op( A ) = lower or *
|
|
* upper part of A *
|
|
* *
|
|
* TRANS = 'M' or 'V', op( A ) = lower or *
|
|
* upper part of conjugate of A *
|
|
* *
|
|
* SYMBOLIC NAME: DIAG *
|
|
* POSITION: PARAMETER NO 2. *
|
|
* ATTRIBUTES: CHARACTER*1 *
|
|
* VALUES: 'N' 'U' *
|
|
* DESCRIPTION: *
|
|
* Specifies whether or not the matrix A has *
|
|
* unit diagonal as follows: *
|
|
* *
|
|
* DIAG = 'N' A is not assumed *
|
|
* to have unit diagonal *
|
|
* *
|
|
* DIAG = 'U' A is assumed *
|
|
* to have unit diagonal. *
|
|
* *
|
|
* WARNING: it is the caller's responsibility *
|
|
* to ensure that if the matrix has unit *
|
|
* diagonal, there are no elements of the *
|
|
* diagonal are stored in the arrays AS and JA. *
|
|
* *
|
|
* SYMBOLIC NAME: M *
|
|
* POSITION: PARAMETER NO 3. *
|
|
* ATTRIBUTES: INTEGER*4. *
|
|
* VALUES: M >= 0 *
|
|
* DESCRIPTION: Number of rows of the matrix op(A). *
|
|
* *
|
|
* SYMBOLIC NAME: N *
|
|
* POSITION: PARAMETER NO 4. *
|
|
* ATTRIBUTES: INTEGER*4. *
|
|
* VALUES: N >= 0 *
|
|
* DESCRIPTION: Number of columns of the matrix op(A) *
|
|
* *
|
|
* SYMBOLIC NAME: ALPHA *
|
|
* POSITION: PARAMETER NO 5. *
|
|
* ATTRIBUTES: COMPLEX*16. *
|
|
* VALUES: any. *
|
|
* DESCRIPTION: Specifies the scalar alpha. *
|
|
* *
|
|
* *
|
|
* SYMBOLIC NAME: AS *
|
|
* POSITION: PARAMETER NO 6. *
|
|
* ATTRIBUTES: COMPLEX*16: ARRAY(IA(M+1)-1) *
|
|
* VALUES: ANY *
|
|
* DESCRIPTION: Array containing the non zero coefficients of *
|
|
* the sparse matrix op(A). *
|
|
* *
|
|
* SYMBOLIC NAME: JA *
|
|
* POSITION: PARAMETER NO 7. *
|
|
* ATTRIBUTES: INTEGER*4: ARRAY(IA(M+1)-1) *
|
|
* VALUES: 0 < JA(I) <= M *
|
|
* DESCRIPTION: Array containing the column number of the *
|
|
* nonzero coefficients stored in array AS. *
|
|
* *
|
|
* SYMBOLIC NAME: IA *
|
|
* POSITION: PARAMETER NO 8. *
|
|
* ATTRIBUTES: INTEGER*4: ARRAY(*) *
|
|
* VALUES: IA(I) > 0 *
|
|
* DESCRIPTION: Contains the pointers for the beginning of *
|
|
* each rows. *
|
|
* *
|
|
* *
|
|
* SYMBOLIC NAME: X *
|
|
* POSITION: PARAMETER NO 9. *
|
|
* ATTRIBUTES: COMPLEX*16 ARRAY(N) *
|
|
* (or ARRAY(M) when op(A) = A') *
|
|
* VALUES: any. *
|
|
* DESCRIPTION: Contains the values of the vector to be *
|
|
* multiplied by the matrix A. *
|
|
* *
|
|
* SYMBOLIC NAME: BETA *
|
|
* POSITION: PARAMETER NO 10. *
|
|
* ATTRIBUTES: COMPLEX*16. *
|
|
* VALUES: any. *
|
|
* DESCRIPTION: Specifies the scalar beta. *
|
|
* *
|
|
* SYMBOLIC NAME: Y *
|
|
* POSITION: PARAMETER NO 11. *
|
|
* ATTRIBUTES: COMPLEX*16 ARRAY(M) *
|
|
* (or ARRAY(N) when op(A) = A') *
|
|
* VALUES: any. *
|
|
* DESCRIPTION: Contains the values of the vector to be *
|
|
* updated by the matrix-vector multiplication. *
|
|
* *
|
|
* SYMBOLIC NAME: WORK *
|
|
* POSITION: PARAMETER NO 12. *
|
|
* ATTRIBUTES: COMPLEX*16 ARRAY(M) *
|
|
* (or ARRAY(N) when op(A) = A') *
|
|
* VALUES: any. *
|
|
* DESCRIPTION: Work area available to the program. It is used *
|
|
* only when TRANS = 'T'. *
|
|
* *
|
|
* OUTPUT = *
|
|
* *
|
|
* *
|
|
* SYMBOLIC NAME: Y *
|
|
* POSITION: PARAMETER NO 11. *
|
|
* ATTRIBUTES: COMPLEX*16 ARRAY(M) *
|
|
* (or ARRAY(N) when op(A) = A') *
|
|
* VALUES: any. *
|
|
* DESCRIPTION: Contains the values of the vector *
|
|
* updated by the matrix-vector multiplication. *
|
|
* *
|
|
* *
|
|
***********************************************************************
|
|
C
|
|
SUBROUTINE ZSRMV (TRANS,DIAG,M,N,ALPHA,AS,JA,IA,X,BETA,Y,WORK)
|
|
C .. Parameters ..
|
|
COMPLEX*16 ONE, ZERO
|
|
PARAMETER (ONE=(1.0D0, 0.0D0), ZERO=(0.0D0, 0.0D0))
|
|
C .. Scalar Arguments ..
|
|
COMPLEX*16 ALPHA, BETA
|
|
INTEGER M, N
|
|
CHARACTER DIAG, TRANS
|
|
C .. Array Arguments ..
|
|
COMPLEX*16 AS(*), WORK(*), X(*), Y(*)
|
|
INTEGER IA(*), JA(*)
|
|
C .. Local Scalars ..
|
|
COMPLEX*16 ACC
|
|
INTEGER I, J, K, NCOLA, NROWA,DUM
|
|
LOGICAL SYM, TRA, COTRA, UNI
|
|
C .. Executable Statements ..
|
|
C
|
|
UNI = DIAG.EQ.'U'
|
|
C
|
|
C .. Not simmetric matrix
|
|
TRA = TRANS.EQ.'T'
|
|
COTRA = TRANS.EQ.'C'
|
|
|
|
C .. Symmetric matrix upper or lower
|
|
SYM = (TRANS.EQ.'L').OR.(TRANS.EQ.'U').OR.
|
|
+ (TRANS.EQ.'M').OR.(TRANS.EQ.'V')
|
|
C
|
|
IF (.NOT.(TRA.OR.COTRA)) THEN
|
|
NROWA = M
|
|
NCOLA = N
|
|
ELSE
|
|
NROWA = N
|
|
NCOLA = M
|
|
END IF !(....(CO)TRA)
|
|
|
|
IF (ALPHA.EQ.ZERO) THEN
|
|
IF (BETA.EQ.ZERO) THEN
|
|
DO I = 1, M
|
|
Y(I) = ZERO
|
|
ENDDO
|
|
ELSE
|
|
DO 20 I = 1, M
|
|
Y(I) = BETA*Y(I)
|
|
20 CONTINUE
|
|
ENDIF
|
|
RETURN
|
|
END IF
|
|
|
|
C
|
|
IF (SYM) THEN
|
|
IF (UNI) THEN
|
|
C
|
|
C ......Symmetric with unitary diagonal.......
|
|
C ....OK!!
|
|
C To be optimized
|
|
|
|
IF (BETA.NE.ZERO) THEN
|
|
DO 40 I = 1, M
|
|
C
|
|
C Product for diagonal elements
|
|
C
|
|
Y(I) = BETA*Y(I) + ALPHA*X(I)
|
|
40 CONTINUE
|
|
ELSE
|
|
DO I = 1, M
|
|
Y(I) = ALPHA*X(I)
|
|
ENDDO
|
|
ENDIF
|
|
|
|
C Product for other elements
|
|
IF ((TRANS.EQ.'L').OR.(TRANS.EQ.'U')) THEN
|
|
DO 80 I = 1, M
|
|
ACC = ZERO
|
|
DO 60 J = IA(I), IA(I+1) - 1
|
|
K = JA(J)
|
|
Y(K) = Y(K) + ALPHA*AS(J)*X(I)
|
|
ACC = ACC + AS(J)*X(K)
|
|
60 CONTINUE
|
|
Y(I) = Y(I) + ALPHA*ACC
|
|
80 CONTINUE
|
|
ELSE ! Perform computations on conjug(A)
|
|
DO 82 I = 1, M
|
|
ACC = ZERO
|
|
DO 81 J = IA(I), IA(I+1) - 1
|
|
K = JA(J)
|
|
Y(K) = Y(K) + ALPHA * CONJG(AS(J)) * X(I)
|
|
ACC = ACC + CONJG(AS(J)) * X(K)
|
|
81 CONTINUE
|
|
Y(I) = Y(I) + ALPHA*ACC
|
|
82 CONTINUE
|
|
ENDIF
|
|
C
|
|
ELSE IF ( .NOT. UNI) THEN
|
|
C
|
|
C Check if matrix is lower or upper
|
|
C
|
|
IF ((TRANS.EQ.'L').OR.(TRANS.EQ.'M')) THEN
|
|
C
|
|
C LOWER CASE: diagonal element is the last element of row
|
|
C ....OK!
|
|
|
|
IF (BETA.NE.ZERO) THEN
|
|
DO 100 I = 1, M
|
|
Y(I) = BETA*Y(I)
|
|
100 CONTINUE
|
|
ELSE
|
|
DO I = 1, M
|
|
Y(I) = ZERO
|
|
ENDDO
|
|
ENDIF
|
|
|
|
IF (TRANS.EQ.'L') THEN
|
|
DO 140 I = 1, M
|
|
ACC = ZERO
|
|
DO 120 J = IA(I), IA(I+1) - 1 ! it was -2
|
|
K = JA(J)
|
|
C
|
|
C To be optimized
|
|
C
|
|
IF (K.NE.I) THEN !for symmetric element
|
|
Y(K) = Y(K) + ALPHA*AS(J)*X(I)
|
|
ENDIF
|
|
ACC = ACC + AS(J)*X(K)
|
|
120 CONTINUE
|
|
|
|
Y(I) = Y(I) + ALPHA*ACC
|
|
140 CONTINUE
|
|
ELSE ! Perform computations on conjug(A)
|
|
DO 142 I = 1, M
|
|
ACC = ZERO
|
|
DO 141 J = IA(I), IA(I+1) - 1 ! it was -2
|
|
K = JA(J)
|
|
C
|
|
C To be optimized
|
|
C
|
|
IF (K.NE.I) THEN !for symmetric element
|
|
Y(K) = Y(K) + ALPHA * CONJG(AS(J)) * X(I)
|
|
ENDIF
|
|
ACC = ACC + CONJG(AS(J)) * X(K)
|
|
141 CONTINUE
|
|
Y(I) = Y(I) + ALPHA * ACC
|
|
142 CONTINUE
|
|
|
|
ENDIF
|
|
|
|
ELSE ! ....Trans<>L, M
|
|
C
|
|
C UPPER CASE
|
|
C ....OK!!
|
|
C
|
|
IF (BETA.NE.ZERO) THEN
|
|
DO 160 I = 1, M
|
|
Y(I) = BETA*Y(I)
|
|
160 CONTINUE
|
|
ELSE
|
|
DO I = 1, M
|
|
Y(I) = ZERO
|
|
ENDDO
|
|
ENDIF
|
|
IF (TRANS.EQ.'U') THEN
|
|
DO 200 I = 1, M
|
|
ACC = ZERO
|
|
DO 180 J = IA(I) , IA(I+1) - 1 ! removed +1
|
|
K = JA(J)
|
|
C
|
|
C To be optimized
|
|
C
|
|
IF(K.NE.I) THEN
|
|
Y(K) = Y(K) + ALPHA*AS(J)*X(I)
|
|
ENDIF
|
|
ACC = ACC + AS(J)*X(K)
|
|
180 CONTINUE
|
|
Y(I) = Y(I) + ALPHA*ACC
|
|
200 CONTINUE
|
|
ELSE ! Perform computations on conjug(A)
|
|
DO 202 I = 1, M
|
|
ACC = ZERO
|
|
DO 201 J = IA(I) , IA(I+1) - 1 ! removed +1
|
|
K = JA(J)
|
|
C
|
|
C To be optimized
|
|
C
|
|
IF(K.NE.I) THEN
|
|
Y(K) = Y(K) + ALPHA * CONJG(AS(J)) * X(I)
|
|
ENDIF
|
|
ACC = ACC + CONJG(AS(J)) * X(K)
|
|
201 CONTINUE
|
|
Y(I) = Y(I) + ALPHA*ACC
|
|
202 CONTINUE
|
|
ENDIF
|
|
END IF ! ......TRANS=='L'
|
|
END IF ! ......Not UNI
|
|
C
|
|
ELSE IF ((.NOT.TRA).AND.(.NOT.COTRA)) THEN !......NOT SYM
|
|
|
|
IF ( .NOT. UNI) THEN
|
|
C
|
|
C .......General Not Unit, No Traspose
|
|
C
|
|
|
|
IF (BETA.NE.ZERO) THEN
|
|
DO 240 I = 1, M
|
|
ACC = ZERO
|
|
DO 220 J = IA(I), IA(I+1) - 1
|
|
ACC = ACC + AS(J)*X(JA(J))
|
|
220 CONTINUE
|
|
Y(I) = ALPHA*ACC + BETA*Y(I)
|
|
240 CONTINUE
|
|
ELSE
|
|
DO I = 1, M
|
|
ACC = ZERO
|
|
DO J = IA(I), IA(I+1) - 1
|
|
ACC = ACC + AS(J)*X(JA(J))
|
|
ENDDO
|
|
Y(I) = ALPHA*ACC
|
|
ENDDO
|
|
ENDIF
|
|
C
|
|
ELSE IF (UNI) THEN
|
|
C
|
|
IF (BETA.NE.ZERO) THEN
|
|
DO 280 I = 1, M
|
|
ACC = ZERO
|
|
DO 260 J = IA(I), IA(I+1) - 1
|
|
ACC = ACC + AS(J)*X(JA(J))
|
|
260 CONTINUE
|
|
Y(I) = ALPHA*(ACC+X(I)) + BETA*Y(I)
|
|
280 CONTINUE
|
|
ELSE !(BETA.EQ.ZERO)
|
|
DO I = 1, M
|
|
ACC = ZERO
|
|
DO J = IA(I), IA(I+1) - 1
|
|
ACC = ACC + AS(J)*X(JA(J))
|
|
ENDDO
|
|
Y(I) = ALPHA*(ACC+X(I))
|
|
ENDDO
|
|
ENDIF
|
|
END IF !....End Testing on UNI
|
|
C
|
|
ELSE IF (TRA) THEN !....Else on SYM (swapped M and N)
|
|
C
|
|
IF ( .NOT. UNI) THEN
|
|
C
|
|
IF (BETA.NE.ZERO) THEN
|
|
DO 300 I = 1, M
|
|
Y(I) = BETA*Y(I)
|
|
300 CONTINUE
|
|
ELSE !(BETA.EQ.ZERO)
|
|
DO I = 1, M
|
|
Y(I) = ZERO
|
|
ENDDO
|
|
ENDIF
|
|
C
|
|
ELSE IF (UNI) THEN
|
|
C
|
|
|
|
IF (BETA.NE.ZERO) THEN
|
|
DO 320 I = 1, M
|
|
Y(I) = BETA*Y(I) + ALPHA*X(I)
|
|
320 CONTINUE
|
|
ELSE !(BETA.EQ.ZERO)
|
|
DO I = 1, M
|
|
Y(I) = ALPHA*X(I)
|
|
ENDDO
|
|
ENDIF
|
|
|
|
C
|
|
END IF !....UNI
|
|
C
|
|
IF (ALPHA.EQ.ONE) THEN
|
|
C
|
|
DO 360 I = 1, N
|
|
DO 340 J = IA(I), IA(I+1) - 1
|
|
K = JA(J)
|
|
Y(K) = Y(K) + AS(J)*X(I)
|
|
340 CONTINUE
|
|
360 CONTINUE
|
|
C
|
|
ELSE IF (ALPHA.EQ.-ONE) THEN
|
|
C
|
|
DO 400 I = 1, n
|
|
DO 380 J = IA(I), IA(I+1) - 1
|
|
K = JA(J)
|
|
Y(K) = Y(K) - AS(J)*X(I)
|
|
380 CONTINUE
|
|
400 CONTINUE
|
|
C
|
|
ELSE !.....Else on TRA
|
|
C
|
|
C This work array is used for efficiency
|
|
C
|
|
DO 420 I = 1, N
|
|
WORK(I) = ALPHA*X(I)
|
|
420 CONTINUE
|
|
C
|
|
DO 460 I = 1, n
|
|
DO 440 J = IA(I), IA(I+1) - 1
|
|
K = JA(J)
|
|
Y(K) = Y(K) + AS(J)*WORK(I)
|
|
440 CONTINUE
|
|
460 CONTINUE
|
|
C
|
|
END IF !.....End testing on ALPHA
|
|
|
|
ELSE IF (COTRA) THEN !....Else on SYM (swapped M and N)
|
|
C
|
|
IF ( .NOT. UNI) THEN
|
|
C
|
|
IF (BETA.NE.ZERO) THEN
|
|
DO 500 I = 1, M
|
|
Y(I) = BETA*Y(I)
|
|
500 CONTINUE
|
|
ELSE !(BETA.EQ.ZERO)
|
|
DO I = 1, M
|
|
Y(I) = ZERO
|
|
ENDDO
|
|
ENDIF
|
|
C
|
|
ELSE IF (UNI) THEN
|
|
C
|
|
|
|
IF (BETA.NE.ZERO) THEN
|
|
DO 520 I = 1, M
|
|
Y(I) = BETA*Y(I) + ALPHA*X(I)
|
|
520 CONTINUE
|
|
ELSE !(BETA.EQ.ZERO)
|
|
DO I = 1, M
|
|
Y(I) = ALPHA*X(I)
|
|
ENDDO
|
|
ENDIF
|
|
|
|
C
|
|
END IF !....UNI
|
|
C
|
|
IF (ALPHA.EQ.ONE) THEN
|
|
C
|
|
DO 560 I = 1, N
|
|
DO 540 J = IA(I), IA(I+1) - 1
|
|
K = JA(J)
|
|
Y(K) = Y(K) + CONJG(AS(J))*X(I)
|
|
540 CONTINUE
|
|
560 CONTINUE
|
|
C
|
|
ELSE IF (ALPHA.EQ.-ONE) THEN
|
|
C
|
|
DO 600 I = 1, n
|
|
DO 580 J = IA(I), IA(I+1) - 1
|
|
K = JA(J)
|
|
Y(K) = Y(K) - CONJG(AS(J))*X(I)
|
|
580 CONTINUE
|
|
600 CONTINUE
|
|
C
|
|
ELSE !.....Else on TRA
|
|
C
|
|
C This work array is used for efficiency
|
|
C
|
|
DO 620 I = 1, N
|
|
WORK(I) = ALPHA*X(I)
|
|
620 CONTINUE
|
|
C
|
|
DO 660 I = 1, n
|
|
DO 640 J = IA(I), IA(I+1) - 1
|
|
K = JA(J)
|
|
Y(K) = Y(K) + CONJG(AS(J))*WORK(I)
|
|
640 CONTINUE
|
|
660 CONTINUE
|
|
C
|
|
END IF !.....End testing on ALPHA
|
|
|
|
END IF !.....End testing on SYM
|
|
C
|
|
RETURN
|
|
C
|
|
C END OF ZSRMV
|
|
C
|
|
END
|
|
|