You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
psblas3/docs/pdf/precs.tex

231 lines
7.7 KiB
TeX

\section{Preconditioner routines}
\label{sec:precs}
% \section{Preconditioners}
\label{sec:psprecs}
PSBLAS contains the implementation of many preconditioning
techniques some of which are very flexible thanks to the presence of
many parameters that is possible to adjust to fit the user's needs:
\begin{itemize}
\item Diagonal Scaling
\item Block Jacobi with ILU(0) factorization
\item Additive Schwarz with the Restricted Additive Schwarz and
Additive Schwarz with Harmonic extensions;
\item Two-Level Additive Schwarz; this is actually a family of
preconditioners since there is the possibility to choose between
many variants.
\end{itemize}
\subroutine{psb\_precset}{Sets the preconditioner type}
\syntax{call psb\_precset}{prec, ptype, iv, rs, ierr}
\begin{description}
\item[\bf On Entry]
\item[prec]
Scope: {\bf local} \\
Type: {\bf required}\\
Specified as: a pronditioner data structure \precdata.
\item[ptype] the type of preconditioner.
Scope: {\bf global} \\
Type: {\bf required}\\
Specified as: a character string, see usage notes.
\item[iv] integer parameters for the precondtioner.
Scope: {\bf global} \\
Type: {\bf required}\\
Specified as: an integer array, see usage notes.
\item[rs]
Scope: {\bf global} \\
Type: {\bf optional}\\
Specified as: a long precision real number.
\item[ierr]
Scope: {\bf global} \\
Type: {\bf required}\\
\end{description}
\section*{Usage Notes}
The PSBLAS 2.0 contains a number of preconditioners, ranging from a
simple diagonal scaling to 2-level domain decomposition. These
preconditioners may use the SuperLU or the UMFPACK software, if
installed; see~\cite{SUPERLU,UMFPACK}.
Legal inputs to this subroutine are interpreted depending on the
$ptype$ string as follows\footnote{The string is case-insensitive}:
\begin{description}
\item[NONE] No preconditioning, i.e. the preconditioner is just a copy
operator.
\item[DIAG] Diagonal scaling; each entry of the input vector is
multiplied by the reciprocal of the sum of the absolute values of
the coefficients in the corresponding row of matrix $A$;
\item[ILU] Precondition by the incomplete LU factorization of the
block-diagonal of matrix $A$, where block boundaries are determined
by the data allocation boundaries for each process; requires no
communication. Only $ILU(0)$ is currently implemented.
\item[AS] Additive Schwarz preconditioner (see~\cite{PARA04}); in this
case the user may specify additional flags through the integer
vector \verb|ir| as follows:
\begin{description}
\item[$iv(1)$] Number of overlap levels, an integer $novr>=0$, default
$novr=1$.
\item[$iv(2)$] Restriction operator, legal values: \verb|psb_halo_|,
\verb|psb_none_|; default: \verb|psb_halo_|
\item[$iv(3)$] Prolongation operator, legal values: \verb|psb_none_|,
\verb|psb_sum_|, \verb|psb_avg_|, default: \verb|psb_none_|
\item[$iv(4)$] Factorization type, legal values: \verb|f_ilu_n_|,
\verb|f_slu_|, \verb|f_umf_|, default: \verb|f_ilu_n_|.
\end{description}
Note that the default corresponds to a Restricted Additive Schwarz
preconditioner with $ILU(0)$ and 1 level of overlap.
\end{description}
If a multilevel preconditioner is desired, the user should call
\verb|psb_precset| once choosing AS, and a second time specifying
$ptype=ML$ with the following optional parameters in $iv$ (see
also~\cite{APNUM,DD2}):
\begin{description}
\item[$iv(1)$] Type of multilevel correction, legal values: \verb|no_ml_|,
\verb|add_ml_prec_|, \verb|mult_ml_prec_|,
default: \verb|mult_ml_prec_|;
\item[$iv(2)$] Aggregation algorithm, legal values: \verb|loc_aggr_|;
\item[$iv(3)$] Smoother type, legal values: \verb|no_smth_|,
\verb|smth_omg_|, default: \verb|smth_omg_|;
\item[$iv(4)$] Coarse matrix allocation, legal values:
\verb|mat_distr_|, \verb|mat_repl_|, default: \verb|mat_distr_|
\item[$iv(5)$] Smoother position, legal values: \verb|pre_smooth_|,
\verb|post_smooth_|, \verb|smooth_both_|, default:
\verb|post_smooth_|
\item[$iv(6)$] Factorization type (for coarse matrix), legal values: \verb|f_ilu_n_|,
\verb|f_slu_|, \verb|f_umf_|, default: \verb|f_ilu_n_|;
\item[$iv(7)$] Number of Jacobi sweeps for coarse system correction,
default 1.
\item[$rs$] Set the smoother parameter $\omega$ a user defined value;
default: esitimate with the infinity norm of matrix $A$.
\end{description}
The 2-level preconditioners are based on the idea of building a
coarse-space approximation $A_C$ of the matrix $A$; given a set $W_C$
of coarse vertices, with size $n_C$, and a suitable restriction
operator $R_C \in \Re^{n_C \times n}$, $A_C$ is defined as
\[
A_C=R_C A R_C^T .
\]
The prolongator $R_C^T$ is built with the smoothed aggregation technique,
in which we start from a tentative prolongator that simply maps
fine-level entries onto their aggregates $P_C$; if the user chooses
\verb|no_smth_| this is the prolongator used, otherwise it is
multiplied by a smoother \[ S = I - \omega D^{-1} A \], where $D$ is
the diagonal of $A$ and $\omega$ may be imposed by the user or
estimated internally.
The coarse space correction may be added to the fine level solution
\verb|add_ml_prec_|
\[
M_{2L-A}^{-1} = M_{C}^{-1} + M_{1L}^{-1}.
\]
or it can be composed in a multiplicative framework as a pre-smoothed
correction
\[
M_{2L-H1}^{-1} = M_{C}^{-1} + \left( I - M_{C}^{-1}A \right) M_{1L}^{-1},
\]
post-smoothed correction
\[
M_{2L-H2}^{-1} = M_{1L}^{-1} + \left( I - M_{1L}^{-1}A \right) M_{C}^{-1}.
\]
or two-sided.
\subroutine{psb\_precbld}{Builds a preconditioner}
\syntax{call psb\_precbld}{a, desc\_a, prec, info, upd}
\begin{description}
\item[\bf On Entry]
\item[a] the system sparse matrix.
Scope: {\bf local} \\
Type: {\bf required}\\
Specified as: a sparse matrix data structure \spdata.
\item[desc\_a] the problem communication descriptor.
Scope: {\bf local} \\
Type: {\bf required}\\
Specified as: a communication descriptor data structure \descdata.
\item[upd]
Scope: {\bf global} \\
Type: {\bf optional}\\
Specified as: a character.
\end{description}
\begin{description}
\item[\bf On Return]
\item[prec] the preconditioner.\\
Scope: {\bf local} \\
Type: {\bf required}\\
Specified as: a precondtioner data structure \precdata\\
\item[info] the return error code.\\
Scope: {\bf global} \\
Type: {\bf required}\\
Specified as: an integer, upon successful completion $info=0$ \\
\end{description}
\subroutine{psb\_precaply}{Preconditioner application routine}
\syntax{call psb\_precaply}{prec,x,y,desc\_a,info,trans,work}
\syntax{call psb\_precaply}{prec,x,desc\_a,info,trans}
\begin{description}
\item[\bf On Entry]
\item[prec] the preconditioner.
Scope: {\bf local} \\
Type: {\bf required}\\
Specified as: a preconditioner data structure \precdata.
\item[x] the source vector.
Scope: {\bf local} \\
Type: {\bf require}\\
Specified as: a double precision array.
\item[desc\_a] the problem communication descriptor.
Scope: {\bf local} \\
Type: {\bf required}\\
Specified as: a communication data structure \descdata.
\item[trans]
Scope: {\bf } \\
Type: {\bf optional}\\
Specified as: a character.
\item[work] an optional work space
Scope: {\bf local} \\
Type: {\bf optional}\\
Specified as: a double precision array.
\end{description}
\begin{description}
\item[\bf On Return]
\item[y] the destination vector.
Scope: {\bf local} \\
Type: {\bf required}\\
Specified as: a double precision array.
\item[info] the return error code.\\
Scope: {\bf local} \\
Type: {\bf required}\\
Specified as: an integer, upon successful completion $info=0$ .\\
\end{description}
\subroutine{psb\_prec\_descr}{Prints a description of current preconditioner}
\syntax{call psb\_prec\_descr}{prec}
\begin{description}
\item[\bf On Entry]
\item[prec] the preconditioner.
Scope: {\bf local} \\
Type: {\bf required}\\
Specified as: a preconditioner data structure \precdata.
\end{description}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "userguide"
%%% End: