You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
psblas3/base/modules/psb_ip_reord_mod.f90

671 lines
16 KiB
Fortran

!!$
!!$ Parallel Sparse BLAS version 3.0
!!$ (C) Copyright 2006, 2007, 2008, 2009, 2010
!!$ Salvatore Filippone University of Rome Tor Vergata
!!$ Alfredo Buttari CNRS-IRIT, Toulouse
!!$
!!$ Redistribution and use in source and binary forms, with or without
!!$ modification, are permitted provided that the following conditions
!!$ are met:
!!$ 1. Redistributions of source code must retain the above copyright
!!$ notice, this list of conditions and the following disclaimer.
!!$ 2. Redistributions in binary form must reproduce the above copyright
!!$ notice, this list of conditions, and the following disclaimer in the
!!$ documentation and/or other materials provided with the distribution.
!!$ 3. The name of the PSBLAS group or the names of its contributors may
!!$ not be used to endorse or promote products derived from this
!!$ software without specific written permission.
!!$
!!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
!!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
!!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
!!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS
!!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
!!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
!!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
!!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
!!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
!!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
!!$ POSSIBILITY OF SUCH DAMAGE.
!!$
!!$
!
! Reorder (an) input vector(s) based on a list sort output.
! Based on: D. E. Knuth: The Art of Computer Programming
! vol. 3: Sorting and Searching, Addison Wesley, 1973
! ex. 5.2.12
!
!
module psb_ip_reord_mod
use psb_const_mod
interface psb_ip_reord
module procedure psb_ip_reord_i1,&
& psb_ip_reord_s1, psb_ip_reord_d1,&
& psb_ip_reord_c1, psb_ip_reord_z1,&
& psb_ip_reord_i1i1,&
& psb_ip_reord_s1i1, psb_ip_reord_d1i1,&
& psb_ip_reord_c1i1, psb_ip_reord_z1i1,&
& psb_ip_reord_s1i2, psb_ip_reord_d1i2,&
& psb_ip_reord_c1i2, psb_ip_reord_z1i2,&
& psb_ip_reord_s1i3, psb_ip_reord_d1i3,&
& psb_ip_reord_c1i3, psb_ip_reord_z1i3
end interface
contains
subroutine psb_ip_reord_i1(n,x,iaux)
integer(psb_ipk_), intent(in) :: n
integer(psb_ipk_) :: iaux(0:*)
integer(psb_ipk_) :: x(*)
integer(psb_ipk_) :: lswap, lp, k
integer(psb_ipk_) :: swap
lp = iaux(0)
k = 1
do
if ((lp == 0).or.(k>n)) exit
do
if (lp >= k) exit
lp = iaux(lp)
end do
swap = x(lp)
x(lp) = x(k)
x(k) = swap
lswap = iaux(lp)
iaux(lp) = iaux(k)
iaux(k) = lp
lp = lswap
k = k + 1
enddo
return
end subroutine psb_ip_reord_i1
subroutine psb_ip_reord_s1(n,x,iaux)
integer(psb_ipk_), intent(in) :: n
integer(psb_ipk_) :: iaux(0:*)
real(psb_spk_) :: x(*)
integer(psb_ipk_) :: lswap, lp, k
real(psb_spk_) :: swap
lp = iaux(0)
k = 1
do
if ((lp == 0).or.(k>n)) exit
do
if (lp >= k) exit
lp = iaux(lp)
end do
swap = x(lp)
x(lp) = x(k)
x(k) = swap
lswap = iaux(lp)
iaux(lp) = iaux(k)
iaux(k) = lp
lp = lswap
k = k + 1
enddo
return
end subroutine psb_ip_reord_s1
subroutine psb_ip_reord_d1(n,x,iaux)
integer(psb_ipk_), intent(in) :: n
integer(psb_ipk_) :: iaux(0:*)
real(psb_dpk_) :: x(*)
integer(psb_ipk_) :: lswap, lp, k
real(psb_dpk_) :: swap
lp = iaux(0)
k = 1
do
if ((lp == 0).or.(k>n)) exit
do
if (lp >= k) exit
lp = iaux(lp)
end do
swap = x(lp)
x(lp) = x(k)
x(k) = swap
lswap = iaux(lp)
iaux(lp) = iaux(k)
iaux(k) = lp
lp = lswap
k = k + 1
enddo
return
end subroutine psb_ip_reord_d1
subroutine psb_ip_reord_c1(n,x,iaux)
integer(psb_ipk_), intent(in) :: n
integer(psb_ipk_) :: iaux(0:*)
complex(psb_spk_) :: x(*)
integer(psb_ipk_) :: lswap, lp, k
complex(psb_spk_) :: swap
lp = iaux(0)
k = 1
do
if ((lp == 0).or.(k>n)) exit
do
if (lp >= k) exit
lp = iaux(lp)
end do
swap = x(lp)
x(lp) = x(k)
x(k) = swap
lswap = iaux(lp)
iaux(lp) = iaux(k)
iaux(k) = lp
lp = lswap
k = k + 1
enddo
return
end subroutine psb_ip_reord_c1
subroutine psb_ip_reord_z1(n,x,iaux)
integer(psb_ipk_), intent(in) :: n
integer(psb_ipk_) :: iaux(0:*)
complex(psb_dpk_) :: x(*)
integer(psb_ipk_) :: lswap, lp, k
complex(psb_dpk_) :: swap
lp = iaux(0)
k = 1
do
if ((lp == 0).or.(k>n)) exit
do
if (lp >= k) exit
lp = iaux(lp)
end do
swap = x(lp)
x(lp) = x(k)
x(k) = swap
lswap = iaux(lp)
iaux(lp) = iaux(k)
iaux(k) = lp
lp = lswap
k = k + 1
enddo
return
end subroutine psb_ip_reord_z1
subroutine psb_ip_reord_i1i1(n,x,indx,iaux)
integer(psb_ipk_), intent(in) :: n
integer(psb_ipk_) :: iaux(0:*)
integer(psb_ipk_) :: x(*)
integer(psb_ipk_) :: indx(*)
integer(psb_ipk_) :: lswap, lp, k, ixswap
integer(psb_ipk_) :: swap
lp = iaux(0)
k = 1
do
if ((lp == 0).or.(k>n)) exit
do
if (lp >= k) exit
lp = iaux(lp)
end do
swap = x(lp)
x(lp) = x(k)
x(k) = swap
ixswap = indx(lp)
indx(lp) = indx(k)
indx(k) = ixswap
lswap = iaux(lp)
iaux(lp) = iaux(k)
iaux(k) = lp
lp = lswap
k = k + 1
enddo
return
end subroutine psb_ip_reord_i1i1
subroutine psb_ip_reord_s1i1(n,x,indx,iaux)
integer(psb_ipk_), intent(in) :: n
integer(psb_ipk_) :: iaux(0:*)
real(psb_spk_) :: x(*)
integer(psb_ipk_) :: indx(*)
integer(psb_ipk_) :: lswap, lp, k, ixswap
real(psb_spk_) :: swap
lp = iaux(0)
k = 1
do
if ((lp == 0).or.(k>n)) exit
do
if (lp >= k) exit
lp = iaux(lp)
end do
swap = x(lp)
x(lp) = x(k)
x(k) = swap
ixswap = indx(lp)
indx(lp) = indx(k)
indx(k) = ixswap
lswap = iaux(lp)
iaux(lp) = iaux(k)
iaux(k) = lp
lp = lswap
k = k + 1
enddo
return
end subroutine psb_ip_reord_s1i1
subroutine psb_ip_reord_d1i1(n,x,indx,iaux)
integer(psb_ipk_), intent(in) :: n
integer(psb_ipk_) :: iaux(0:*)
real(psb_dpk_) :: x(*)
integer(psb_ipk_) :: indx(*)
integer(psb_ipk_) :: lswap, lp, k, ixswap
real(psb_dpk_) :: swap
lp = iaux(0)
k = 1
do
if ((lp == 0).or.(k>n)) exit
do
if (lp >= k) exit
lp = iaux(lp)
end do
swap = x(lp)
x(lp) = x(k)
x(k) = swap
ixswap = indx(lp)
indx(lp) = indx(k)
indx(k) = ixswap
lswap = iaux(lp)
iaux(lp) = iaux(k)
iaux(k) = lp
lp = lswap
k = k + 1
enddo
return
end subroutine psb_ip_reord_d1i1
subroutine psb_ip_reord_c1i1(n,x,indx,iaux)
integer(psb_ipk_), intent(in) :: n
integer(psb_ipk_) :: iaux(0:*)
complex(psb_spk_) :: x(*)
integer(psb_ipk_) :: indx(*)
integer(psb_ipk_) :: lswap, lp, k, ixswap
complex(psb_spk_) :: swap
lp = iaux(0)
k = 1
do
if ((lp == 0).or.(k>n)) exit
do
if (lp >= k) exit
lp = iaux(lp)
end do
swap = x(lp)
x(lp) = x(k)
x(k) = swap
ixswap = indx(lp)
indx(lp) = indx(k)
indx(k) = ixswap
lswap = iaux(lp)
iaux(lp) = iaux(k)
iaux(k) = lp
lp = lswap
k = k + 1
enddo
return
end subroutine psb_ip_reord_c1i1
subroutine psb_ip_reord_z1i1(n,x,indx,iaux)
integer(psb_ipk_), intent(in) :: n
integer(psb_ipk_) :: iaux(0:*)
complex(psb_dpk_) :: x(*)
integer(psb_ipk_) :: indx(*)
integer(psb_ipk_) :: lswap, lp, k, ixswap
complex(psb_dpk_) :: swap
lp = iaux(0)
k = 1
do
if ((lp == 0).or.(k>n)) exit
do
if (lp >= k) exit
lp = iaux(lp)
end do
swap = x(lp)
x(lp) = x(k)
x(k) = swap
ixswap = indx(lp)
indx(lp) = indx(k)
indx(k) = ixswap
lswap = iaux(lp)
iaux(lp) = iaux(k)
iaux(k) = lp
lp = lswap
k = k + 1
enddo
return
end subroutine psb_ip_reord_z1i1
subroutine psb_ip_reord_s1i2(n,x,i1,i2,iaux)
integer(psb_ipk_), intent(in) :: n
integer(psb_ipk_) :: iaux(0:*)
real(psb_spk_) :: x(*)
integer(psb_ipk_) :: i1(*), i2(*)
integer(psb_ipk_) :: lswap, lp, k, isw1, isw2
real(psb_spk_) :: swap
lp = iaux(0)
k = 1
do
if ((lp == 0).or.(k>n)) exit
do
if (lp >= k) exit
lp = iaux(lp)
end do
swap = x(lp)
x(lp) = x(k)
x(k) = swap
isw1 = i1(lp)
i1(lp) = i1(k)
i1(k) = isw1
isw2 = i2(lp)
i2(lp) = i2(k)
i2(k) = isw2
lswap = iaux(lp)
iaux(lp) = iaux(k)
iaux(k) = lp
lp = lswap
k = k + 1
enddo
return
end subroutine psb_ip_reord_s1i2
subroutine psb_ip_reord_d1i2(n,x,i1,i2,iaux)
integer(psb_ipk_), intent(in) :: n
integer(psb_ipk_) :: iaux(0:*)
real(psb_dpk_) :: x(*)
integer(psb_ipk_) :: i1(*), i2(*)
integer(psb_ipk_) :: lswap, lp, k, isw1, isw2
real(psb_dpk_) :: swap
lp = iaux(0)
k = 1
do
if ((lp == 0).or.(k>n)) exit
do
if (lp >= k) exit
lp = iaux(lp)
end do
swap = x(lp)
x(lp) = x(k)
x(k) = swap
isw1 = i1(lp)
i1(lp) = i1(k)
i1(k) = isw1
isw2 = i2(lp)
i2(lp) = i2(k)
i2(k) = isw2
lswap = iaux(lp)
iaux(lp) = iaux(k)
iaux(k) = lp
lp = lswap
k = k + 1
enddo
return
end subroutine psb_ip_reord_d1i2
subroutine psb_ip_reord_c1i2(n,x,i1,i2,iaux)
integer(psb_ipk_), intent(in) :: n
integer(psb_ipk_) :: iaux(0:*)
complex(psb_spk_) :: x(*)
integer(psb_ipk_) :: i1(*), i2(*)
integer(psb_ipk_) :: lswap, lp, k, isw1, isw2
complex(psb_spk_) :: swap
lp = iaux(0)
k = 1
do
if ((lp == 0).or.(k>n)) exit
do
if (lp >= k) exit
lp = iaux(lp)
end do
swap = x(lp)
x(lp) = x(k)
x(k) = swap
isw1 = i1(lp)
i1(lp) = i1(k)
i1(k) = isw1
isw2 = i2(lp)
i2(lp) = i2(k)
i2(k) = isw2
lswap = iaux(lp)
iaux(lp) = iaux(k)
iaux(k) = lp
lp = lswap
k = k + 1
enddo
return
end subroutine psb_ip_reord_c1i2
subroutine psb_ip_reord_z1i2(n,x,i1,i2,iaux)
integer(psb_ipk_), intent(in) :: n
integer(psb_ipk_) :: iaux(0:*)
complex(psb_dpk_) :: x(*)
integer(psb_ipk_) :: i1(*), i2(*)
integer(psb_ipk_) :: lswap, lp, k, isw1, isw2
complex(psb_dpk_) :: swap
lp = iaux(0)
k = 1
do
if ((lp == 0).or.(k>n)) exit
do
if (lp >= k) exit
lp = iaux(lp)
end do
swap = x(lp)
x(lp) = x(k)
x(k) = swap
isw1 = i1(lp)
i1(lp) = i1(k)
i1(k) = isw1
isw2 = i2(lp)
i2(lp) = i2(k)
i2(k) = isw2
lswap = iaux(lp)
iaux(lp) = iaux(k)
iaux(k) = lp
lp = lswap
k = k + 1
enddo
return
end subroutine psb_ip_reord_z1i2
subroutine psb_ip_reord_s1i3(n,x,i1,i2,i3,iaux)
integer(psb_ipk_), intent(in) :: n
integer(psb_ipk_) :: iaux(0:*)
real(psb_spk_) :: x(*)
integer(psb_ipk_) :: i1(*), i2(*), i3(*)
integer(psb_ipk_) :: lswap, lp, k, isw1, isw2, isw3
real(psb_spk_) :: swap
lp = iaux(0)
k = 1
do
if ((lp == 0).or.(k>n)) exit
do
if (lp >= k) exit
lp = iaux(lp)
end do
swap = x(lp)
x(lp) = x(k)
x(k) = swap
isw1 = i1(lp)
i1(lp) = i1(k)
i1(k) = isw1
isw2 = i2(lp)
i2(lp) = i2(k)
i2(k) = isw2
isw3 = i3(lp)
i3(lp) = i3(k)
i3(k) = isw3
lswap = iaux(lp)
iaux(lp) = iaux(k)
iaux(k) = lp
lp = lswap
k = k + 1
enddo
return
end subroutine psb_ip_reord_s1i3
subroutine psb_ip_reord_d1i3(n,x,i1,i2,i3,iaux)
integer(psb_ipk_), intent(in) :: n
integer(psb_ipk_) :: iaux(0:*)
real(psb_dpk_) :: x(*)
integer(psb_ipk_) :: i1(*), i2(*),i3(*)
integer(psb_ipk_) :: lswap, lp, k, isw1, isw2,isw3
real(psb_dpk_) :: swap
lp = iaux(0)
k = 1
do
if ((lp == 0).or.(k>n)) exit
do
if (lp >= k) exit
lp = iaux(lp)
end do
swap = x(lp)
x(lp) = x(k)
x(k) = swap
isw1 = i1(lp)
i1(lp) = i1(k)
i1(k) = isw1
isw2 = i2(lp)
i2(lp) = i2(k)
i2(k) = isw2
isw3 = i3(lp)
i3(lp) = i3(k)
i3(k) = isw3
lswap = iaux(lp)
iaux(lp) = iaux(k)
iaux(k) = lp
lp = lswap
k = k + 1
enddo
return
end subroutine psb_ip_reord_d1i3
subroutine psb_ip_reord_c1i3(n,x,i1,i2,i3,iaux)
integer(psb_ipk_), intent(in) :: n
integer(psb_ipk_) :: iaux(0:*)
complex(psb_spk_) :: x(*)
integer(psb_ipk_) :: i1(*), i2(*), i3(*)
integer(psb_ipk_) :: lswap, lp, k, isw1, isw2, isw3
complex(psb_spk_) :: swap
lp = iaux(0)
k = 1
do
if ((lp == 0).or.(k>n)) exit
do
if (lp >= k) exit
lp = iaux(lp)
end do
swap = x(lp)
x(lp) = x(k)
x(k) = swap
isw1 = i1(lp)
i1(lp) = i1(k)
i1(k) = isw1
isw2 = i2(lp)
i2(lp) = i2(k)
i2(k) = isw2
isw3 = i3(lp)
i3(lp) = i3(k)
i3(k) = isw3
lswap = iaux(lp)
iaux(lp) = iaux(k)
iaux(k) = lp
lp = lswap
k = k + 1
enddo
return
end subroutine psb_ip_reord_c1i3
subroutine psb_ip_reord_z1i3(n,x,i1,i2,i3,iaux)
integer(psb_ipk_), intent(in) :: n
integer(psb_ipk_) :: iaux(0:*)
complex(psb_dpk_) :: x(*)
integer(psb_ipk_) :: i1(*), i2(*), i3(*)
integer(psb_ipk_) :: lswap, lp, k, isw1, isw2, isw3
complex(psb_dpk_) :: swap
lp = iaux(0)
k = 1
do
if ((lp == 0).or.(k>n)) exit
do
if (lp >= k) exit
lp = iaux(lp)
end do
swap = x(lp)
x(lp) = x(k)
x(k) = swap
isw1 = i1(lp)
i1(lp) = i1(k)
i1(k) = isw1
isw2 = i2(lp)
i2(lp) = i2(k)
i2(k) = isw2
isw3 = i3(lp)
i3(lp) = i3(k)
i3(k) = isw3
lswap = iaux(lp)
iaux(lp) = iaux(k)
iaux(k) = lp
lp = lswap
k = k + 1
enddo
return
end subroutine psb_ip_reord_z1i3
end module psb_ip_reord_mod