You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
psblas3/base/modules/psb_c_base_vect_mod.f90

797 lines
22 KiB
Fortran

!!$
!!$ Parallel Sparse BLAS version 3.0
!!$ (C) Copyright 2006, 2007, 2008, 2009, 2010
!!$ Salvatore Filippone University of Rome Tor Vergata
!!$ Alfredo Buttari CNRS-IRIT, Toulouse
!!$
!!$ Redistribution and use in source and binary forms, with or without
!!$ modification, are permitted provided that the following conditions
!!$ are met:
!!$ 1. Redistributions of source code must retain the above copyright
!!$ notice, this list of conditions and the following disclaimer.
!!$ 2. Redistributions in binary form must reproduce the above copyright
!!$ notice, this list of conditions, and the following disclaimer in the
!!$ documentation and/or other materials provided with the distribution.
!!$ 3. The name of the PSBLAS group or the names of its contributors may
!!$ not be used to endorse or promote products derived from this
!!$ software without specific written permission.
!!$
!!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
!!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
!!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
!!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS
!!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
!!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
!!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
!!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
!!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
!!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
!!$ POSSIBILITY OF SUCH DAMAGE.
!!$
!!$
!
! package: psb_c_base_vect_mod
!
! This module contains the definition of the psb_c_base_vect type which
! is a container for dense vectors.
! This is encapsulated instead of being just a simple array to allow for
! more complicated situations, such as GPU programming, where the memory
! area we are interested in is not easily accessible from the host/Fortran
! side. It is also meant to be encapsulated in an outer type, to allow
! runtime switching as per the STATE design pattern, similar to the
! sparse matrix types.
!
!
module psb_c_base_vect_mod
use psb_const_mod
use psb_error_mod
type psb_c_base_vect_type
complex(psb_spk_), allocatable :: v(:)
contains
!
! Constructors/allocators
!
procedure, pass(x) :: bld_x => c_base_bld_x
procedure, pass(x) :: bld_n => c_base_bld_n
generic, public :: bld => bld_x, bld_n
procedure, pass(x) :: all => c_base_all
!
! Insert/set. Assembly and free.
! Assembly does almost nothing here, but is important
! in derived classes.
!
procedure, pass(x) :: ins => c_base_ins
procedure, pass(x) :: zero => c_base_zero
procedure, pass(x) :: asb => c_base_asb
procedure, pass(x) :: free => c_base_free
!
! Sync: centerpiece of handling of external storage.
! Any derived class having extra storage upon sync
! will guarantee that both fortran/host side and
! external side contain the same data. The base
! version is only a placeholder.
!
procedure, pass(x) :: sync => c_base_sync
procedure, pass(x) :: is_host => c_base_is_host
procedure, pass(x) :: is_dev => c_base_is_dev
procedure, pass(x) :: is_sync => c_base_is_sync
procedure, pass(x) :: set_host => c_base_set_host
procedure, pass(x) :: set_dev => c_base_set_dev
procedure, pass(x) :: set_sync => c_base_set_sync
!
! Basic info
procedure, pass(x) :: get_nrows => c_base_get_nrows
procedure, pass(x) :: sizeof => c_base_sizeof
!
! Set/get data from/to an external array; also
! overload assignment.
!
procedure, pass(x) :: get_vect => c_base_get_vect
procedure, pass(x) :: set_scal => c_base_set_scal
procedure, pass(x) :: set_vect => c_base_set_vect
generic, public :: set => set_vect, set_scal
!
! Dot product and AXPBY
!
procedure, pass(x) :: dot_v => c_base_dot_v
procedure, pass(x) :: dot_a => c_base_dot_a
generic, public :: dot => dot_v, dot_a
procedure, pass(y) :: axpby_v => c_base_axpby_v
procedure, pass(y) :: axpby_a => c_base_axpby_a
generic, public :: axpby => axpby_v, axpby_a
!
! Vector by vector multiplication. Need all variants
! to handle multiple requirements from preconditioners
!
procedure, pass(y) :: mlt_v => c_base_mlt_v
procedure, pass(y) :: mlt_a => c_base_mlt_a
procedure, pass(z) :: mlt_a_2 => c_base_mlt_a_2
procedure, pass(z) :: mlt_v_2 => c_base_mlt_v_2
procedure, pass(z) :: mlt_va => c_base_mlt_va
procedure, pass(z) :: mlt_av => c_base_mlt_av
generic, public :: mlt => mlt_v, mlt_a, mlt_a_2, mlt_v_2, mlt_av, mlt_va
!
! Scaling and norms
!
procedure, pass(x) :: scal => c_base_scal
procedure, pass(x) :: nrm2 => c_base_nrm2
procedure, pass(x) :: amax => c_base_amax
procedure, pass(x) :: asum => c_base_asum
!
! Gather/scatter. These are needed for MPI interfacing.
! May have to be reworked.
!
procedure, pass(x) :: gthab => c_base_gthab
procedure, pass(x) :: gthzv => c_base_gthzv
generic, public :: gth => gthab, gthzv
procedure, pass(y) :: sctb => c_base_sctb
generic, public :: sct => sctb
end type psb_c_base_vect_type
public :: psb_c_base_vect
private :: constructor, size_const
interface psb_c_base_vect
module procedure constructor, size_const
end interface psb_c_base_vect
contains
!
! Constructors.
!
function constructor(x) result(this)
complex(psb_spk_) :: x(:)
type(psb_c_base_vect_type) :: this
integer(psb_ipk_) :: info
this%v = x
call this%asb(size(x,kind=psb_ipk_),info)
end function constructor
function size_const(n) result(this)
integer(psb_ipk_), intent(in) :: n
type(psb_c_base_vect_type) :: this
integer(psb_ipk_) :: info
call this%asb(n,info)
end function size_const
!
! Build from a sample
!
subroutine c_base_bld_x(x,this)
use psb_realloc_mod
complex(psb_spk_), intent(in) :: this(:)
class(psb_c_base_vect_type), intent(inout) :: x
integer(psb_ipk_) :: info
call psb_realloc(size(this),x%v,info)
if (info /= 0) then
call psb_errpush(psb_err_alloc_dealloc_,'base_vect_bld')
return
end if
x%v(:) = this(:)
end subroutine c_base_bld_x
!
! Create with size, but no initialization
!
subroutine c_base_bld_n(x,n)
use psb_realloc_mod
integer(psb_ipk_), intent(in) :: n
class(psb_c_base_vect_type), intent(inout) :: x
integer(psb_ipk_) :: info
call psb_realloc(n,x%v,info)
call x%asb(n,info)
end subroutine c_base_bld_n
subroutine c_base_all(n, x, info)
use psi_serial_mod
use psb_realloc_mod
implicit none
integer(psb_ipk_), intent(in) :: n
class(psb_c_base_vect_type), intent(out) :: x
integer(psb_ipk_), intent(out) :: info
call psb_realloc(n,x%v,info)
end subroutine c_base_all
!
! Insert a bunch of values at specified positions.
!
subroutine c_base_ins(n,irl,val,dupl,x,info)
use psi_serial_mod
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
integer(psb_ipk_), intent(in) :: n, dupl
integer(psb_ipk_), intent(in) :: irl(:)
complex(psb_spk_), intent(in) :: val(:)
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i
info = 0
if (psb_errstatus_fatal()) return
if (.not.allocated(x%v)) then
info = psb_err_invalid_vect_state_
else if (n > min(size(irl),size(val))) then
info = psb_err_invalid_input_
else
select case(dupl)
case(psb_dupl_ovwrt_)
do i = 1, n
!loop over all val's rows
! row actual block row
if (irl(i) > 0) then
! this row belongs to me
! copy i-th row of block val in x
x%v(irl(i)) = val(i)
end if
enddo
case(psb_dupl_add_)
do i = 1, n
!loop over all val's rows
if (irl(i) > 0) then
! this row belongs to me
! copy i-th row of block val in x
x%v(irl(i)) = x%v(irl(i)) + val(i)
end if
enddo
case default
info = 321
!!$ call psb_errpush(info,name)
!!$ goto 9999
end select
end if
if (info /= 0) then
call psb_errpush(info,'base_vect_ins')
return
end if
end subroutine c_base_ins
!
subroutine c_base_zero(x)
use psi_serial_mod
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
if (allocated(x%v)) x%v=czero
end subroutine c_base_zero
!
! Assembly.
! For derived classes: after this the vector
! storage is supposed to be in sync.
!
subroutine c_base_asb(n, x, info)
use psi_serial_mod
use psb_realloc_mod
implicit none
integer(psb_ipk_), intent(in) :: n
class(psb_c_base_vect_type), intent(inout) :: x
integer(psb_ipk_), intent(out) :: info
if (x%get_nrows() < n) &
& call psb_realloc(n,x%v,info)
if (info /= 0) &
& call psb_errpush(psb_err_alloc_dealloc_,'vect_asb')
end subroutine c_base_asb
subroutine c_base_free(x, info)
use psi_serial_mod
use psb_realloc_mod
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
integer(psb_ipk_), intent(out) :: info
info = 0
if (allocated(x%v)) deallocate(x%v, stat=info)
if (info /= 0) call &
& psb_errpush(psb_err_alloc_dealloc_,'vect_free')
end subroutine c_base_free
!
! The base version of SYNC & friends does nothing, it's just
! a placeholder.
!
subroutine c_base_sync(x)
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
end subroutine c_base_sync
subroutine c_base_set_host(x)
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
end subroutine c_base_set_host
subroutine c_base_set_dev(x)
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
end subroutine c_base_set_dev
subroutine c_base_set_sync(x)
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
end subroutine c_base_set_sync
function c_base_is_dev(x) result(res)
implicit none
class(psb_c_base_vect_type), intent(in) :: x
logical :: res
res = .false.
end function c_base_is_dev
function c_base_is_host(x) result(res)
implicit none
class(psb_c_base_vect_type), intent(in) :: x
logical :: res
res = .true.
end function c_base_is_host
function c_base_is_sync(x) result(res)
implicit none
class(psb_c_base_vect_type), intent(in) :: x
logical :: res
res = .true.
end function c_base_is_sync
!
! Size info.
!
function c_base_get_nrows(x) result(res)
implicit none
class(psb_c_base_vect_type), intent(in) :: x
integer(psb_ipk_) :: res
res = 0
if (allocated(x%v)) res = size(x%v)
end function c_base_get_nrows
function c_base_sizeof(x) result(res)
implicit none
class(psb_c_base_vect_type), intent(in) :: x
integer(psb_long_int_k_) :: res
! Force 8-byte integers.
res = (1_psb_long_int_k_ * (2*psb_sizeof_sp)) * x%get_nrows()
end function c_base_sizeof
!
! Two versions of extracting an array: one of them
! overload the assignment.
!
function c_base_get_vect(x) result(res)
class(psb_c_base_vect_type), intent(inout) :: x
complex(psb_spk_), allocatable :: res(:)
integer(psb_ipk_) :: info
if (.not.allocated(x%v)) return
call x%sync()
allocate(res(x%get_nrows()),stat=info)
if (info /= 0) then
call psb_errpush(psb_err_alloc_dealloc_,'base_get_vect')
return
end if
res(:) = x%v(:)
end function c_base_get_vect
!
! Reset all values
!
subroutine c_base_set_scal(x,val)
class(psb_c_base_vect_type), intent(inout) :: x
complex(psb_spk_), intent(in) :: val
integer(psb_ipk_) :: info
x%v = val
end subroutine c_base_set_scal
subroutine c_base_set_vect(x,val)
class(psb_c_base_vect_type), intent(inout) :: x
complex(psb_spk_), intent(in) :: val(:)
integer(psb_ipk_) :: nr
integer(psb_ipk_) :: info
if (allocated(x%v)) then
nr = min(size(x%v),size(val))
x%v(1:nr) = val(1:nr)
else
x%v = val
end if
end subroutine c_base_set_vect
!
! Dot products
!
function c_base_dot_v(n,x,y) result(res)
implicit none
class(psb_c_base_vect_type), intent(inout) :: x, y
integer(psb_ipk_), intent(in) :: n
complex(psb_spk_) :: res
complex(psb_spk_), external :: cdotc
res = czero
!
! Note: this is the base implementation.
! When we get here, we are sure that X is of
! TYPE psb_c_base_vect.
! If Y is not, throw the burden on it, implicitly
! calling dot_a
!
select type(yy => y)
type is (psb_c_base_vect_type)
res = cdotc(n,x%v,1,y%v,1)
class default
res = y%dot(n,x%v)
end select
end function c_base_dot_v
!
! Base workhorse is good old BLAS1
!
function c_base_dot_a(n,x,y) result(res)
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
complex(psb_spk_), intent(in) :: y(:)
integer(psb_ipk_), intent(in) :: n
complex(psb_spk_) :: res
complex(psb_spk_), external :: cdotc
res = cdotc(n,y,1,x%v,1)
end function c_base_dot_a
!
! AXPBY is invoked via Y, hence the structure below.
!
subroutine c_base_axpby_v(m,alpha, x, beta, y, info)
use psi_serial_mod
implicit none
integer(psb_ipk_), intent(in) :: m
class(psb_c_base_vect_type), intent(inout) :: x
class(psb_c_base_vect_type), intent(inout) :: y
complex(psb_spk_), intent (in) :: alpha, beta
integer(psb_ipk_), intent(out) :: info
select type(xx => x)
type is (psb_c_base_vect_type)
call psb_geaxpby(m,alpha,x%v,beta,y%v,info)
class default
call y%axpby(m,alpha,x%v,beta,info)
end select
end subroutine c_base_axpby_v
subroutine c_base_axpby_a(m,alpha, x, beta, y, info)
use psi_serial_mod
implicit none
integer(psb_ipk_), intent(in) :: m
complex(psb_spk_), intent(in) :: x(:)
class(psb_c_base_vect_type), intent(inout) :: y
complex(psb_spk_), intent (in) :: alpha, beta
integer(psb_ipk_), intent(out) :: info
call psb_geaxpby(m,alpha,x,beta,y%v,info)
end subroutine c_base_axpby_a
!
! Multiple variants of two operations:
! Simple multiplication Y(:) = X(:)*Y(:)
! blas-like: Z(:) = alpha*X(:)*Y(:)+beta*Z(:)
!
! Variants expanded according to the dynamic type
! of the involved entities
!
subroutine c_base_mlt_v(x, y, info)
use psi_serial_mod
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
class(psb_c_base_vect_type), intent(inout) :: y
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, n
info = 0
select type(xx => x)
type is (psb_c_base_vect_type)
n = min(size(y%v), size(xx%v))
do i=1, n
y%v(i) = y%v(i)*xx%v(i)
end do
class default
call y%mlt(x%v,info)
end select
end subroutine c_base_mlt_v
subroutine c_base_mlt_a(x, y, info)
use psi_serial_mod
implicit none
complex(psb_spk_), intent(in) :: x(:)
class(psb_c_base_vect_type), intent(inout) :: y
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, n
info = 0
n = min(size(y%v), size(x))
do i=1, n
y%v(i) = y%v(i)*x(i)
end do
end subroutine c_base_mlt_a
subroutine c_base_mlt_a_2(alpha,x,y,beta,z,info)
use psi_serial_mod
implicit none
complex(psb_spk_), intent(in) :: alpha,beta
complex(psb_spk_), intent(in) :: y(:)
complex(psb_spk_), intent(in) :: x(:)
class(psb_c_base_vect_type), intent(inout) :: z
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, n
info = 0
n = min(size(z%v), size(x), size(y))
!!$ write(0,*) 'Mlt_a_2: ',n
if (alpha == czero) then
if (beta == cone) then
return
else
do i=1, n
z%v(i) = beta*z%v(i)
end do
end if
else
if (alpha == cone) then
if (beta == czero) then
do i=1, n
z%v(i) = y(i)*x(i)
end do
else if (beta == cone) then
do i=1, n
z%v(i) = z%v(i) + y(i)*x(i)
end do
else
do i=1, n
z%v(i) = beta*z%v(i) + y(i)*x(i)
end do
end if
else if (alpha == -cone) then
if (beta == czero) then
do i=1, n
z%v(i) = -y(i)*x(i)
end do
else if (beta == cone) then
do i=1, n
z%v(i) = z%v(i) - y(i)*x(i)
end do
else
do i=1, n
z%v(i) = beta*z%v(i) - y(i)*x(i)
end do
end if
else
if (beta == czero) then
do i=1, n
z%v(i) = alpha*y(i)*x(i)
end do
else if (beta == cone) then
do i=1, n
z%v(i) = z%v(i) + alpha*y(i)*x(i)
end do
else
do i=1, n
z%v(i) = beta*z%v(i) + alpha*y(i)*x(i)
end do
end if
end if
end if
end subroutine c_base_mlt_a_2
subroutine c_base_mlt_v_2(alpha,x,y,beta,z,info,conjgx,conjgy)
use psi_serial_mod
use psb_string_mod
implicit none
complex(psb_spk_), intent(in) :: alpha,beta
class(psb_c_base_vect_type), intent(inout) :: x
class(psb_c_base_vect_type), intent(inout) :: y
class(psb_c_base_vect_type), intent(inout) :: z
integer(psb_ipk_), intent(out) :: info
character(len=1), intent(in), optional :: conjgx, conjgy
integer(psb_ipk_) :: i, n
logical :: conjgx_, conjgy_
info = 0
if (.not.psb_c_is_complex_) then
call z%mlt(alpha,x%v,y%v,beta,info)
else
conjgx_=.false.
if (present(conjgx)) conjgx_ = (psb_toupper(conjgx)=='C')
conjgy_=.false.
if (present(conjgy)) conjgy_ = (psb_toupper(conjgy)=='C')
if (conjgx_) x%v=conjg(x%v)
if (conjgy_) y%v=conjg(y%v)
call z%mlt(alpha,x%v,y%v,beta,info)
if (conjgx_) x%v=conjg(x%v)
if (conjgy_) y%v=conjg(y%v)
end if
end subroutine c_base_mlt_v_2
subroutine c_base_mlt_av(alpha,x,y,beta,z,info)
use psi_serial_mod
implicit none
complex(psb_spk_), intent(in) :: alpha,beta
complex(psb_spk_), intent(in) :: x(:)
class(psb_c_base_vect_type), intent(inout) :: y
class(psb_c_base_vect_type), intent(inout) :: z
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, n
info = 0
call z%mlt(alpha,x,y%v,beta,info)
end subroutine c_base_mlt_av
subroutine c_base_mlt_va(alpha,x,y,beta,z,info)
use psi_serial_mod
implicit none
complex(psb_spk_), intent(in) :: alpha,beta
complex(psb_spk_), intent(in) :: y(:)
class(psb_c_base_vect_type), intent(inout) :: x
class(psb_c_base_vect_type), intent(inout) :: z
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, n
info = 0
call z%mlt(alpha,y,x,beta,info)
end subroutine c_base_mlt_va
!
! Simple scaling
!
subroutine c_base_scal(alpha, x)
use psi_serial_mod
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
complex(psb_spk_), intent (in) :: alpha
if (allocated(x%v)) x%v = alpha*x%v
end subroutine c_base_scal
!
! Norms 1, 2 and infinity
!
function c_base_nrm2(n,x) result(res)
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
integer(psb_ipk_), intent(in) :: n
real(psb_spk_) :: res
real(psb_spk_), external :: scnrm2
res = scnrm2(n,x%v,1)
end function c_base_nrm2
function c_base_amax(n,x) result(res)
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
integer(psb_ipk_), intent(in) :: n
real(psb_spk_) :: res
res = maxval(abs(x%v(1:n)))
end function c_base_amax
function c_base_asum(n,x) result(res)
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
integer(psb_ipk_), intent(in) :: n
real(psb_spk_) :: res
res = sum(abs(x%v(1:n)))
end function c_base_asum
!
! Gather: Y = beta * Y + alpha * X(IDX(:))
!
subroutine c_base_gthab(n,idx,alpha,x,beta,y)
use psi_serial_mod
integer(psb_ipk_) :: n, idx(:)
complex(psb_spk_) :: alpha, beta, y(:)
class(psb_c_base_vect_type) :: x
call x%sync()
call psi_gth(n,idx,alpha,x%v,beta,y)
end subroutine c_base_gthab
!
! shortcut alpha=1 beta=0
!
subroutine c_base_gthzv(n,idx,x,y)
use psi_serial_mod
integer(psb_ipk_) :: n, idx(:)
complex(psb_spk_) :: y(:)
class(psb_c_base_vect_type) :: x
call x%sync()
call psi_gth(n,idx,x%v,y)
end subroutine c_base_gthzv
!
! Scatter:
! Y(IDX(:)) = beta*Y(IDX(:)) + X(:)
!
subroutine c_base_sctb(n,idx,x,beta,y)
use psi_serial_mod
integer(psb_ipk_) :: n, idx(:)
complex(psb_spk_) :: beta, x(:)
class(psb_c_base_vect_type) :: y
call y%sync()
call psi_sct(n,idx,x,beta,y%v)
call y%set_host()
end subroutine c_base_sctb
end module psb_c_base_vect_mod