You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
psblas3/base/modules/serial/psb_c_base_vect_mod.F90

3383 lines
95 KiB
Fortran

!
! Parallel Sparse BLAS version 3.5
! (C) Copyright 2006-2018
! Salvatore Filippone
! Alfredo Buttari
!
! Redistribution and use in source and binary forms, with or without
! modification, are permitted provided that the following conditions
! are met:
! 1. Redistributions of source code must retain the above copyright
! notice, this list of conditions and the following disclaimer.
! 2. Redistributions in binary form must reproduce the above copyright
! notice, this list of conditions, and the following disclaimer in the
! documentation and/or other materials provided with the distribution.
! 3. The name of the PSBLAS group or the names of its contributors may
! not be used to endorse or promote products derived from this
! software without specific written permission.
!
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
! ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
! TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS
! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
! POSSIBILITY OF SUCH DAMAGE.
!
!
!
! package: psb_c_base_vect_mod
!
! This module contains the definition of the psb_c_base_vect type which
! is a container for dense vectors.
! This is encapsulated instead of being just a simple array to allow for
! more complicated situations, such as GPU programming, where the memory
! area we are interested in is not easily accessible from the host/Fortran
! side. It is also meant to be encapsulated in an outer type, to allow
! runtime switching as per the STATE design pattern, similar to the
! sparse matrix types.
!
!
module psb_c_base_vect_mod
use psb_const_mod
use psb_error_mod
use psb_realloc_mod
use psb_i_base_vect_mod
use psb_l_base_vect_mod
!> \namespace psb_base_mod \class psb_c_base_vect_type
!! The psb_c_base_vect_type
!! defines a middle level complex(psb_spk_) encapsulated dense vector.
!! The encapsulation is needed, in place of a simple array, to allow
!! for complicated situations, such as GPU programming, where the memory
!! area we are interested in is not easily accessible from the host/Fortran
!! side. It is also meant to be encapsulated in an outer type, to allow
!! runtime switching as per the STATE design pattern, similar to the
!! sparse matrix types.
!!
type psb_c_base_vect_type
!> Values.
complex(psb_spk_), allocatable :: v(:)
complex(psb_spk_), allocatable :: combuf(:)
integer(psb_mpk_), allocatable :: comid(:,:)
contains
!
! Constructors/allocators
!
procedure, pass(x) :: bld_x => c_base_bld_x
procedure, pass(x) :: bld_mn => c_base_bld_mn
procedure, pass(x) :: bld_en => c_base_bld_en
generic, public :: bld => bld_x, bld_mn, bld_en
procedure, pass(x) :: all => c_base_all
procedure, pass(x) :: mold => c_base_mold
!
! Insert/set. Assembly and free.
! Assembly does almost nothing here, but is important
! in derived classes.
!
procedure, pass(x) :: ins_a => c_base_ins_a
procedure, pass(x) :: ins_v => c_base_ins_v
generic, public :: ins => ins_a, ins_v
procedure, pass(x) :: zero => c_base_zero
procedure, pass(x) :: asb_m => c_base_asb_m
procedure, pass(x) :: asb_e => c_base_asb_e
generic, public :: asb => asb_m, asb_e
procedure, pass(x) :: free => c_base_free
!
! Sync: centerpiece of handling of external storage.
! Any derived class having extra storage upon sync
! will guarantee that both fortran/host side and
! external side contain the same data. The base
! version is only a placeholder.
!
procedure, pass(x) :: sync => c_base_sync
procedure, pass(x) :: is_host => c_base_is_host
procedure, pass(x) :: is_dev => c_base_is_dev
procedure, pass(x) :: is_sync => c_base_is_sync
procedure, pass(x) :: set_host => c_base_set_host
procedure, pass(x) :: set_dev => c_base_set_dev
procedure, pass(x) :: set_sync => c_base_set_sync
!
! These are for handling gather/scatter in new
! comm internals implementation.
!
procedure, nopass :: use_buffer => c_base_use_buffer
procedure, pass(x) :: new_buffer => c_base_new_buffer
procedure, nopass :: device_wait => c_base_device_wait
procedure, pass(x) :: maybe_free_buffer => c_base_maybe_free_buffer
procedure, pass(x) :: free_buffer => c_base_free_buffer
procedure, pass(x) :: new_comid => c_base_new_comid
procedure, pass(x) :: free_comid => c_base_free_comid
!
! Basic info
procedure, pass(x) :: get_nrows => c_base_get_nrows
procedure, pass(x) :: sizeof => c_base_sizeof
procedure, nopass :: get_fmt => c_base_get_fmt
!
! Set/get data from/to an external array; also
! overload assignment.
!
procedure, pass(x) :: get_vect => c_base_get_vect
procedure, pass(x) :: set_scal => c_base_set_scal
procedure, pass(x) :: set_vect => c_base_set_vect
generic, public :: set => set_vect, set_scal
procedure, pass(x) :: get_entry=> c_base_get_entry
!
! Gather/scatter. These are needed for MPI interfacing.
! May have to be reworked.
!
procedure, pass(x) :: gthab => c_base_gthab
procedure, pass(x) :: gthzv => c_base_gthzv
procedure, pass(x) :: gthzv_x => c_base_gthzv_x
procedure, pass(x) :: gthzbuf => c_base_gthzbuf
generic, public :: gth => gthab, gthzv, gthzv_x, gthzbuf
procedure, pass(y) :: sctb => c_base_sctb
procedure, pass(y) :: sctb_x => c_base_sctb_x
procedure, pass(y) :: sctb_buf => c_base_sctb_buf
generic, public :: sct => sctb, sctb_x, sctb_buf
!
! Dot product and AXPBY
!
procedure, pass(x) :: dot_v => c_base_dot_v
procedure, pass(x) :: dot_a => c_base_dot_a
generic, public :: dot => dot_v, dot_a
procedure, pass(y) :: axpby_v => c_base_axpby_v
procedure, pass(y) :: axpby_a => c_base_axpby_a
procedure, pass(z) :: axpby_v2 => c_base_axpby_v2
procedure, pass(z) :: axpby_a2 => c_base_axpby_a2
generic, public :: axpby => axpby_v, axpby_a, axpby_v2, axpby_a2
!
! Vector by vector multiplication. Need all variants
! to handle multiple requirements from preconditioners
!
procedure, pass(y) :: mlt_v => c_base_mlt_v
procedure, pass(y) :: mlt_a => c_base_mlt_a
procedure, pass(z) :: mlt_a_2 => c_base_mlt_a_2
procedure, pass(z) :: mlt_v_2 => c_base_mlt_v_2
procedure, pass(z) :: mlt_va => c_base_mlt_va
procedure, pass(z) :: mlt_av => c_base_mlt_av
generic, public :: mlt => mlt_v, mlt_a, mlt_a_2, mlt_v_2, mlt_av, &
mlt_va
!
! Vector-Vector operations
!
procedure, pass(x) :: div_v => c_base_div_v
procedure, pass(x) :: div_v_check => c_base_div_v_check
procedure, pass(z) :: div_v2 => c_base_div_v2
procedure, pass(z) :: div_v2_check => c_base_div_v2_check
procedure, pass(z) :: div_a2 => c_base_div_a2
procedure, pass(z) :: div_a2_check => c_base_div_a2_check
generic, public :: div => div_v, div_v2, div_v_check, &
div_v2_check, div_a2, div_a2_check
procedure, pass(y) :: inv_v => c_base_inv_v
procedure, pass(y) :: inv_v_check => c_base_inv_v_check
procedure, pass(y) :: inv_a2 => c_base_inv_a2
procedure, pass(y) :: inv_a2_check => c_base_inv_a2_check
generic, public :: inv => inv_v, inv_v_check, inv_a2, inv_a2_check
!
! Scaling and norms
!
procedure, pass(x) :: scal => c_base_scal
procedure, pass(x) :: absval1 => c_base_absval1
procedure, pass(x) :: absval2 => c_base_absval2
generic, public :: absval => absval1, absval2
procedure, pass(x) :: nrm2 => c_base_nrm2
procedure, pass(x) :: amax => c_base_amax
procedure, pass(x) :: asum => c_base_asum
!
! Comparison and mask operation
!
procedure, pass(z) :: acmp_a2 => c_base_acmp_a2
procedure, pass(z) :: acmp_v2 => c_base_acmp_v2
generic, public :: acmp => acmp_a2,acmp_v2
!
! Add constant value to all entry of a vector
!
procedure, pass(z) :: addconst_a2 => c_base_addconst_a2
procedure, pass(z) :: addconst_v2 => c_base_addconst_v2
generic, public :: addconst => addconst_a2,addconst_v2
end type psb_c_base_vect_type
public :: psb_c_base_vect
private :: constructor, size_const
interface psb_c_base_vect
module procedure constructor, size_const
end interface psb_c_base_vect
contains
!
! Constructors.
!
!> Function constructor:
!! \brief Constructor from an array
!! \param x(:) input array to be copied
!!
function constructor(x) result(this)
complex(psb_spk_) :: x(:)
type(psb_c_base_vect_type) :: this
integer(psb_ipk_) :: info
this%v = x
call this%asb(size(x,kind=psb_ipk_),info)
end function constructor
!> Function constructor:
!! \brief Constructor from size
!! \param n Size of vector to be built.
!!
function size_const(n) result(this)
integer(psb_ipk_), intent(in) :: n
type(psb_c_base_vect_type) :: this
integer(psb_ipk_) :: info
call this%asb(n,info)
end function size_const
!
! Build from a sample
!
!> Function bld_x:
!! \memberof psb_c_base_vect_type
!! \brief Build method from an array
!! \param x(:) input array to be copied
!!
subroutine c_base_bld_x(x,this)
use psb_realloc_mod
implicit none
complex(psb_spk_), intent(in) :: this(:)
class(psb_c_base_vect_type), intent(inout) :: x
integer(psb_ipk_) :: info
integer(psb_ipk_) :: i
call psb_realloc(size(this),x%v,info)
if (info /= 0) then
call psb_errpush(psb_err_alloc_dealloc_,'base_vect_bld')
return
end if
#if defined (OPENMP)
!$omp parallel do private(i)
do i = 1, size(this)
x%v(i) = this(i)
end do
#else
x%v(:) = this(:)
#endif
end subroutine c_base_bld_x
!
! Create with size, but no initialization
!
!> Function bld_mn:
!! \memberof psb_c_base_vect_type
!! \brief Build method with size (uninitialized data)
!! \param n size to be allocated.
!!
subroutine c_base_bld_mn(x,n)
use psb_realloc_mod
implicit none
integer(psb_mpk_), intent(in) :: n
class(psb_c_base_vect_type), intent(inout) :: x
integer(psb_ipk_) :: info
call psb_realloc(n,x%v,info)
call x%asb(n,info)
end subroutine c_base_bld_mn
!> Function bld_en:
!! \memberof psb_c_base_vect_type
!! \brief Build method with size (uninitialized data)
!! \param n size to be allocated.
!!
subroutine c_base_bld_en(x,n)
use psb_realloc_mod
implicit none
integer(psb_epk_), intent(in) :: n
class(psb_c_base_vect_type), intent(inout) :: x
integer(psb_ipk_) :: info
call psb_realloc(n,x%v,info)
call x%asb(n,info)
end subroutine c_base_bld_en
!> Function base_all:
!! \memberof psb_c_base_vect_type
!! \brief Build method with size (uninitialized data) and
!! allocation return code.
!! \param n size to be allocated.
!! \param info return code
!!
subroutine c_base_all(n, x, info)
use psi_serial_mod
use psb_realloc_mod
implicit none
integer(psb_ipk_), intent(in) :: n
class(psb_c_base_vect_type), intent(out) :: x
integer(psb_ipk_), intent(out) :: info
call psb_realloc(n,x%v,info)
end subroutine c_base_all
!> Function base_mold:
!! \memberof psb_c_base_vect_type
!! \brief Mold method: return a variable with the same dynamic type
!! \param y returned variable
!! \param info return code
!!
subroutine c_base_mold(x, y, info)
use psi_serial_mod
use psb_realloc_mod
implicit none
class(psb_c_base_vect_type), intent(in) :: x
class(psb_c_base_vect_type), intent(out), allocatable :: y
integer(psb_ipk_), intent(out) :: info
allocate(psb_c_base_vect_type :: y, stat=info)
end subroutine c_base_mold
!
! Insert a bunch of values at specified positions.
!
!> Function base_ins:
!! \memberof psb_c_base_vect_type
!! \brief Insert coefficients.
!!
!!
!! Given a list of N pairs
!! (IRL(i),VAL(i))
!! record a new coefficient in X such that
!! X(IRL(1:N)) = VAL(1:N).
!!
!! - the update operation will perform either
!! X(IRL(1:n)) = VAL(1:N)
!! or
!! X(IRL(1:n)) = X(IRL(1:n))+VAL(1:N)
!! according to the value of DUPLICATE.
!!
!!
!! \param n number of pairs in input
!! \param irl(:) the input row indices
!! \param val(:) the input coefficients
!! \param dupl how to treat duplicate entries
!! \param info return code
!!
!
subroutine c_base_ins_a(n,irl,val,dupl,x,info)
use psi_serial_mod
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
integer(psb_ipk_), intent(in) :: n, dupl
integer(psb_ipk_), intent(in) :: irl(:)
complex(psb_spk_), intent(in) :: val(:)
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, isz
info = 0
if (psb_errstatus_fatal()) return
if (.not.allocated(x%v)) then
info = psb_err_invalid_vect_state_
else if (n > min(size(irl),size(val))) then
info = psb_err_invalid_input_
else
isz = size(x%v)
select case(dupl)
case(psb_dupl_ovwrt_)
do i = 1, n
!loop over all val's rows
! row actual block row
if ((1 <= irl(i)).and.(irl(i) <= isz)) then
! this row belongs to me
! copy i-th row of block val in x
x%v(irl(i)) = val(i)
end if
enddo
case(psb_dupl_add_)
do i = 1, n
!loop over all val's rows
if ((1 <= irl(i)).and.(irl(i) <= isz)) then
! this row belongs to me
! copy i-th row of block val in x
x%v(irl(i)) = x%v(irl(i)) + val(i)
end if
enddo
case default
info = 321
! !$ call psb_errpush(info,name)
! !$ goto 9999
end select
end if
call x%set_host()
if (info /= 0) then
call psb_errpush(info,'base_vect_ins')
return
end if
end subroutine c_base_ins_a
subroutine c_base_ins_v(n,irl,val,dupl,x,info)
use psi_serial_mod
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
integer(psb_ipk_), intent(in) :: n, dupl
class(psb_i_base_vect_type), intent(inout) :: irl
class(psb_c_base_vect_type), intent(inout) :: val
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: isz
info = 0
if (psb_errstatus_fatal()) return
if (irl%is_dev()) call irl%sync()
if (val%is_dev()) call val%sync()
if (x%is_dev()) call x%sync()
call x%ins(n,irl%v,val%v,dupl,info)
if (info /= 0) then
call psb_errpush(info,'base_vect_ins')
return
end if
end subroutine c_base_ins_v
!
!> Function base_zero
!! \memberof psb_c_base_vect_type
!! \brief Zero out contents
!!
!
subroutine c_base_zero(x)
use psi_serial_mod
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
if (allocated(x%v)) x%v=czero
call x%set_host()
end subroutine c_base_zero
!
! Assembly.
! For derived classes: after this the vector
! storage is supposed to be in sync.
!
!> Function base_asb:
!! \memberof psb_c_base_vect_type
!! \brief Assemble vector: reallocate as necessary.
!!
!! \param n final size
!! \param info return code
!!
!
subroutine c_base_asb_m(n, x, info)
use psi_serial_mod
use psb_realloc_mod
implicit none
integer(psb_mpk_), intent(in) :: n
class(psb_c_base_vect_type), intent(inout) :: x
integer(psb_ipk_), intent(out) :: info
info = 0
if (x%get_nrows() < n) &
& call psb_realloc(n,x%v,info)
if (info /= 0) &
& call psb_errpush(psb_err_alloc_dealloc_,'vect_asb')
call x%sync()
end subroutine c_base_asb_m
!
! Assembly.
! For derived classes: after this the vector
! storage is supposed to be in sync.
!
!> Function base_asb:
!! \memberof psb_c_base_vect_type
!! \brief Assemble vector: reallocate as necessary.
!!
!! \param n final size
!! \param info return code
!!
!
subroutine c_base_asb_e(n, x, info)
use psi_serial_mod
use psb_realloc_mod
implicit none
integer(psb_epk_), intent(in) :: n
class(psb_c_base_vect_type), intent(inout) :: x
integer(psb_ipk_), intent(out) :: info
info = 0
if (x%get_nrows() < n) &
& call psb_realloc(n,x%v,info)
if (info /= 0) &
& call psb_errpush(psb_err_alloc_dealloc_,'vect_asb')
call x%sync()
end subroutine c_base_asb_e
!
!> Function base_free:
!! \memberof psb_c_base_vect_type
!! \brief Free vector
!!
!! \param info return code
!!
!
subroutine c_base_free(x, info)
use psi_serial_mod
use psb_realloc_mod
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
integer(psb_ipk_), intent(out) :: info
info = 0
if (allocated(x%v)) deallocate(x%v, stat=info)
if (info == 0) call x%free_buffer(info)
if (info == 0) call x%free_comid(info)
if (info /= 0) call &
& psb_errpush(psb_err_alloc_dealloc_,'vect_free')
end subroutine c_base_free
!
!> Function base_free_buffer:
!! \memberof psb_c_base_vect_type
!! \brief Free aux buffer
!!
!! \param info return code
!!
!
subroutine c_base_free_buffer(x,info)
use psb_realloc_mod
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
integer(psb_ipk_), intent(out) :: info
if (allocated(x%combuf)) &
& deallocate(x%combuf,stat=info)
end subroutine c_base_free_buffer
!
!> Function base_maybe_free_buffer:
!! \memberof psb_c_base_vect_type
!! \brief Conditionally Free aux buffer.
!! In some derived classes, e.g. GPU,
!! does not really frees to avoid runtime
!! costs
!!
!! \param info return code
!!
!
subroutine c_base_maybe_free_buffer(x,info)
use psb_realloc_mod
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
integer(psb_ipk_), intent(out) :: info
info = 0
if (psb_get_maybe_free_buffer())&
& call x%free_buffer(info)
end subroutine c_base_maybe_free_buffer
!
!> Function base_free_comid:
!! \memberof psb_c_base_vect_type
!! \brief Free aux MPI communication id buffer
!!
!! \param info return code
!!
!
subroutine c_base_free_comid(x,info)
use psb_realloc_mod
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
integer(psb_ipk_), intent(out) :: info
if (allocated(x%comid)) &
& deallocate(x%comid,stat=info)
end subroutine c_base_free_comid
!
! The base version of SYNC & friends does nothing, it's just
! a placeholder.
!
!
!> Function base_sync:
!! \memberof psb_c_base_vect_type
!! \brief Sync: base version is a no-op.
!!
!
subroutine c_base_sync(x)
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
end subroutine c_base_sync
!
!> Function base_set_host:
!! \memberof psb_c_base_vect_type
!! \brief Set_host: base version is a no-op.
!!
!
subroutine c_base_set_host(x)
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
end subroutine c_base_set_host
!
!> Function base_set_dev:
!! \memberof psb_c_base_vect_type
!! \brief Set_dev: base version is a no-op.
!!
!
subroutine c_base_set_dev(x)
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
end subroutine c_base_set_dev
!
!> Function base_set_sync:
!! \memberof psb_c_base_vect_type
!! \brief Set_sync: base version is a no-op.
!!
!
subroutine c_base_set_sync(x)
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
end subroutine c_base_set_sync
!
!> Function base_is_dev:
!! \memberof psb_c_base_vect_type
!! \brief Is vector on external device .
!!
!
function c_base_is_dev(x) result(res)
implicit none
class(psb_c_base_vect_type), intent(in) :: x
logical :: res
res = .false.
end function c_base_is_dev
!
!> Function base_is_host
!! \memberof psb_c_base_vect_type
!! \brief Is vector on standard memory .
!!
!
function c_base_is_host(x) result(res)
implicit none
class(psb_c_base_vect_type), intent(in) :: x
logical :: res
res = .true.
end function c_base_is_host
!
!> Function base_is_sync
!! \memberof psb_c_base_vect_type
!! \brief Is vector on sync .
!!
!
function c_base_is_sync(x) result(res)
implicit none
class(psb_c_base_vect_type), intent(in) :: x
logical :: res
res = .true.
end function c_base_is_sync
!
! Size info.
!
!
!> Function base_get_nrows
!! \memberof psb_c_base_vect_type
!! \brief Number of entries
!!
!
function c_base_get_nrows(x) result(res)
implicit none
class(psb_c_base_vect_type), intent(in) :: x
integer(psb_ipk_) :: res
res = 0
if (allocated(x%v)) res = size(x%v)
end function c_base_get_nrows
!
!> Function base_get_sizeof
!! \memberof psb_c_base_vect_type
!! \brief Size in bytes
!!
!
function c_base_sizeof(x) result(res)
implicit none
class(psb_c_base_vect_type), intent(in) :: x
integer(psb_epk_) :: res
! Force 8-byte integers.
res = (1_psb_epk_ * (2*psb_sizeof_sp)) * x%get_nrows()
end function c_base_sizeof
!
!> Function base_get_fmt
!! \memberof psb_c_base_vect_type
!! \brief Format
!!
!
function c_base_get_fmt() result(res)
implicit none
character(len=5) :: res
res = 'BASE'
end function c_base_get_fmt
!
!
!
!> Function base_get_vect
!! \memberof psb_c_base_vect_type
!! \brief Extract a copy of the contents
!!
!
function c_base_get_vect(x,n) result(res)
class(psb_c_base_vect_type), intent(inout) :: x
complex(psb_spk_), allocatable :: res(:)
integer(psb_ipk_) :: info
integer(psb_ipk_), optional :: n
! Local variables
integer(psb_ipk_) :: isz, i
if (.not.allocated(x%v)) return
if (.not.x%is_host()) call x%sync()
isz = x%get_nrows()
if (present(n)) isz = max(0,min(isz,n))
allocate(res(isz),stat=info)
if (info /= 0) then
call psb_errpush(psb_err_alloc_dealloc_,'base_get_vect')
return
end if
if (.false.) then
res(1:isz) = x%v(1:isz)
else
!$omp parallel do private(i)
do i=1, isz
res(i) = x%v(i)
end do
end if
end function c_base_get_vect
!
! Reset all values
!
!
!> Function base_set_scal
!! \memberof psb_c_base_vect_type
!! \brief Set all entries
!! \param val The value to set
!!
subroutine c_base_set_scal(x,val,first,last)
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
complex(psb_spk_), intent(in) :: val
integer(psb_ipk_), optional :: first, last
integer(psb_ipk_) :: first_, last_, i
first_=1
last_=size(x%v)
if (present(first)) first_ = max(1,first)
if (present(last)) last_ = min(last,last_)
if (x%is_dev()) call x%sync()
#if defined(OPENMP)
!$omp parallel do private(i)
do i = first_, last_
x%v(i) = val
end do
#else
x%v(first_:last_) = val
#endif
call x%set_host()
end subroutine c_base_set_scal
!
!> Function base_set_vect
!! \memberof psb_c_base_vect_type
!! \brief Set all entries
!! \param val(:) The vector to be copied in
!!
subroutine c_base_set_vect(x,val,first,last)
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
complex(psb_spk_), intent(in) :: val(:)
integer(psb_ipk_), optional :: first, last
integer(psb_ipk_) :: first_, last_, i, info
if (.not.allocated(x%v)) then
call psb_realloc(size(val),x%v,info)
end if
first_ = 1
if (present(first)) first_ = max(1,first)
last_ = min(psb_size(x%v),first_+size(val)-1)
if (present(last)) last_ = min(last,last_)
if (x%is_dev()) call x%sync()
#if defined(OPENMP)
!$omp parallel do private(i)
do i = first_, last_
x%v(i) = val(i-first_+1)
end do
#else
x%v(first_:last_) = val(1:last_-first_+1)
#endif
call x%set_host()
end subroutine c_base_set_vect
!
! Get entry.
!
!
!> Function base_get_entry
!! \memberof psb_c_base_vect_type
!! \brief Get one entry from the vector
!!
!
function c_base_get_entry(x, index) result(res)
implicit none
class(psb_c_base_vect_type), intent(in) :: x
integer(psb_ipk_), intent(in) :: index
complex(psb_spk_) :: res
res = 0
if (allocated(x%v)) res = x%v(index)
end function c_base_get_entry
!
! Overwrite with absolute value
!
!
!> Function base_absval1
!! \memberof psb_c_base_vect_type
!! \brief Set all entries to their respective absolute values.
!!
subroutine c_base_absval1(x)
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
integer(psb_ipk_) :: i
if (allocated(x%v)) then
if (x%is_dev()) call x%sync()
#if defined(OPENMP)
!$omp parallel do private(i)
do i=1, size(x%v)
x%v(i) = abs(x%v(i))
end do
#else
x%v = abs(x%v)
#endif
call x%set_host()
end if
end subroutine c_base_absval1
subroutine c_base_absval2(x,y)
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
class(psb_c_base_vect_type), intent(inout) :: y
integer(psb_ipk_) :: info
if (.not.x%is_host()) call x%sync()
if (allocated(x%v)) then
call y%axpby(ione*min(x%get_nrows(),y%get_nrows()),cone,x,czero,info)
call y%absval()
end if
end subroutine c_base_absval2
!
! Dot products
!
!
!> Function base_dot_v
!! \memberof psb_c_base_vect_type
!! \brief Dot product by another base_vector
!! \param n Number of entries to be considered
!! \param y The other (base_vect) to be multiplied by
!!
function c_base_dot_v(n,x,y) result(res)
implicit none
class(psb_c_base_vect_type), intent(inout) :: x, y
integer(psb_ipk_), intent(in) :: n
complex(psb_spk_) :: res
complex(psb_spk_), external :: cdotc
res = czero
!
! Note: this is the base implementation.
! When we get here, we are sure that X is of
! TYPE psb_c_base_vect.
! If Y is not, throw the burden on it, implicitly
! calling dot_a
!
select type(yy => y)
type is (psb_c_base_vect_type)
res = cdotc(n,x%v,1,y%v,1)
class default
res = y%dot(n,x%v)
end select
end function c_base_dot_v
!
! Base workhorse is good old BLAS1
!
!
!> Function base_dot_a
!! \memberof psb_c_base_vect_type
!! \brief Dot product by a normal array
!! \param n Number of entries to be considered
!! \param y(:) The array to be multiplied by
!!
function c_base_dot_a(n,x,y) result(res)
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
complex(psb_spk_), intent(in) :: y(:)
integer(psb_ipk_), intent(in) :: n
complex(psb_spk_) :: res
complex(psb_spk_), external :: cdotc
res = cdotc(n,y,1,x%v,1)
end function c_base_dot_a
!
! AXPBY is invoked via Y, hence the structure below.
!
!
!
!> Function base_axpby_v
!! \memberof psb_c_base_vect_type
!! \brief AXPBY by a (base_vect) y=alpha*x+beta*y
!! \param m Number of entries to be considered
!! \param alpha scalar alpha
!! \param x The class(base_vect) to be added
!! \param beta scalar alpha
!! \param info return code
!!
subroutine c_base_axpby_v(m,alpha, x, beta, y, info)
use psi_serial_mod
implicit none
integer(psb_ipk_), intent(in) :: m
class(psb_c_base_vect_type), intent(inout) :: x
class(psb_c_base_vect_type), intent(inout) :: y
complex(psb_spk_), intent (in) :: alpha, beta
integer(psb_ipk_), intent(out) :: info
if (x%is_dev()) call x%sync()
call y%axpby(m,alpha,x%v,beta,info)
end subroutine c_base_axpby_v
!
! AXPBY is invoked via Z, hence the structure below.
!
!
!
!> Function base_axpby_v2
!! \memberof psb_c_base_vect_type
!! \brief AXPBY by a (base_vect) z=alpha*x+beta*y
!! \param m Number of entries to be considered
!! \param alpha scalar alpha
!! \param x The class(base_vect) to be added
!! \param beta scalar alpha
!! \param y The class(base_vect) to be added
!! \param z The class(base_vect) to be returned
!! \param info return code
!!
subroutine c_base_axpby_v2(m,alpha, x, beta, y, z, info)
use psi_serial_mod
implicit none
integer(psb_ipk_), intent(in) :: m
class(psb_c_base_vect_type), intent(inout) :: x
class(psb_c_base_vect_type), intent(inout) :: y
class(psb_c_base_vect_type), intent(inout) :: z
complex(psb_spk_), intent (in) :: alpha, beta
integer(psb_ipk_), intent(out) :: info
if (x%is_dev()) call x%sync()
call z%axpby(m,alpha,x%v,beta,y%v,info)
end subroutine c_base_axpby_v2
!
! AXPBY is invoked via Y, hence the structure below.
!
!
!> Function base_axpby_a
!! \memberof psb_c_base_vect_type
!! \brief AXPBY by a normal array y=alpha*x+beta*y
!! \param m Number of entries to be considered
!! \param alpha scalar alpha
!! \param x(:) The array to be added
!! \param beta scalar alpha
!! \param info return code
!!
subroutine c_base_axpby_a(m,alpha, x, beta, y, info)
use psi_serial_mod
implicit none
integer(psb_ipk_), intent(in) :: m
complex(psb_spk_), intent(in) :: x(:)
class(psb_c_base_vect_type), intent(inout) :: y
complex(psb_spk_), intent (in) :: alpha, beta
integer(psb_ipk_), intent(out) :: info
if (y%is_dev()) call y%sync()
call psb_geaxpby(m,alpha,x,beta,y%v,info)
call y%set_host()
end subroutine c_base_axpby_a
!
! AXPBY is invoked via Z, hence the structure below.
!
!
!> Function base_axpby_a2
!! \memberof psb_c_base_vect_type
!! \brief AXPBY by a normal array y=alpha*x+beta*y
!! \param m Number of entries to be considered
!! \param alpha scalar alpha
!! \param x(:) The array to be added
!! \param beta scalar beta
!! \param y(:) The array to be added
!! \param info return code
!!
subroutine c_base_axpby_a2(m,alpha, x, beta, y, z, info)
use psi_serial_mod
implicit none
integer(psb_ipk_), intent(in) :: m
complex(psb_spk_), intent(in) :: x(:)
complex(psb_spk_), intent(in) :: y(:)
class(psb_c_base_vect_type), intent(inout) :: z
complex(psb_spk_), intent (in) :: alpha, beta
integer(psb_ipk_), intent(out) :: info
if (z%is_dev()) call z%sync()
call psb_geaxpby(m,alpha,x,beta,y,z%v,info)
call z%set_host()
end subroutine c_base_axpby_a2
!
! Multiple variants of two operations:
! Simple multiplication Y(:) = X(:)*Y(:)
! blas-like: Z(:) = alpha*X(:)*Y(:)+beta*Z(:)
!
! Variants expanded according to the dynamic type
! of the involved entities
!
!
!> Function base_mlt_a
!! \memberof psb_c_base_vect_type
!! \brief Vector entry-by-entry multiply by a base_vect array y=x*y
!! \param x The class(base_vect) to be multiplied by
!! \param info return code
!!
subroutine c_base_mlt_v(x, y, info)
use psi_serial_mod
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
class(psb_c_base_vect_type), intent(inout) :: y
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, n
info = 0
if (x%is_dev()) call x%sync()
call y%mlt(x%v,info)
end subroutine c_base_mlt_v
!
!> Function base_mlt_a
!! \memberof psb_c_base_vect_type
!! \brief Vector entry-by-entry multiply by a normal array y=x*y
!! \param x(:) The array to be multiplied by
!! \param info return code
!!
subroutine c_base_mlt_a(x, y, info)
use psi_serial_mod
implicit none
complex(psb_spk_), intent(in) :: x(:)
class(psb_c_base_vect_type), intent(inout) :: y
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, n
info = 0
if (y%is_dev()) call y%sync()
n = min(size(y%v), size(x))
!$omp parallel do private(i)
do i=1, n
y%v(i) = y%v(i)*x(i)
end do
call y%set_host()
end subroutine c_base_mlt_a
!
!> Function base_mlt_a_2
!! \memberof psb_c_base_vect_type
!! \brief AXPBY-like Vector entry-by-entry multiply by normal arrays
!! z=beta*z+alpha*x*y
!! \param alpha
!! \param beta
!! \param x(:) The array to be multiplied b
!! \param y(:) The array to be multiplied by
!! \param info return code
!!
subroutine c_base_mlt_a_2(alpha,x,y,beta,z,info)
use psi_serial_mod
implicit none
complex(psb_spk_), intent(in) :: alpha,beta
complex(psb_spk_), intent(in) :: y(:)
complex(psb_spk_), intent(in) :: x(:)
class(psb_c_base_vect_type), intent(inout) :: z
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, n
info = 0
if (z%is_dev()) call z%sync()
n = min(size(z%v), size(x), size(y))
if (alpha == czero) then
if (beta == cone) then
return
else
!$omp parallel do private(i) shared(beta)
do i=1, n
z%v(i) = beta*z%v(i)
end do
end if
else
if (alpha == cone) then
if (beta == czero) then
!$omp parallel do private(i)
do i=1, n
z%v(i) = y(i)*x(i)
end do
else if (beta == cone) then
!$omp parallel do private(i)
do i=1, n
z%v(i) = z%v(i) + y(i)*x(i)
end do
else
!$omp parallel do private(i)
do i=1, n
z%v(i) = beta*z%v(i) + y(i)*x(i)
end do
end if
else if (alpha == -cone) then
if (beta == czero) then
!$omp parallel do private(i)
do i=1, n
z%v(i) = -y(i)*x(i)
end do
else if (beta == cone) then
!$omp parallel do private(i)
do i=1, n
z%v(i) = z%v(i) - y(i)*x(i)
end do
else
!$omp parallel do private(i) shared(beta)
do i=1, n
z%v(i) = beta*z%v(i) - y(i)*x(i)
end do
end if
else
if (beta == czero) then
!$omp parallel do private(i) shared(alpha)
do i=1, n
z%v(i) = alpha*y(i)*x(i)
end do
else if (beta == cone) then
!$omp parallel do private(i) shared(alpha)
do i=1, n
z%v(i) = z%v(i) + alpha*y(i)*x(i)
end do
else
!$omp parallel do private(i) shared(alpha, beta)
do i=1, n
z%v(i) = beta*z%v(i) + alpha*y(i)*x(i)
end do
end if
end if
end if
call z%set_host()
end subroutine c_base_mlt_a_2
!
!> Function base_mlt_v_2
!! \memberof psb_c_base_vect_type
!! \brief AXPBY-like Vector entry-by-entry multiply by class(base_vect)
!! z=beta*z+alpha*x*y
!! \param alpha
!! \param beta
!! \param x The class(base_vect) to be multiplied b
!! \param y The class(base_vect) to be multiplied by
!! \param info return code
!!
subroutine c_base_mlt_v_2(alpha,x,y,beta,z,info,conjgx,conjgy)
use psi_serial_mod
use psb_string_mod
implicit none
complex(psb_spk_), intent(in) :: alpha,beta
class(psb_c_base_vect_type), intent(inout) :: x
class(psb_c_base_vect_type), intent(inout) :: y
class(psb_c_base_vect_type), intent(inout) :: z
integer(psb_ipk_), intent(out) :: info
character(len=1), intent(in), optional :: conjgx, conjgy
integer(psb_ipk_) :: i, n
logical :: conjgx_, conjgy_
info = 0
if (y%is_dev()) call y%sync()
if (x%is_dev()) call x%sync()
if (.not.psb_c_is_complex_) then
call z%mlt(alpha,x%v,y%v,beta,info)
else
conjgx_=.false.
if (present(conjgx)) conjgx_ = (psb_toupper(conjgx)=='C')
conjgy_=.false.
if (present(conjgy)) conjgy_ = (psb_toupper(conjgy)=='C')
if (conjgx_) x%v=conjg(x%v)
if (conjgy_) y%v=conjg(y%v)
call z%mlt(alpha,x%v,y%v,beta,info)
if (conjgx_) x%v=conjg(x%v)
if (conjgy_) y%v=conjg(y%v)
end if
end subroutine c_base_mlt_v_2
subroutine c_base_mlt_av(alpha,x,y,beta,z,info)
use psi_serial_mod
implicit none
complex(psb_spk_), intent(in) :: alpha,beta
complex(psb_spk_), intent(in) :: x(:)
class(psb_c_base_vect_type), intent(inout) :: y
class(psb_c_base_vect_type), intent(inout) :: z
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, n
info = 0
if (y%is_dev()) call y%sync()
call z%mlt(alpha,x,y%v,beta,info)
end subroutine c_base_mlt_av
subroutine c_base_mlt_va(alpha,x,y,beta,z,info)
use psi_serial_mod
implicit none
complex(psb_spk_), intent(in) :: alpha,beta
complex(psb_spk_), intent(in) :: y(:)
class(psb_c_base_vect_type), intent(inout) :: x
class(psb_c_base_vect_type), intent(inout) :: z
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, n
info = 0
if (x%is_dev()) call x%sync()
call z%mlt(alpha,y,x,beta,info)
end subroutine c_base_mlt_va
!
!> Function base_div_v
!! \memberof psb_c_base_vect_type
!! \brief Vector entry-by-entry divide by a vector x=x/y
!! \param y The array to be divided by
!! \param info return code
!!
subroutine c_base_div_v(x, y, info)
use psi_serial_mod
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
class(psb_c_base_vect_type), intent(inout) :: y
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, n
info = 0
if (x%is_dev()) call x%sync()
call x%div(x%v,y%v,info)
end subroutine c_base_div_v
!
!> Function base_div_v2
!! \memberof psb_c_base_vect_type
!! \brief Vector entry-by-entry divide by a vector z=x/y
!! \param y The array to be divided by
!! \param info return code
!!
subroutine c_base_div_v2(x, y, z, info)
use psi_serial_mod
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
class(psb_c_base_vect_type), intent(inout) :: y
class(psb_c_base_vect_type), intent(inout) :: z
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, n
info = 0
if (z%is_dev()) call z%sync()
call z%div(x%v,y%v,info)
end subroutine c_base_div_v2
!
!> Function base_div_v_check
!! \memberof psb_c_base_vect_type
!! \brief Vector entry-by-entry divide by a vector x=x/y
!! \param y The array to be divided by
!! \param info return code
!!
subroutine c_base_div_v_check(x, y, info, flag)
use psi_serial_mod
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
class(psb_c_base_vect_type), intent(inout) :: y
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, n
logical, intent(in) :: flag
info = 0
if (x%is_dev()) call x%sync()
call x%div(x%v,y%v,info,flag)
end subroutine c_base_div_v_check
!
!> Function base_div_v2_check
!! \memberof psb_c_base_vect_type
!! \brief Vector entry-by-entry divide by a vector z=x/y
!! \param y The array to be divided by
!! \param info return code
!!
subroutine c_base_div_v2_check(x, y, z, info, flag)
use psi_serial_mod
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
class(psb_c_base_vect_type), intent(inout) :: y
class(psb_c_base_vect_type), intent(inout) :: z
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, n
logical, intent(in) :: flag
info = 0
if (z%is_dev()) call z%sync()
call z%div(x%v,y%v,info,flag)
end subroutine c_base_div_v2_check
!
!> Function base_div_a2
!! \memberof psb_c_base_vect_type
!! \brief Entry-by-entry divide between normal array z=x/y
!! \param y(:) The array to be divided by
!! \param info return code
!!
subroutine c_base_div_a2(x, y, z, info)
use psi_serial_mod
implicit none
class(psb_c_base_vect_type), intent(inout) :: z
complex(psb_spk_), intent(in) :: x(:)
complex(psb_spk_), intent(in) :: y(:)
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, n
info = 0
if (z%is_dev()) call z%sync()
n = min(size(y), size(x))
!$omp parallel do private(i)
do i=1, n
z%v(i) = x(i)/y(i)
end do
end subroutine c_base_div_a2
!
!> Function base_div_a2_check
!! \memberof psb_c_base_vect_type
!! \brief Entry-by-entry divide between normal array x=x/y and check if y(i)
!! is different from zero
!! \param y(:) The array to be dived by
!! \param info return code
!!
subroutine c_base_div_a2_check(x, y, z, info, flag)
use psi_serial_mod
implicit none
class(psb_c_base_vect_type), intent(inout) :: z
complex(psb_spk_), intent(in) :: x(:)
complex(psb_spk_), intent(in) :: y(:)
integer(psb_ipk_), intent(out) :: info
logical, intent(in) :: flag
integer(psb_ipk_) :: i, n
if (flag .eqv. .false.) then
call c_base_div_a2(x, y, z, info)
else
info = 0
if (z%is_dev()) call z%sync()
n = min(size(y), size(x))
! $omp parallel do private(i)
do i=1, n
if (y(i) /= 0) then
z%v(i) = x(i)/y(i)
else
info = 1
exit
end if
end do
end if
end subroutine c_base_div_a2_check
!
!> Function base_inv_v
!! \memberof psb_c_base_vect_type
!! \brief Compute the entry-by-entry inverse of x and put it in y
!! \param x The vector to be inverted
!! \param y The vector containing the inverted vector
!! \param info return code
subroutine c_base_inv_v(x, y, info)
use psi_serial_mod
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
class(psb_c_base_vect_type), intent(inout) :: y
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, n
info = 0
if (y%is_dev()) call y%sync()
call y%inv(x%v,info)
end subroutine c_base_inv_v
!
!> Function base_inv_v_check
!! \memberof psb_c_base_vect_type
!! \brief Compute the entry-by-entry inverse of x and put it in y, with 0 check
!! \param x The vector to be inverted
!! \param y The vector containing the inverted vector
!! \param info return code
!! \param flag if true does the check, otherwise call base_inv_v
subroutine c_base_inv_v_check(x, y, info, flag)
use psi_serial_mod
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
class(psb_c_base_vect_type), intent(inout) :: y
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, n
logical, intent(in) :: flag
info = 0
if (y%is_dev()) call y%sync()
call y%inv(x%v,info,flag)
end subroutine c_base_inv_v_check
!
!> Function base_inv_a2
!! \memberof psb_c_base_vect_type
!! \brief Compute the entry-by-entry inverse of x and put it in y,
!! \param x(:) The array to be inverted
!! \param y The vector containing the inverted vector
!! \param info return code
!
subroutine c_base_inv_a2(x, y, info)
use psi_serial_mod
implicit none
class(psb_c_base_vect_type), intent(inout) :: y
complex(psb_spk_), intent(in) :: x(:)
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, n
info = 0
if (y%is_dev()) call y%sync()
n = size(x)
!$omp parallel do private(i)
do i=1, n
y%v(i) = 1_psb_spk_/x(i)
end do
end subroutine c_base_inv_a2
!
!> Function base_inv_a2_check
!! \memberof psb_c_base_vect_type
!! \brief Compute the entry-by-entry inverse of x and put it in y, with 0 check
!! \param x(:) The array to be inverted
!! \param y The vector containing the inverted vector
!! \param info return code
!! \param flag if true does the check, otherwise call base_inv_v
!
subroutine c_base_inv_a2_check(x, y, info, flag)
use psi_serial_mod
implicit none
class(psb_c_base_vect_type), intent(inout) :: y
complex(psb_spk_), intent(inout) :: x(:)
integer(psb_ipk_), intent(out) :: info
logical, intent(in) :: flag
integer(psb_ipk_) :: i, n
if (flag .eqv. .false.) then
call c_base_inv_a2(x, y, info)
else
info = 0
if (y%is_dev()) call y%sync()
n = size(x)
!$omp parallel do private(i)
do i=1, n
if (x(i) /= 0) then
y%v(i) = 1_psb_spk_/x(i)
else
info = 1
y%v(i) = 0_psb_spk_
end if
end do
end if
end subroutine c_base_inv_a2_check
!
!> Function base_inv_a2_check
!! \memberof psb_c_base_vect_type
!! \brief Compare entry-by-entry the vector x with the scalar c
!! \param x The array to be compared
!! \param z The vector containing in position i 1 if |x(i)| > c, 0 otherwise
!! \param c The comparison term
!! \param info return code
!
subroutine c_base_acmp_a2(x,c,z,info)
use psi_serial_mod
implicit none
real(psb_spk_), intent(in) :: c
complex(psb_spk_), intent(inout) :: x(:)
class(psb_c_base_vect_type), intent(inout) :: z
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, n
if (z%is_dev()) call z%sync()
n = size(x)
!$omp parallel do private(i)
do i = 1, n, 1
if ( abs(x(i)).ge.c ) then
z%v(i) = 1_psb_spk_
else
z%v(i) = 0_psb_spk_
end if
end do
info = 0
end subroutine c_base_acmp_a2
!
!> Function base_cmp_v2
!! \memberof psb_c_base_vect_type
!! \brief Compare entry-by-entry the vector x with the scalar c
!! \param x The vector to be compared
!! \param z The vector containing in position i 1 if |x(i)| > c, 0 otherwise
!! \param c The comparison term
!! \param info return code
!
subroutine c_base_acmp_v2(x,c,z,info)
use psi_serial_mod
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
real(psb_spk_), intent(in) :: c
class(psb_c_base_vect_type), intent(inout) :: z
integer(psb_ipk_), intent(out) :: info
info = 0
if (x%is_dev()) call x%sync()
call z%acmp(x%v,c,info)
end subroutine c_base_acmp_v2
!
! Simple scaling
!
!> Function base_scal
!! \memberof psb_c_base_vect_type
!! \brief Scale all entries x = alpha*x
!! \param alpha The multiplier
!!
subroutine c_base_scal(alpha, x)
use psi_serial_mod
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
complex(psb_spk_), intent (in) :: alpha
integer(psb_ipk_) :: i
if (allocated(x%v)) then
#if defined(OPENMP)
!$omp parallel do private(i)
do i=1,size(x%v)
x%v(i) = alpha*x%v(i)
end do
#else
x%v = alpha*x%v
#endif
end if
call x%set_host()
end subroutine c_base_scal
!
! Norms 1, 2 and infinity
!
!> Function base_nrm2
!! \memberof psb_c_base_vect_type
!! \brief 2-norm |x(1:n)|_2
!! \param n how many entries to consider
function c_base_nrm2(n,x) result(res)
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
integer(psb_ipk_), intent(in) :: n
real(psb_spk_) :: res
real(psb_spk_), external :: scnrm2
if (x%is_dev()) call x%sync()
res = scnrm2(n,x%v,1)
end function c_base_nrm2
!
!> Function base_amax
!! \memberof psb_c_base_vect_type
!! \brief infinity-norm |x(1:n)|_\infty
!! \param n how many entries to consider
function c_base_amax(n,x) result(res)
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
integer(psb_ipk_), intent(in) :: n
real(psb_spk_) :: res
integer(psb_ipk_) :: i
if (x%is_dev()) call x%sync()
#if defined(OPENMP)
res = szero
!$omp parallel do private(i) reduction(max: res)
do i=1, n
res = max(res,abs(x%v(i)))
end do
#else
res = maxval(abs(x%v(1:n)))
#endif
end function c_base_amax
!
!> Function base_asum
!! \memberof psb_c_base_vect_type
!! \brief 1-norm |x(1:n)|_1
!! \param n how many entries to consider
function c_base_asum(n,x) result(res)
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
integer(psb_ipk_), intent(in) :: n
real(psb_spk_) :: res
integer(psb_ipk_) :: i
if (x%is_dev()) call x%sync()
#if defined(OPENMP)
res=szero
!$omp parallel do private(i) reduction(+: res)
do i= 1, size(x%v)
res = res + abs(x%v(i))
end do
#else
res = sum(abs(x%v(1:n)))
#endif
end function c_base_asum
!
! Gather: Y = beta * Y + alpha * X(IDX(:))
!
!
!> Function base_gthab
!! \memberof psb_c_base_vect_type
!! \brief gather into an array
!! Y = beta * Y + alpha * X(IDX(:))
!! \param n how many entries to consider
!! \param idx(:) indices
!! \param alpha
!! \param beta
subroutine c_base_gthab(n,idx,alpha,x,beta,y)
use psi_serial_mod
implicit none
integer(psb_ipk_) :: n, idx(:)
complex(psb_spk_) :: alpha, beta, y(:)
class(psb_c_base_vect_type) :: x
if (x%is_dev()) call x%sync()
call psi_gth(n,idx,alpha,x%v,beta,y)
end subroutine c_base_gthab
!
! shortcut alpha=1 beta=0
!
!> Function base_gthzv
!! \memberof psb_c_base_vect_type
!! \brief gather into an array special alpha=1 beta=0
!! Y = X(IDX(:))
!! \param n how many entries to consider
!! \param idx(:) indices
subroutine c_base_gthzv_x(i,n,idx,x,y)
use psi_serial_mod
implicit none
integer(psb_ipk_) :: i,n
class(psb_i_base_vect_type) :: idx
complex(psb_spk_) :: y(:)
class(psb_c_base_vect_type) :: x
if (idx%is_dev()) call idx%sync()
call x%gth(n,idx%v(i:),y)
end subroutine c_base_gthzv_x
!
! New comm internals impl.
!
subroutine c_base_gthzbuf(i,n,idx,x)
use psi_serial_mod
implicit none
integer(psb_ipk_) :: i,n
class(psb_i_base_vect_type) :: idx
class(psb_c_base_vect_type) :: x
if (.not.allocated(x%combuf)) then
call psb_errpush(psb_err_alloc_dealloc_,'gthzbuf')
return
end if
if (idx%is_dev()) call idx%sync()
if (x%is_dev()) call x%sync()
call x%gth(n,idx%v(i:),x%combuf(i:))
end subroutine c_base_gthzbuf
!
!> Function base_device_wait:
!! \memberof psb_c_base_vect_type
!! \brief device_wait: base version is a no-op.
!!
!
subroutine c_base_device_wait()
implicit none
end subroutine c_base_device_wait
function c_base_use_buffer() result(res)
logical :: res
res = .true.
end function c_base_use_buffer
subroutine c_base_new_buffer(n,x,info)
use psb_realloc_mod
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
integer(psb_ipk_), intent(in) :: n
integer(psb_ipk_), intent(out) :: info
call psb_realloc(n,x%combuf,info)
end subroutine c_base_new_buffer
subroutine c_base_new_comid(n,x,info)
use psb_realloc_mod
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
integer(psb_ipk_), intent(in) :: n
integer(psb_ipk_), intent(out) :: info
call psb_realloc(n,2_psb_ipk_,x%comid,info)
end subroutine c_base_new_comid
!
! shortcut alpha=1 beta=0
!
!> Function base_gthzv
!! \memberof psb_c_base_vect_type
!! \brief gather into an array special alpha=1 beta=0
!! Y = X(IDX(:))
!! \param n how many entries to consider
!! \param idx(:) indices
subroutine c_base_gthzv(n,idx,x,y)
use psi_serial_mod
implicit none
integer(psb_ipk_) :: n, idx(:)
complex(psb_spk_) :: y(:)
class(psb_c_base_vect_type) :: x
if (x%is_dev()) call x%sync()
call psi_gth(n,idx,x%v,y)
end subroutine c_base_gthzv
!
! Scatter:
! Y(IDX(:)) = beta*Y(IDX(:)) + X(:)
!
!
!> Function base_sctb
!! \memberof psb_c_base_vect_type
!! \brief scatter into a class(base_vect)
!! Y(IDX(:)) = beta * Y(IDX(:)) + X(:)
!! \param n how many entries to consider
!! \param idx(:) indices
!! \param beta
!! \param x(:)
subroutine c_base_sctb(n,idx,x,beta,y)
use psi_serial_mod
implicit none
integer(psb_ipk_) :: n, idx(:)
complex(psb_spk_) :: beta, x(:)
class(psb_c_base_vect_type) :: y
if (y%is_dev()) call y%sync()
call psi_sct(n,idx,x,beta,y%v)
call y%set_host()
end subroutine c_base_sctb
subroutine c_base_sctb_x(i,n,idx,x,beta,y)
use psi_serial_mod
implicit none
integer(psb_ipk_) :: i, n
class(psb_i_base_vect_type) :: idx
complex(psb_spk_) :: beta, x(:)
class(psb_c_base_vect_type) :: y
if (idx%is_dev()) call idx%sync()
call y%sct(n,idx%v(i:),x,beta)
call y%set_host()
end subroutine c_base_sctb_x
subroutine c_base_sctb_buf(i,n,idx,beta,y)
use psi_serial_mod
implicit none
integer(psb_ipk_) :: i, n
class(psb_i_base_vect_type) :: idx
complex(psb_spk_) :: beta
class(psb_c_base_vect_type) :: y
if (.not.allocated(y%combuf)) then
call psb_errpush(psb_err_alloc_dealloc_,'sctb_buf')
return
end if
if (y%is_dev()) call y%sync()
if (idx%is_dev()) call idx%sync()
call y%sct(n,idx%v(i:),y%combuf(i:),beta)
call y%set_host()
end subroutine c_base_sctb_buf
!
!> Function _base_addconst_a2
!! \memberof psb_c_base_vect_type
!! \brief Add the constant b to every entry of the array x
!! \param x The input array
!! \param z The vector containing the x(i) + b
!! \param b The added term
!! \param info return code
!
subroutine c_base_addconst_a2(x,b,z,info)
use psi_serial_mod
implicit none
real(psb_spk_), intent(in) :: b
complex(psb_spk_), intent(inout) :: x(:)
class(psb_c_base_vect_type), intent(inout) :: z
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, n
if (z%is_dev()) call z%sync()
#if defined(OPENMP)
n = size(x)
!$omp parallel do private(i)
do i = 1, n
z%v(i) = x(i) + b
end do
#else
z%v = x + b
#endif
info = 0
end subroutine c_base_addconst_a2
!
!> Function _base_addconst_v2
!! \memberof psb_c_base_vect_type
!! \briefAdd the constant b to every entry of the vector x
!! \param x The input vector
!! \param z The vector containing the x(i) + b
!! \param b The added term
!! \param info return code
!
subroutine c_base_addconst_v2(x,b,z,info)
use psi_serial_mod
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
real(psb_spk_), intent(in) :: b
class(psb_c_base_vect_type), intent(inout) :: z
integer(psb_ipk_), intent(out) :: info
info = 0
if (x%is_dev()) call x%sync()
call z%addconst(x%v,b,info)
end subroutine c_base_addconst_v2
end module psb_c_base_vect_mod
module psb_c_base_multivect_mod
use psb_const_mod
use psb_error_mod
use psb_realloc_mod
use psb_c_base_vect_mod
!> \namespace psb_base_mod \class psb_c_base_vect_type
!! The psb_c_base_vect_type
!! defines a middle level integer(psb_ipk_) encapsulated dense vector.
!! The encapsulation is needed, in place of a simple array, to allow
!! for complicated situations, such as GPU programming, where the memory
!! area we are interested in is not easily accessible from the host/Fortran
!! side. It is also meant to be encapsulated in an outer type, to allow
!! runtime switching as per the STATE design pattern, similar to the
!! sparse matrix types.
!!
private
public :: psb_c_base_multivect, psb_c_base_multivect_type
type psb_c_base_multivect_type
!> Values.
complex(psb_spk_), allocatable :: v(:,:)
complex(psb_spk_), allocatable :: combuf(:)
integer(psb_mpk_), allocatable :: comid(:,:)
contains
!
! Constructors/allocators
!
procedure, pass(x) :: bld_x => c_base_mlv_bld_x
procedure, pass(x) :: bld_n => c_base_mlv_bld_n
generic, public :: bld => bld_x, bld_n
procedure, pass(x) :: all => c_base_mlv_all
procedure, pass(x) :: mold => c_base_mlv_mold
!
! Insert/set. Assembly and free.
! Assembly does almost nothing here, but is important
! in derived classes.
!
procedure, pass(x) :: ins => c_base_mlv_ins
procedure, pass(x) :: zero => c_base_mlv_zero
procedure, pass(x) :: asb => c_base_mlv_asb
procedure, pass(x) :: free => c_base_mlv_free
!
! Sync: centerpiece of handling of external storage.
! Any derived class having extra storage upon sync
! will guarantee that both fortran/host side and
! external side contain the same data. The base
! version is only a placeholder.
!
procedure, pass(x) :: sync => c_base_mlv_sync
procedure, pass(x) :: is_host => c_base_mlv_is_host
procedure, pass(x) :: is_dev => c_base_mlv_is_dev
procedure, pass(x) :: is_sync => c_base_mlv_is_sync
procedure, pass(x) :: set_host => c_base_mlv_set_host
procedure, pass(x) :: set_dev => c_base_mlv_set_dev
procedure, pass(x) :: set_sync => c_base_mlv_set_sync
!
! Basic info
procedure, pass(x) :: get_nrows => c_base_mlv_get_nrows
procedure, pass(x) :: get_ncols => c_base_mlv_get_ncols
procedure, pass(x) :: sizeof => c_base_mlv_sizeof
procedure, nopass :: get_fmt => c_base_mlv_get_fmt
!
! Set/get data from/to an external array; also
! overload assignment.
!
procedure, pass(x) :: get_vect => c_base_mlv_get_vect
procedure, pass(x) :: set_scal => c_base_mlv_set_scal
procedure, pass(x) :: set_vect => c_base_mlv_set_vect
generic, public :: set => set_vect, set_scal
!
! Dot product and AXPBY
!
procedure, pass(x) :: dot_v => c_base_mlv_dot_v
procedure, pass(x) :: dot_a => c_base_mlv_dot_a
generic, public :: dot => dot_v, dot_a
procedure, pass(y) :: axpby_v => c_base_mlv_axpby_v
procedure, pass(y) :: axpby_a => c_base_mlv_axpby_a
generic, public :: axpby => axpby_v, axpby_a
!
! MultiVector by vector/multivector multiplication. Need all variants
! to handle multiple requirements from preconditioners
!
procedure, pass(y) :: mlt_mv => c_base_mlv_mlt_mv
procedure, pass(y) :: mlt_mv_v => c_base_mlv_mlt_mv_v
procedure, pass(y) :: mlt_ar1 => c_base_mlv_mlt_ar1
procedure, pass(y) :: mlt_ar2 => c_base_mlv_mlt_ar2
procedure, pass(z) :: mlt_a_2 => c_base_mlv_mlt_a_2
procedure, pass(z) :: mlt_v_2 => c_base_mlv_mlt_v_2
!!$ procedure, pass(z) :: mlt_va => c_base_mlv_mlt_va
!!$ procedure, pass(z) :: mlt_av => c_base_mlv_mlt_av
generic, public :: mlt => mlt_mv, mlt_mv_v, mlt_ar1, mlt_ar2, &
& mlt_a_2, mlt_v_2 !, mlt_av, mlt_va
!
! Scaling and norms
!
procedure, pass(x) :: scal => c_base_mlv_scal
procedure, pass(x) :: nrm2 => c_base_mlv_nrm2
procedure, pass(x) :: amax => c_base_mlv_amax
procedure, pass(x) :: asum => c_base_mlv_asum
procedure, pass(x) :: absval1 => c_base_mlv_absval1
procedure, pass(x) :: absval2 => c_base_mlv_absval2
generic, public :: absval => absval1, absval2
!
! These are for handling gather/scatter in new
! comm internals implementation.
!
procedure, nopass :: use_buffer => c_base_mlv_use_buffer
procedure, pass(x) :: new_buffer => c_base_mlv_new_buffer
procedure, nopass :: device_wait => c_base_mlv_device_wait
procedure, pass(x) :: maybe_free_buffer => c_base_mlv_maybe_free_buffer
procedure, pass(x) :: free_buffer => c_base_mlv_free_buffer
procedure, pass(x) :: new_comid => c_base_mlv_new_comid
procedure, pass(x) :: free_comid => c_base_mlv_free_comid
!
! Gather/scatter. These are needed for MPI interfacing.
! May have to be reworked.
!
procedure, pass(x) :: gthab => c_base_mlv_gthab
procedure, pass(x) :: gthzv => c_base_mlv_gthzv
procedure, pass(x) :: gthzm => c_base_mlv_gthzm
procedure, pass(x) :: gthzv_x => c_base_mlv_gthzv_x
procedure, pass(x) :: gthzbuf => c_base_mlv_gthzbuf
generic, public :: gth => gthab, gthzv, gthzm, gthzv_x, gthzbuf
procedure, pass(y) :: sctb => c_base_mlv_sctb
procedure, pass(y) :: sctbr2 => c_base_mlv_sctbr2
procedure, pass(y) :: sctb_x => c_base_mlv_sctb_x
procedure, pass(y) :: sctb_buf => c_base_mlv_sctb_buf
generic, public :: sct => sctb, sctbr2, sctb_x, sctb_buf
end type psb_c_base_multivect_type
interface psb_c_base_multivect
module procedure constructor, size_const
end interface psb_c_base_multivect
contains
!
! Constructors.
!
!> Function constructor:
!! \brief Constructor from an array
!! \param x(:) input array to be copied
!!
function constructor(x) result(this)
complex(psb_spk_) :: x(:,:)
type(psb_c_base_multivect_type) :: this
integer(psb_ipk_) :: info
this%v = x
call this%asb(size(x,dim=1,kind=psb_ipk_),size(x,dim=2,kind=psb_ipk_),info)
end function constructor
!> Function constructor:
!! \brief Constructor from size
!! \param n Size of vector to be built.
!!
function size_const(m,n) result(this)
integer(psb_ipk_), intent(in) :: m,n
type(psb_c_base_multivect_type) :: this
integer(psb_ipk_) :: info
call this%asb(m,n,info)
end function size_const
!
! Build from a sample
!
!> Function bld_x:
!! \memberof psb_c_base_multivect_type
!! \brief Build method from an array
!! \param x(:) input array to be copied
!!
subroutine c_base_mlv_bld_x(x,this)
use psb_realloc_mod
complex(psb_spk_), intent(in) :: this(:,:)
class(psb_c_base_multivect_type), intent(inout) :: x
integer(psb_ipk_) :: info
call psb_realloc(size(this,1),size(this,2),x%v,info)
if (info /= 0) then
call psb_errpush(psb_err_alloc_dealloc_,'base_mlv_vect_bld')
return
end if
x%v(:,:) = this(:,:)
end subroutine c_base_mlv_bld_x
!
! Create with size, but no initialization
!
!> Function bld_n:
!! \memberof psb_c_base_multivect_type
!! \brief Build method with size (uninitialized data)
!! \param n size to be allocated.
!!
subroutine c_base_mlv_bld_n(x,m,n)
use psb_realloc_mod
integer(psb_ipk_), intent(in) :: m,n
class(psb_c_base_multivect_type), intent(inout) :: x
integer(psb_ipk_) :: info
call psb_realloc(m,n,x%v,info)
call x%asb(m,n,info)
end subroutine c_base_mlv_bld_n
!> Function base_mlv_all:
!! \memberof psb_c_base_multivect_type
!! \brief Build method with size (uninitialized data) and
!! allocation return code.
!! \param n size to be allocated.
!! \param info return code
!!
subroutine c_base_mlv_all(m,n, x, info)
use psi_serial_mod
use psb_realloc_mod
implicit none
integer(psb_ipk_), intent(in) :: m,n
class(psb_c_base_multivect_type), intent(out) :: x
integer(psb_ipk_), intent(out) :: info
call psb_realloc(m,n,x%v,info)
end subroutine c_base_mlv_all
!> Function base_mlv_mold:
!! \memberof psb_c_base_multivect_type
!! \brief Mold method: return a variable with the same dynamic type
!! \param y returned variable
!! \param info return code
!!
subroutine c_base_mlv_mold(x, y, info)
use psi_serial_mod
use psb_realloc_mod
implicit none
class(psb_c_base_multivect_type), intent(in) :: x
class(psb_c_base_multivect_type), intent(out), allocatable :: y
integer(psb_ipk_), intent(out) :: info
allocate(psb_c_base_multivect_type :: y, stat=info)
end subroutine c_base_mlv_mold
!
! Insert a bunch of values at specified positions.
!
!> Function base_mlv_ins:
!! \memberof psb_c_base_multivect_type
!! \brief Insert coefficients.
!!
!!
!! Given a list of N pairs
!! (IRL(i),VAL(i))
!! record a new coefficient in X such that
!! X(IRL(1:N)) = VAL(1:N).
!!
!! - the update operation will perform either
!! X(IRL(1:n)) = VAL(1:N)
!! or
!! X(IRL(1:n)) = X(IRL(1:n))+VAL(1:N)
!! according to the value of DUPLICATE.
!!
!!
!! \param n number of pairs in input
!! \param irl(:) the input row indices
!! \param val(:) the input coefficients
!! \param dupl how to treat duplicate entries
!! \param info return code
!!
!
subroutine c_base_mlv_ins(n,irl,val,dupl,x,info)
use psi_serial_mod
implicit none
class(psb_c_base_multivect_type), intent(inout) :: x
integer(psb_ipk_), intent(in) :: n, dupl
integer(psb_ipk_), intent(in) :: irl(:)
complex(psb_spk_), intent(in) :: val(:,:)
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, isz
info = 0
if (psb_errstatus_fatal()) return
if (.not.allocated(x%v)) then
info = psb_err_invalid_vect_state_
else if (n > min(size(irl),size(val))) then
info = psb_err_invalid_input_
else
isz = size(x%v,1)
select case(dupl)
case(psb_dupl_ovwrt_)
do i = 1, n
!loop over all val's rows
! row actual block row
if ((1 <= irl(i)).and.(irl(i) <= isz)) then
! this row belongs to me
! copy i-th row of block val in x
x%v(irl(i),:) = val(i,:)
end if
enddo
case(psb_dupl_add_)
do i = 1, n
!loop over all val's rows
if ((1 <= irl(i)).and.(irl(i) <= isz)) then
! this row belongs to me
! copy i-th row of block val in x
x%v(irl(i),:) = x%v(irl(i),:) + val(i,:)
end if
enddo
case default
info = 321
! !$ call psb_errpush(info,name)
! !$ goto 9999
end select
end if
if (info /= 0) then
call psb_errpush(info,'base_mlv_vect_ins')
return
end if
end subroutine c_base_mlv_ins
!
!> Function base_mlv_zero
!! \memberof psb_c_base_multivect_type
!! \brief Zero out contents
!!
!
subroutine c_base_mlv_zero(x)
use psi_serial_mod
implicit none
class(psb_c_base_multivect_type), intent(inout) :: x
if (allocated(x%v)) x%v=czero
end subroutine c_base_mlv_zero
!
! Assembly.
! For derived classes: after this the vector
! storage is supposed to be in sync.
!
!> Function base_mlv_asb:
!! \memberof psb_c_base_multivect_type
!! \brief Assemble vector: reallocate as necessary.
!!
!! \param n final size
!! \param info return code
!!
!
subroutine c_base_mlv_asb(m,n, x, info)
use psi_serial_mod
use psb_realloc_mod
implicit none
integer(psb_ipk_), intent(in) :: m,n
class(psb_c_base_multivect_type), intent(inout) :: x
integer(psb_ipk_), intent(out) :: info
if ((x%get_nrows() < m).or.(x%get_ncols()<n)) &
& call psb_realloc(m,n,x%v,info)
if (info /= 0) &
& call psb_errpush(psb_err_alloc_dealloc_,'vect_asb')
end subroutine c_base_mlv_asb
!
!> Function base_mlv_free:
!! \memberof psb_c_base_multivect_type
!! \brief Free vector
!!
!! \param info return code
!!
!
subroutine c_base_mlv_free(x, info)
use psi_serial_mod
use psb_realloc_mod
implicit none
class(psb_c_base_multivect_type), intent(inout) :: x
integer(psb_ipk_), intent(out) :: info
info = 0
if (allocated(x%v)) deallocate(x%v, stat=info)
if (info /= 0) call &
& psb_errpush(psb_err_alloc_dealloc_,'vect_free')
end subroutine c_base_mlv_free
!
! The base version of SYNC & friends does nothing, it's just
! a placeholder.
!
!
!> Function base_mlv_sync:
!! \memberof psb_c_base_multivect_type
!! \brief Sync: base version is a no-op.
!!
!
subroutine c_base_mlv_sync(x)
implicit none
class(psb_c_base_multivect_type), intent(inout) :: x
end subroutine c_base_mlv_sync
!
!> Function base_mlv_set_host:
!! \memberof psb_c_base_multivect_type
!! \brief Set_host: base version is a no-op.
!!
!
subroutine c_base_mlv_set_host(x)
implicit none
class(psb_c_base_multivect_type), intent(inout) :: x
end subroutine c_base_mlv_set_host
!
!> Function base_mlv_set_dev:
!! \memberof psb_c_base_multivect_type
!! \brief Set_dev: base version is a no-op.
!!
!
subroutine c_base_mlv_set_dev(x)
implicit none
class(psb_c_base_multivect_type), intent(inout) :: x
end subroutine c_base_mlv_set_dev
!
!> Function base_mlv_set_sync:
!! \memberof psb_c_base_multivect_type
!! \brief Set_sync: base version is a no-op.
!!
!
subroutine c_base_mlv_set_sync(x)
implicit none
class(psb_c_base_multivect_type), intent(inout) :: x
end subroutine c_base_mlv_set_sync
!
!> Function base_mlv_is_dev:
!! \memberof psb_c_base_multivect_type
!! \brief Is vector on external device .
!!
!
function c_base_mlv_is_dev(x) result(res)
implicit none
class(psb_c_base_multivect_type), intent(in) :: x
logical :: res
res = .false.
end function c_base_mlv_is_dev
!
!> Function base_mlv_is_host
!! \memberof psb_c_base_multivect_type
!! \brief Is vector on standard memory .
!!
!
function c_base_mlv_is_host(x) result(res)
implicit none
class(psb_c_base_multivect_type), intent(in) :: x
logical :: res
res = .true.
end function c_base_mlv_is_host
!
!> Function base_mlv_is_sync
!! \memberof psb_c_base_multivect_type
!! \brief Is vector on sync .
!!
!
function c_base_mlv_is_sync(x) result(res)
implicit none
class(psb_c_base_multivect_type), intent(in) :: x
logical :: res
res = .true.
end function c_base_mlv_is_sync
!
! Size info.
!
!
!> Function base_mlv_get_nrows
!! \memberof psb_c_base_multivect_type
!! \brief Number of entries
!!
!
function c_base_mlv_get_nrows(x) result(res)
implicit none
class(psb_c_base_multivect_type), intent(in) :: x
integer(psb_ipk_) :: res
res = 0
if (allocated(x%v)) res = size(x%v,1)
end function c_base_mlv_get_nrows
function c_base_mlv_get_ncols(x) result(res)
implicit none
class(psb_c_base_multivect_type), intent(in) :: x
integer(psb_ipk_) :: res
res = 0
if (allocated(x%v)) res = size(x%v,2)
end function c_base_mlv_get_ncols
!
!> Function base_mlv_get_sizeof
!! \memberof psb_c_base_multivect_type
!! \brief Size in bytesa
!!
!
function c_base_mlv_sizeof(x) result(res)
implicit none
class(psb_c_base_multivect_type), intent(in) :: x
integer(psb_epk_) :: res
! Force 8-byte integers.
res = (1_psb_epk_ * psb_sizeof_ip) * x%get_nrows() * x%get_ncols()
end function c_base_mlv_sizeof
!
!> Function base_mlv_get_fmt
!! \memberof psb_c_base_multivect_type
!! \brief Format
!!
!
function c_base_mlv_get_fmt() result(res)
implicit none
character(len=5) :: res
res = 'BASE'
end function c_base_mlv_get_fmt
!
!
!
!> Function base_mlv_get_vect
!! \memberof psb_c_base_multivect_type
!! \brief Extract a copy of the contents
!!
!
function c_base_mlv_get_vect(x) result(res)
implicit none
class(psb_c_base_multivect_type), intent(inout) :: x
complex(psb_spk_), allocatable :: res(:,:)
integer(psb_ipk_) :: info,m,n
m = x%get_nrows()
n = x%get_ncols()
if (.not.allocated(x%v)) return
call x%sync()
allocate(res(m,n),stat=info)
if (info /= 0) then
call psb_errpush(psb_err_alloc_dealloc_,'base_mlv_get_vect')
return
end if
res(1:m,1:n) = x%v(1:m,1:n)
end function c_base_mlv_get_vect
!
! Reset all values
!
!
!> Function base_mlv_set_scal
!! \memberof psb_c_base_multivect_type
!! \brief Set all entries
!! \param val The value to set
!!
subroutine c_base_mlv_set_scal(x,val)
implicit none
class(psb_c_base_multivect_type), intent(inout) :: x
complex(psb_spk_), intent(in) :: val
integer(psb_ipk_) :: info
x%v = val
end subroutine c_base_mlv_set_scal
!
!> Function base_mlv_set_vect
!! \memberof psb_c_base_multivect_type
!! \brief Set all entries
!! \param val(:) The vector to be copied in
!!
subroutine c_base_mlv_set_vect(x,val)
implicit none
class(psb_c_base_multivect_type), intent(inout) :: x
complex(psb_spk_), intent(in) :: val(:,:)
integer(psb_ipk_) :: nr, nc
integer(psb_ipk_) :: info
if (allocated(x%v)) then
nr = min(size(x%v,1),size(val,1))
nc = min(size(x%v,2),size(val,2))
x%v(1:nr,1:nc) = val(1:nr,1:nc)
else
x%v = val
end if
end subroutine c_base_mlv_set_vect
!
! Dot products
!
!
!> Function base_mlv_dot_v
!! \memberof psb_c_base_multivect_type
!! \brief Dot product by another base_mlv_vector
!! \param n Number of entries to be considered
!! \param y The other (base_mlv_vect) to be multiplied by
!!
function c_base_mlv_dot_v(n,x,y) result(res)
implicit none
class(psb_c_base_multivect_type), intent(inout) :: x, y
integer(psb_ipk_), intent(in) :: n
complex(psb_spk_), allocatable :: res(:)
complex(psb_spk_), external :: cdotc
integer(psb_ipk_) :: j,nc
if (x%is_dev()) call x%sync()
res = czero
!
! Note: this is the base implementation.
! When we get here, we are sure that X is of
! TYPE psb_c_base_mlv_vect (or its class does not care).
! If Y is not, throw the burden on it, implicitly
! calling dot_a
!
select type(yy => y)
type is (psb_c_base_multivect_type)
if (y%is_dev()) call y%sync()
nc = min(psb_size(x%v,2_psb_ipk_),psb_size(y%v,2_psb_ipk_))
allocate(res(nc))
do j=1,nc
res(j) = cdotc(n,x%v(:,j),1,y%v(:,j),1)
end do
class default
res = y%dot(n,x%v)
end select
end function c_base_mlv_dot_v
!
! Base workhorse is good old BLAS1
!
!
!> Function base_mlv_dot_a
!! \memberof psb_c_base_multivect_type
!! \brief Dot product by a normal array
!! \param n Number of entries to be considered
!! \param y(:) The array to be multiplied by
!!
function c_base_mlv_dot_a(n,x,y) result(res)
implicit none
class(psb_c_base_multivect_type), intent(inout) :: x
complex(psb_spk_), intent(in) :: y(:,:)
integer(psb_ipk_), intent(in) :: n
complex(psb_spk_), allocatable :: res(:)
complex(psb_spk_), external :: cdotc
integer(psb_ipk_) :: j,nc
if (x%is_dev()) call x%sync()
nc = min(psb_size(x%v,2_psb_ipk_),size(y,2_psb_ipk_))
allocate(res(nc))
do j=1,nc
res(j) = cdotc(n,x%v(:,j),1,y(:,j),1)
end do
end function c_base_mlv_dot_a
!
! AXPBY is invoked via Y, hence the structure below.
!
!
!
!> Function base_mlv_axpby_v
!! \memberof psb_c_base_multivect_type
!! \brief AXPBY by a (base_mlv_vect) y=alpha*x+beta*y
!! \param m Number of entries to be considered
!! \param alpha scalar alpha
!! \param x The class(base_mlv_vect) to be added
!! \param beta scalar alpha
!! \param info return code
!!
subroutine c_base_mlv_axpby_v(m,alpha, x, beta, y, info, n)
use psi_serial_mod
implicit none
integer(psb_ipk_), intent(in) :: m
class(psb_c_base_multivect_type), intent(inout) :: x
class(psb_c_base_multivect_type), intent(inout) :: y
complex(psb_spk_), intent (in) :: alpha, beta
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_), intent(in), optional :: n
integer(psb_ipk_) :: nc
if (present(n)) then
nc = n
else
nc = min(psb_size(x%v,2_psb_ipk_),psb_size(y%v,2_psb_ipk_))
end if
select type(xx => x)
type is (psb_c_base_multivect_type)
call psb_geaxpby(m,nc,alpha,x%v,beta,y%v,info)
class default
call y%axpby(m,alpha,x%v,beta,info,n=n)
end select
end subroutine c_base_mlv_axpby_v
!
! AXPBY is invoked via Y, hence the structure below.
!
!
!> Function base_mlv_axpby_a
!! \memberof psb_c_base_multivect_type
!! \brief AXPBY by a normal array y=alpha*x+beta*y
!! \param m Number of entries to be considered
!! \param alpha scalar alpha
!! \param x(:) The array to be added
!! \param beta scalar alpha
!! \param info return code
!!
subroutine c_base_mlv_axpby_a(m,alpha, x, beta, y, info,n)
use psi_serial_mod
implicit none
integer(psb_ipk_), intent(in) :: m
complex(psb_spk_), intent(in) :: x(:,:)
class(psb_c_base_multivect_type), intent(inout) :: y
complex(psb_spk_), intent (in) :: alpha, beta
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_), intent(in), optional :: n
integer(psb_ipk_) :: nc
if (present(n)) then
nc = n
else
nc = min(size(x,2),psb_size(y%v,2_psb_ipk_))
end if
call psb_geaxpby(m,nc,alpha,x,beta,y%v,info)
end subroutine c_base_mlv_axpby_a
!
! Multiple variants of two operations:
! Simple multiplication Y(:.:) = X(:,:)*Y(:,:)
! blas-like: Z(:) = alpha*X(:)*Y(:)+beta*Z(:)
!
! Variants expanded according to the dynamic type
! of the involved entities
!
!
!> Function base_mlv_mlt_mv
!! \memberof psb_c_base_multivect_type
!! \brief Multivector entry-by-entry multiply by a base_mlv_multivect y=x*y
!! \param x The class(base_mlv_vect) to be multiplied by
!! \param info return code
!!
subroutine c_base_mlv_mlt_mv(x, y, info)
use psi_serial_mod
implicit none
class(psb_c_base_multivect_type), intent(inout) :: x
class(psb_c_base_multivect_type), intent(inout) :: y
integer(psb_ipk_), intent(out) :: info
info = 0
if (x%is_dev()) call x%sync()
call y%mlt(x%v,info)
end subroutine c_base_mlv_mlt_mv
subroutine c_base_mlv_mlt_mv_v(x, y, info)
use psi_serial_mod
implicit none
class(psb_c_base_vect_type), intent(inout) :: x
class(psb_c_base_multivect_type), intent(inout) :: y
integer(psb_ipk_), intent(out) :: info
info = 0
if (x%is_dev()) call x%sync()
call y%mlt(x%v,info)
end subroutine c_base_mlv_mlt_mv_v
!
!> Function base_mlv_mlt_ar1
!! \memberof psb_c_base_multivect_type
!! \brief MultiVector entry-by-entry multiply by a rank 1 array y=x*y
!! \param x(:) The array to be multiplied by
!! \param info return code
!!
subroutine c_base_mlv_mlt_ar1(x, y, info)
use psi_serial_mod
implicit none
complex(psb_spk_), intent(in) :: x(:)
class(psb_c_base_multivect_type), intent(inout) :: y
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, n
info = 0
n = min(psb_size(y%v,1_psb_ipk_), size(x))
do i=1, n
y%v(i,:) = y%v(i,:)*x(i)
end do
end subroutine c_base_mlv_mlt_ar1
!
!> Function base_mlv_mlt_ar2
!! \memberof psb_c_base_multivect_type
!! \brief MultiVector entry-by-entry multiply by a rank 2 array y=x*y
!! \param x(:,:) The array to be multiplied by
!! \param info return code
!!
subroutine c_base_mlv_mlt_ar2(x, y, info)
use psi_serial_mod
implicit none
complex(psb_spk_), intent(in) :: x(:,:)
class(psb_c_base_multivect_type), intent(inout) :: y
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, nr,nc
info = 0
nr = min(psb_size(y%v,1_psb_ipk_), size(x,1))
nc = min(psb_size(y%v,2_psb_ipk_), size(x,2))
y%v(1:nr,1:nc) = y%v(1:nr,1:nc)*x(1:nr,1:nc)
end subroutine c_base_mlv_mlt_ar2
!
!> Function base_mlv_mlt_a_2
!! \memberof psb_c_base_multivect_type
!! \brief AXPBY-like Vector entry-by-entry multiply by normal arrays
!! z=beta*z+alpha*x*y
!! \param alpha
!! \param beta
!! \param x(:) The array to be multiplied b
!! \param y(:) The array to be multiplied by
!! \param info return code
!!
subroutine c_base_mlv_mlt_a_2(alpha,x,y,beta,z,info)
use psi_serial_mod
implicit none
complex(psb_spk_), intent(in) :: alpha,beta
complex(psb_spk_), intent(in) :: y(:,:)
complex(psb_spk_), intent(in) :: x(:,:)
class(psb_c_base_multivect_type), intent(inout) :: z
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, nr, nc
info = 0
nr = min(psb_size(z%v,1_psb_ipk_), size(x,1), size(y,1))
nc = min(psb_size(z%v,2_psb_ipk_), size(x,2), size(y,2))
if (alpha == czero) then
if (beta == cone) then
return
else
z%v(1:nr,1:nc) = beta*z%v(1:nr,1:nc)
end if
else
if (alpha == cone) then
if (beta == czero) then
z%v(1:nr,1:nc) = y(1:nr,1:nc)*x(1:nr,1:nc)
else if (beta == cone) then
z%v(1:nr,1:nc) = z%v(1:nr,1:nc) + y(1:nr,1:nc)*x(1:nr,1:nc)
else
z%v(1:nr,1:nc) = beta*z%v(1:nr,1:nc) + y(1:nr,1:nc)*x(1:nr,1:nc)
end if
else if (alpha == -cone) then
if (beta == czero) then
z%v(1:nr,1:nc) = -y(1:nr,1:nc)*x(1:nr,1:nc)
else if (beta == cone) then
z%v(1:nr,1:nc) = z%v(1:nr,1:nc) - y(1:nr,1:nc)*x(1:nr,1:nc)
else
z%v(1:nr,1:nc) = beta*z%v(1:nr,1:nc) - y(1:nr,1:nc)*x(1:nr,1:nc)
end if
else
if (beta == czero) then
z%v(1:nr,1:nc) = alpha*y(1:nr,1:nc)*x(1:nr,1:nc)
else if (beta == cone) then
z%v(1:nr,1:nc) = z%v(1:nr,1:nc) + alpha*y(1:nr,1:nc)*x(1:nr,1:nc)
else
z%v(1:nr,1:nc) = beta*z%v(1:nr,1:nc) + alpha*y(1:nr,1:nc)*x(1:nr,1:nc)
end if
end if
end if
end subroutine c_base_mlv_mlt_a_2
!
!> Function base_mlv_mlt_v_2
!! \memberof psb_c_base_multivect_type
!! \brief AXPBY-like Vector entry-by-entry multiply by class(base_mlv_vect)
!! z=beta*z+alpha*x*y
!! \param alpha
!! \param beta
!! \param x The class(base_mlv_vect) to be multiplied b
!! \param y The class(base_mlv_vect) to be multiplied by
!! \param info return code
!!
subroutine c_base_mlv_mlt_v_2(alpha,x,y,beta,z,info,conjgx,conjgy)
use psi_serial_mod
use psb_string_mod
implicit none
complex(psb_spk_), intent(in) :: alpha,beta
class(psb_c_base_multivect_type), intent(inout) :: x
class(psb_c_base_multivect_type), intent(inout) :: y
class(psb_c_base_multivect_type), intent(inout) :: z
integer(psb_ipk_), intent(out) :: info
character(len=1), intent(in), optional :: conjgx, conjgy
integer(psb_ipk_) :: i, n
logical :: conjgx_, conjgy_
info = 0
if (x%is_dev()) call x%sync()
if (y%is_dev()) call y%sync()
if (z%is_dev()) call z%sync()
if (.not.psb_c_is_complex_) then
call z%mlt(alpha,x%v,y%v,beta,info)
else
conjgx_=.false.
if (present(conjgx)) conjgx_ = (psb_toupper(conjgx)=='C')
conjgy_=.false.
if (present(conjgy)) conjgy_ = (psb_toupper(conjgy)=='C')
if (conjgx_) x%v=conjg(x%v)
if (conjgy_) y%v=conjg(y%v)
call z%mlt(alpha,x%v,y%v,beta,info)
if (conjgx_) x%v=conjg(x%v)
if (conjgy_) y%v=conjg(y%v)
end if
end subroutine c_base_mlv_mlt_v_2
!!$
!!$ subroutine c_base_mlv_mlt_av(alpha,x,y,beta,z,info)
!!$ use psi_serial_mod
!!$ implicit none
!!$ complex(psb_spk_), intent(in) :: alpha,beta
!!$ complex(psb_spk_), intent(in) :: x(:)
!!$ class(psb_c_base_multivect_type), intent(inout) :: y
!!$ class(psb_c_base_multivect_type), intent(inout) :: z
!!$ integer(psb_ipk_), intent(out) :: info
!!$ integer(psb_ipk_) :: i, n
!!$
!!$ info = 0
!!$
!!$ call z%mlt(alpha,x,y%v,beta,info)
!!$
!!$ end subroutine c_base_mlv_mlt_av
!!$
!!$ subroutine c_base_mlv_mlt_va(alpha,x,y,beta,z,info)
!!$ use psi_serial_mod
!!$ implicit none
!!$ complex(psb_spk_), intent(in) :: alpha,beta
!!$ complex(psb_spk_), intent(in) :: y(:)
!!$ class(psb_c_base_multivect_type), intent(inout) :: x
!!$ class(psb_c_base_multivect_type), intent(inout) :: z
!!$ integer(psb_ipk_), intent(out) :: info
!!$ integer(psb_ipk_) :: i, n
!!$
!!$ info = 0
!!$
!!$ call z%mlt(alpha,y,x,beta,info)
!!$
!!$ end subroutine c_base_mlv_mlt_va
!!$
!!$
!
! Simple scaling
!
!> Function base_mlv_scal
!! \memberof psb_c_base_multivect_type
!! \brief Scale all entries x = alpha*x
!! \param alpha The multiplier
!!
subroutine c_base_mlv_scal(alpha, x)
use psi_serial_mod
implicit none
class(psb_c_base_multivect_type), intent(inout) :: x
complex(psb_spk_), intent (in) :: alpha
if (x%is_dev()) call x%sync()
if (allocated(x%v)) x%v = alpha*x%v
end subroutine c_base_mlv_scal
!
! Norms 1, 2 and infinity
!
!> Function base_mlv_nrm2
!! \memberof psb_c_base_multivect_type
!! \brief 2-norm |x(1:n)|_2
!! \param n how many entries to consider
function c_base_mlv_nrm2(n,x) result(res)
implicit none
class(psb_c_base_multivect_type), intent(inout) :: x
integer(psb_ipk_), intent(in) :: n
real(psb_spk_), allocatable :: res(:)
real(psb_spk_), external :: scnrm2
integer(psb_ipk_) :: j, nc
if (x%is_dev()) call x%sync()
nc = psb_size(x%v,2_psb_ipk_)
allocate(res(nc))
do j=1,nc
res(j) = scnrm2(n,x%v(:,j),1)
end do
end function c_base_mlv_nrm2
!
!> Function base_mlv_amax
!! \memberof psb_c_base_multivect_type
!! \brief infinity-norm |x(1:n)|_\infty
!! \param n how many entries to consider
function c_base_mlv_amax(n,x) result(res)
implicit none
class(psb_c_base_multivect_type), intent(inout) :: x
integer(psb_ipk_), intent(in) :: n
real(psb_spk_), allocatable :: res(:)
integer(psb_ipk_) :: j, nc
if (x%is_dev()) call x%sync()
nc = psb_size(x%v,2_psb_ipk_)
allocate(res(nc))
do j=1,nc
res(j) = maxval(abs(x%v(1:n,j)))
end do
end function c_base_mlv_amax
!
!> Function base_mlv_asum
!! \memberof psb_c_base_multivect_type
!! \brief 1-norm |x(1:n)|_1
!! \param n how many entries to consider
function c_base_mlv_asum(n,x) result(res)
implicit none
class(psb_c_base_multivect_type), intent(inout) :: x
integer(psb_ipk_), intent(in) :: n
real(psb_spk_), allocatable :: res(:)
integer(psb_ipk_) :: j, nc
if (x%is_dev()) call x%sync()
nc = psb_size(x%v,2_psb_ipk_)
allocate(res(nc))
do j=1,nc
res(j) = sum(abs(x%v(1:n,j)))
end do
end function c_base_mlv_asum
!
! Overwrite with absolute value
!
!
!> Function base_absval1
!! \memberof psb_c_base_vect_type
!! \brief Set all entries to their respective absolute values.
!!
subroutine c_base_mlv_absval1(x)
implicit none
class(psb_c_base_multivect_type), intent(inout) :: x
if (allocated(x%v)) then
if (x%is_dev()) call x%sync()
x%v = abs(x%v)
call x%set_host()
end if
end subroutine c_base_mlv_absval1
subroutine c_base_mlv_absval2(x,y)
implicit none
class(psb_c_base_multivect_type), intent(inout) :: x
class(psb_c_base_multivect_type), intent(inout) :: y
integer(psb_ipk_) :: info
if (x%is_dev()) call x%sync()
if (allocated(x%v)) then
call y%axpby(min(x%get_nrows(),y%get_nrows()),cone,x,czero,info)
call y%absval()
end if
end subroutine c_base_mlv_absval2
function c_base_mlv_use_buffer() result(res)
implicit none
logical :: res
res = .true.
end function c_base_mlv_use_buffer
subroutine c_base_mlv_new_buffer(n,x,info)
use psb_realloc_mod
implicit none
class(psb_c_base_multivect_type), intent(inout) :: x
integer(psb_ipk_), intent(in) :: n
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: nc
nc = x%get_ncols()
call psb_realloc(n*nc,x%combuf,info)
end subroutine c_base_mlv_new_buffer
subroutine c_base_mlv_new_comid(n,x,info)
use psb_realloc_mod
implicit none
class(psb_c_base_multivect_type), intent(inout) :: x
integer(psb_ipk_), intent(in) :: n
integer(psb_ipk_), intent(out) :: info
call psb_realloc(n,2_psb_ipk_,x%comid,info)
end subroutine c_base_mlv_new_comid
subroutine c_base_mlv_maybe_free_buffer(x,info)
use psb_realloc_mod
implicit none
class(psb_c_base_multivect_type), intent(inout) :: x
integer(psb_ipk_), intent(out) :: info
info = 0
if (psb_get_maybe_free_buffer())&
& call x%free_buffer(info)
end subroutine c_base_mlv_maybe_free_buffer
subroutine c_base_mlv_free_buffer(x,info)
use psb_realloc_mod
implicit none
class(psb_c_base_multivect_type), intent(inout) :: x
integer(psb_ipk_), intent(out) :: info
if (allocated(x%combuf)) &
& deallocate(x%combuf,stat=info)
end subroutine c_base_mlv_free_buffer
subroutine c_base_mlv_free_comid(x,info)
use psb_realloc_mod
implicit none
class(psb_c_base_multivect_type), intent(inout) :: x
integer(psb_ipk_), intent(out) :: info
if (allocated(x%comid)) &
& deallocate(x%comid,stat=info)
end subroutine c_base_mlv_free_comid
!
! Gather: Y = beta * Y + alpha * X(IDX(:))
!
!
!> Function base_mlv_gthab
!! \memberof psb_c_base_multivect_type
!! \brief gather into an array
!! Y = beta * Y + alpha * X(IDX(:))
!! \param n how many entries to consider
!! \param idx(:) indices
!! \param alpha
!! \param beta
subroutine c_base_mlv_gthab(n,idx,alpha,x,beta,y)
use psi_serial_mod
implicit none
integer(psb_ipk_) :: n, idx(:)
complex(psb_spk_) :: alpha, beta, y(:)
class(psb_c_base_multivect_type) :: x
integer(psb_ipk_) :: nc
if (x%is_dev()) call x%sync()
if (.not.allocated(x%v)) then
return
end if
nc = psb_size(x%v,2_psb_ipk_)
call psi_gth(n,nc,idx,alpha,x%v,beta,y)
end subroutine c_base_mlv_gthab
!
! shortcut alpha=1 beta=0
!
!> Function base_mlv_gthzv
!! \memberof psb_c_base_multivect_type
!! \brief gather into an array special alpha=1 beta=0
!! Y = X(IDX(:))
!! \param n how many entries to consider
!! \param idx(:) indices
subroutine c_base_mlv_gthzv_x(i,n,idx,x,y)
use psi_serial_mod
implicit none
integer(psb_ipk_) :: i,n
class(psb_i_base_vect_type) :: idx
complex(psb_spk_) :: y(:)
class(psb_c_base_multivect_type) :: x
if (x%is_dev()) call x%sync()
call x%gth(n,idx%v(i:),y)
end subroutine c_base_mlv_gthzv_x
!
! shortcut alpha=1 beta=0
!
!> Function base_mlv_gthzv
!! \memberof psb_c_base_multivect_type
!! \brief gather into an array special alpha=1 beta=0
!! Y = X(IDX(:))
!! \param n how many entries to consider
!! \param idx(:) indices
subroutine c_base_mlv_gthzv(n,idx,x,y)
use psi_serial_mod
implicit none
integer(psb_ipk_) :: n, idx(:)
complex(psb_spk_) :: y(:)
class(psb_c_base_multivect_type) :: x
integer(psb_ipk_) :: nc
if (x%is_dev()) call x%sync()
if (.not.allocated(x%v)) then
return
end if
nc = psb_size(x%v,2_psb_ipk_)
call psi_gth(n,nc,idx,x%v,y)
end subroutine c_base_mlv_gthzv
!
! shortcut alpha=1 beta=0
!
!> Function base_mlv_gthzv
!! \memberof psb_c_base_multivect_type
!! \brief gather into an array special alpha=1 beta=0
!! Y = X(IDX(:))
!! \param n how many entries to consider
!! \param idx(:) indices
subroutine c_base_mlv_gthzm(n,idx,x,y)
use psi_serial_mod
implicit none
integer(psb_ipk_) :: n, idx(:)
complex(psb_spk_) :: y(:,:)
class(psb_c_base_multivect_type) :: x
integer(psb_ipk_) :: nc
if (x%is_dev()) call x%sync()
if (.not.allocated(x%v)) then
return
end if
nc = psb_size(x%v,2_psb_ipk_)
call psi_gth(n,nc,idx,x%v,y)
end subroutine c_base_mlv_gthzm
!
! New comm internals impl.
!
subroutine c_base_mlv_gthzbuf(i,ixb,n,idx,x)
use psi_serial_mod
implicit none
integer(psb_ipk_) :: i, ixb, n
class(psb_i_base_vect_type) :: idx
class(psb_c_base_multivect_type) :: x
integer(psb_ipk_) :: nc
if (.not.allocated(x%combuf)) then
call psb_errpush(psb_err_alloc_dealloc_,'gthzbuf')
return
end if
if (idx%is_dev()) call idx%sync()
if (x%is_dev()) call x%sync()
nc = x%get_ncols()
call x%gth(n,idx%v(i:),x%combuf(ixb:))
end subroutine c_base_mlv_gthzbuf
!
! Scatter:
! Y(IDX(:),:) = beta*Y(IDX(:),:) + X(:)
!
!
!> Function base_mlv_sctb
!! \memberof psb_c_base_multivect_type
!! \brief scatter into a class(base_mlv_vect)
!! Y(IDX(:)) = beta * Y(IDX(:)) + X(:)
!! \param n how many entries to consider
!! \param idx(:) indices
!! \param beta
!! \param x(:)
subroutine c_base_mlv_sctb(n,idx,x,beta,y)
use psi_serial_mod
implicit none
integer(psb_ipk_) :: n, idx(:)
complex(psb_spk_) :: beta, x(:)
class(psb_c_base_multivect_type) :: y
integer(psb_ipk_) :: nc
if (y%is_dev()) call y%sync()
nc = psb_size(y%v,2_psb_ipk_)
call psi_sct(n,nc,idx,x,beta,y%v)
call y%set_host()
end subroutine c_base_mlv_sctb
subroutine c_base_mlv_sctbr2(n,idx,x,beta,y)
use psi_serial_mod
implicit none
integer(psb_ipk_) :: n, idx(:)
complex(psb_spk_) :: beta, x(:,:)
class(psb_c_base_multivect_type) :: y
integer(psb_ipk_) :: nc
if (y%is_dev()) call y%sync()
nc = y%get_ncols()
call psi_sct(n,nc,idx,x,beta,y%v)
call y%set_host()
end subroutine c_base_mlv_sctbr2
subroutine c_base_mlv_sctb_x(i,n,idx,x,beta,y)
use psi_serial_mod
implicit none
integer(psb_ipk_) :: i, n
class(psb_i_base_vect_type) :: idx
complex( psb_spk_) :: beta, x(:)
class(psb_c_base_multivect_type) :: y
call y%sct(n,idx%v(i:),x,beta)
end subroutine c_base_mlv_sctb_x
subroutine c_base_mlv_sctb_buf(i,iyb,n,idx,beta,y)
use psi_serial_mod
implicit none
integer(psb_ipk_) :: i, iyb, n
class(psb_i_base_vect_type) :: idx
complex(psb_spk_) :: beta
class(psb_c_base_multivect_type) :: y
integer(psb_ipk_) :: nc
if (.not.allocated(y%combuf)) then
call psb_errpush(psb_err_alloc_dealloc_,'sctb_buf')
return
end if
if (y%is_dev()) call y%sync()
if (idx%is_dev()) call idx%sync()
nc = y%get_ncols()
call y%sct(n,idx%v(i:),y%combuf(iyb:),beta)
call y%set_host()
end subroutine c_base_mlv_sctb_buf
!
!> Function base_device_wait:
!! \memberof psb_c_base_vect_type
!! \brief device_wait: base version is a no-op.
!!
!
subroutine c_base_mlv_device_wait()
implicit none
end subroutine c_base_mlv_device_wait
end module psb_c_base_multivect_mod