You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
psblas3/test/pargen/ppde90.f90

752 lines
23 KiB
Fortran

!!$
!!$ Parallel Sparse BLAS v2.0
!!$ (C) Copyright 2006 Salvatore Filippone University of Rome Tor Vergata
!!$ Alfredo Buttari University of Rome Tor Vergata
!!$
!!$ Redistribution and use in source and binary forms, with or without
!!$ modification, are permitted provided that the following conditions
!!$ are met:
!!$ 1. Redistributions of source code must retain the above copyright
!!$ notice, this list of conditions and the following disclaimer.
!!$ 2. Redistributions in binary form must reproduce the above copyright
!!$ notice, this list of conditions, and the following disclaimer in the
!!$ documentation and/or other materials provided with the distribution.
!!$ 3. The name of the PSBLAS group or the names of its contributors may
!!$ not be used to endorse or promote products derived from this
!!$ software without specific written permission.
!!$
!!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
!!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
!!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
!!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS
!!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
!!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
!!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
!!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
!!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
!!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
!!$ POSSIBILITY OF SUCH DAMAGE.
!!$
!!$
! File: ppde90.f90
!
! Program: ppde90
! This sample program shows how to build and solve a sparse linear
!
! The program solves a linear system based on the partial differential
! equation
!
!
!
! The equation generated is
!
! b1 d d (u) b2 d d (u) a1 d (u)) a2 d (u)))
! - ------ - ------ + ----- + ------ + a3 u = 0
! dx dx dy dy dx dy
!
!
! with Dirichlet boundary conditions on the unit cube
!
! 0<=x,y,z<=1
!
! The equation is discretized with finite differences and uniform stepsize;
! the resulting discrete equation is
!
! ( u(x,y,z)(2b1+2b2+a1+a2)+u(x-1,y)(-b1-a1)+u(x,y-1)(-b2-a2)+
! -u(x+1,y)b1-u(x,y+1)b2)*(1/h**2)
!
! Example taken from: C.T.Kelley
! Iterative Methods for Linear and Nonlinear Equations
! SIAM 1995
!
!
! In this sample program the index space of the discretized
! computational domain is first numbered sequentially in a standard way,
! then the corresponding vector is distributed according to an HPF BLOCK
! distribution directive.
!
! Boundary conditions are set in a very simple way, by adding
! equations of the form
!
! u(x,y) = rhs(x,y)
!
program pde90
use psb_sparse_mod
implicit none
interface
!.....user passed subroutine.....
subroutine part_block(glob_index,n,np,pv,nv)
integer, intent(in) :: glob_index, n, np
integer, intent(out) :: nv
integer, intent(out) :: pv(*)
end subroutine part_block
end interface
! input parameters
character :: cmethd*10, prec*10, afmt*5
integer :: idim, iret
! miscellaneous
character, parameter :: order='r'
integer :: iargc,convert_descr,dim, check_descr
real(kind(1.d0)), parameter :: one = 1.d0
real(kind(1.d0)) :: mpi_wtime, t1, t2, tprec, tsolve, t3, t4
external mpi_wtime
! sparse matrix and preconditioner
type(psb_dspmat_type) :: a, l, u, h
type(psb_dprec_type) :: pre
! descriptor
type(psb_desc_type) :: desc_a, desc_a_out
! dense matrices
real(kind(1.d0)), pointer :: b(:), x(:), d(:),ld(:)
integer, pointer :: work(:)
! blacs parameters
integer :: nprow, npcol, icontxt, iam, np, myprow, mypcol
! solver parameters
integer :: iter, itmax,ierr,itrace, methd,iprec, istopc,&
& iparm(20), ml, novr
real(kind(1.d0)) :: err, eps, rparm(20)
! other variables
integer :: i,info
integer :: internal, m,ii
character(len=10) :: ptype
character(len=20) :: name,ch_err
if(psb_get_errstatus().ne.0) goto 9999
info=0
name='pde90'
call psb_set_errverbosity(2)
call psb_set_erraction(0)
! initialize blacs
call blacs_pinfo(iam, np)
call blacs_get(izero, izero, icontxt)
! rectangular grid, p x 1
call blacs_gridinit(icontxt, order, np, ione)
call blacs_gridinfo(icontxt, nprow, npcol, myprow, mypcol)
!
! get parameters
!
call get_parms(icontxt,cmethd,iprec,novr,afmt,idim,istopc,itmax,itrace,ml)
!
! allocate and fill in the coefficient matrix, rhs and initial guess
!
call blacs_barrier(icontxt,'ALL')
t1 = mpi_wtime()
call create_matrix(idim,a,b,x,desc_a,part_block,icontxt,afmt,info)
t2 = mpi_wtime() - t1
if(info.ne.0) then
info=4010
ch_err='create_matrix'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
call gamx2d(icontxt,'a',t2)
if (iam.eq.0) write(*,'("Overall matrix creation time : ",es10.4)')t2
if (iam.eq.0) write(*,'(" ")')
!
! prepare the preconditioner.
!
if(iam.eq.psb_root_) write(0,'("Setting preconditioner to : ",a)')pr_to_str(iprec)
select case(iprec)
case(noprec_)
call psb_precset(pre,'noprec')
case(diagsc_)
call psb_precset(pre,'diagsc')
case(bja_)
call psb_precset(pre,'ilu')
case(asm_)
call psb_precset(pre,'asm',iv=(/novr,halo_,sum_/))
case(ash_)
call psb_precset(pre,'asm',iv=(/novr,nohalo_,sum_/))
case(ras_)
call psb_precset(pre,'asm',iv=(/novr,halo_,none_/))
case(rash_)
call psb_precset(pre,'asm',iv=(/novr,nohalo_,none_/))
case(ras2lv_)
ptype='asm'
call psb_precset(pre,ptype,iv=(/novr,halo_,none_/))
ptype='ml'
call psb_precset(pre,ptype,&
&iv=(/add_ml_prec_,loc_aggr_,no_smth_,mat_repl_,&
& pre_smooth_/),rs=0.d0)
case(ras2lvm_)
ptype='asm'
call psb_precset(pre,ptype,iv=(/novr,halo_,none_/))
ptype='ml'
call psb_precset(pre,ptype,&
& iv=(/mult_ml_prec_,glb_aggr_,pre_smooth_/),rs=0.d0)
end select
call blacs_barrier(icontxt,'ALL')
t1 = mpi_wtime()
call psb_precbld(a,desc_a,pre,info)
if(info.ne.0) then
info=4010
ch_err='psb_precbld'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
tprec = mpi_wtime()-t1
call gamx2d(icontxt,'a',tprec)
if (iam.eq.0) write(*,'("Preconditioner time : ",es10.4)')tprec
if (iam.eq.0) write(*,'(" ")')
!
! iterative method parameters
!
if(iam.eq.psb_root_) write(*,'("Calling iterative method ",a)')cmethd
call blacs_barrier(icontxt,'ALL')
t1 = mpi_wtime()
eps = 1.d-9
if (cmethd.eq.'BICGSTAB') then
call psb_bicgstab(a,pre,b,x,eps,desc_a,info,&
& itmax,iter,err,itrace)
else if (cmethd.eq.'CGS') then
call psb_cgs(a,pre,b,x,eps,desc_a,info,&
& itmax,iter,err,itrace)
else if (cmethd.eq.'CG') then
call psb_cg(a,pre,b,x,eps,desc_a,info,&
& itmax,iter,err,itrace)
else if (cmethd.eq.'BICGSTABL') then
call psb_bicgstabl(a,pre,b,x,eps,desc_a,info,&
& itmax,iter,err,itrace,ml)
else
write(0,*) 'unknown method ',cmethd
end if
if(info.ne.0) then
info=4010
ch_err='solver routine'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
call blacs_barrier(icontxt,'ALL')
t2 = mpi_wtime() - t1
call gamx2d(icontxt,'a',t2)
if (iam.eq.0) then
write(*,'(" ")')
write(*,'("Time to solve matrix : ",es10.4)')t2
write(*,'("Time per iteration : ",es10.4)')t2/iter
write(*,'("Number of iterations : ",i0)')iter
write(*,'("Error on exit : ",es10.4)')err
write(*,'("Info on exit : ",i0)')info
end if
!
! cleanup storage and exit
!
call psb_gefree(b,desc_a,info)
call psb_gefree(x,desc_a,info)
call psb_spfree(a,desc_a,info)
call psb_precfree(pre,info)
call psb_cdfree(desc_a,info)
if(info.ne.0) then
info=4010
ch_err='free routine'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
9999 continue
if(info /= 0) then
call psb_error(icontxt)
call blacs_gridexit(icontxt)
call blacs_exit(0)
else
call blacs_gridexit(icontxt)
call blacs_exit(0)
end if
stop
contains
!
! get iteration parameters from the command line
!
subroutine get_parms(icontxt,cmethd,iprec,novr,afmt,idim,istopc,itmax,itrace,ml)
integer :: icontxt
character :: cmethd*10, afmt*5
integer :: idim, iret, istopc,itmax,itrace,ml, iprec, novr
character*40 :: charbuf
integer :: iargc, nprow, npcol, myprow, mypcol
external iargc
integer :: intbuf(10), ip
call blacs_gridinfo(icontxt, nprow, npcol, myprow, mypcol)
if (myprow==0) then
read(*,*) ip
if (ip.ge.3) then
read(*,*) cmethd
read(*,*) iprec
read(*,*) novr
read(*,*) afmt
! convert strings in array
do i = 1, len(cmethd)
intbuf(i) = iachar(cmethd(i:i))
end do
! broadcast parameters to all processors
call igebs2d(icontxt,'ALL',' ',10,1,intbuf,10)
! broadcast parameters to all processors
call igebs2d(icontxt,'ALL',' ',1,1,iprec,10)
! broadcast parameters to all processors
call igebs2d(icontxt,'ALL',' ',1,1,novr,10)
do i = 1, len(afmt)
intbuf(i) = iachar(afmt(i:i))
end do
! broadcast parameters to all processors
call igebs2d(icontxt,'ALL',' ',10,1,intbuf,10)
read(*,*) idim
if (ip.ge.4) then
read(*,*) istopc
else
istopc=1
endif
if (ip.ge.5) then
read(*,*) itmax
else
itmax=500
endif
if (ip.ge.6) then
read(*,*) itrace
else
itrace=-1
endif
if (ip.ge.7) then
read(*,*) ml
else
ml=1
endif
! broadcast parameters to all processors
intbuf(1) = idim
intbuf(2) = istopc
intbuf(3) = itmax
intbuf(4) = itrace
intbuf(5) = ml
call igebs2d(icontxt,'ALL',' ',5,1,intbuf,5)
write(*,'("Solving matrix : ell1")')
write(*,'("Grid dimensions : ",i4,"x",i4,"x",i4)')idim,idim,idim
write(*,'("Number of processors : ",i0)')nprow
write(*,'("Data distribution : BLOCK")')
write(*,'("Preconditioner : ",a)')pr_to_str(iprec)
if(iprec.gt.2) write(*,'("Overlapping levels : ",i0)')novr
write(*,'("Iterative method : ",a)')cmethd
write(*,'(" ")')
else
! wrong number of parameter, print an error message and exit
call pr_usage(0)
call blacs_abort(icontxt,-1)
stop 1
endif
else
! receive parameters
call igebr2d(icontxt,'ALL',' ',10,1,intbuf,10,0,0)
do i = 1, 10
cmethd(i:i) = achar(intbuf(i))
end do
call igebr2d(icontxt,'ALL',' ',1,1,iprec,10,0,0)
call igebr2d(icontxt,'ALL',' ',1,1,novr,10,0,0)
call igebr2d(icontxt,'ALL',' ',10,1,intbuf,10,0,0)
do i = 1, 5
afmt(i:i) = achar(intbuf(i))
end do
call igebr2d(icontxt,'ALL',' ',5,1,intbuf,5,0,0)
idim = intbuf(1)
istopc = intbuf(2)
itmax = intbuf(3)
itrace = intbuf(4)
ml = intbuf(5)
end if
return
end subroutine get_parms
!
! print an error message
!
subroutine pr_usage(iout)
integer :: iout
write(iout,*)'incorrect parameter(s) found'
write(iout,*)' usage: pde90 methd prec dim &
&[istop itmax itrace]'
write(iout,*)' where:'
write(iout,*)' methd: cgstab tfqmr cgs'
write(iout,*)' prec : ilu diagsc none'
write(iout,*)' dim number of points along each axis'
write(iout,*)' the size of the resulting linear '
write(iout,*)' system is dim**3'
write(iout,*)' istop stopping criterion 1, 2 or 3 [1] '
write(iout,*)' itmax maximum number of iterations [500] '
write(iout,*)' itrace 0 (no tracing, default) or '
write(iout,*)' >= 0 do tracing every itrace'
write(iout,*)' iterations '
end subroutine pr_usage
!
! subroutine to allocate and fill in the coefficient matrix and
! the rhs.
!
subroutine create_matrix(idim,a,b,t,desc_a,parts,icontxt,afmt,info)
!
! discretize the partial diferential equation
!
! b1 dd(u) b2 dd(u) b3 dd(u) a1 d(u) a2 d(u) a3 d(u)
! - ------ - ------ - ------ - ----- - ------ - ------ + a4 u
! dxdx dydy dzdz dx dy dz
!
! = 0
!
! boundary condition: dirichlet
! 0< x,y,z<1
!
! u(x,y,z)(2b1+2b2+2b3+a1+a2+a3)+u(x-1,y,z)(-b1-a1)+u(x,y-1,z)(-b2-a2)+
! + u(x,y,z-1)(-b3-a3)-u(x+1,y,z)b1-u(x,y+1,z)b2-u(x,y,z+1)b3
use psb_sparse_mod
implicit none
integer :: idim
integer, parameter :: nbmax=10
real(kind(1.d0)),pointer :: b(:),t(:)
type(psb_desc_type) :: desc_a
integer :: icontxt, info
character :: afmt*5
interface
! .....user passed subroutine.....
subroutine parts(global_indx,n,np,pv,nv)
implicit none
integer, intent(in) :: global_indx, n, np
integer, intent(out) :: nv
integer, intent(out) :: pv(*)
end subroutine parts
end interface ! local variables
type(psb_dspmat_type) :: a
real(kind(1.d0)) :: zt(nbmax),glob_x,glob_y,glob_z
integer :: m,n,nnz,glob_row,j
integer :: x,y,z,counter,ia,i,indx_owner
integer :: nprow,npcol,myprow,mypcol
integer :: element
integer :: nv, inv
integer, allocatable :: irow(:),icol(:)
real(kind(1.d0)), allocatable :: val(:)
integer, allocatable :: prv(:)
integer, pointer :: ierrv(:)
real(kind(1.d0)), pointer :: dwork(:)
integer,pointer :: iwork(:)
! deltah dimension of each grid cell
! deltat discretization time
real(kind(1.d0)) :: deltah
real(kind(1.d0)),parameter :: rhs=0.d0,one=1.d0,zero=0.d0
real(kind(1.d0)) :: mpi_wtime, t1, t2, t3, tins, tasb
real(kind(1.d0)) :: a1, a2, a3, a4, b1, b2, b3
external mpi_wtime,a1, a2, a3, a4, b1, b2, b3
integer :: nb, ir1, ir2, ipr, err_act
logical :: own
! common area
character(len=20) :: name, ch_err
info = 0
name = 'create_matrix'
call psb_erractionsave(err_act)
call blacs_gridinfo(icontxt, nprow, npcol, myprow, mypcol)
deltah = 1.d0/(idim-1)
! initialize array descriptor and sparse matrix storage. provide an
! estimate of the number of non zeroes
m = idim*idim*idim
n = m
nnz = ((n*9)/(nprow*npcol))
if(myprow.eq.psb_root_) write(0,'("Generating Matrix (size=",i0x,")...")')n
call psb_cdall(n,n,parts,icontxt,desc_a,info)
call psb_spall(a,desc_a,info,nnz=nnz)
! define rhs from boundary conditions; also build initial guess
call psb_geall(n,b,desc_a,info)
call psb_geall(n,t,desc_a,info)
if(info.ne.0) then
info=4010
ch_err='allocation rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
! we build an auxiliary matrix consisting of one row at a
! time; just a small matrix. might be extended to generate
! a bunch of rows per call.
!
allocate(val(20*nbmax),irow(20*nbmax),&
&icol(20*nbmax),prv(nprow),stat=info)
if (info.ne.0 ) then
info=4000
call psb_errpush(info,name)
goto 9999
endif
tins = 0.d0
call blacs_barrier(icontxt,'ALL')
t1 = mpi_wtime()
! loop over rows belonging to current process in a block
! distribution.
! icol(1)=1
do glob_row = 1, n
call parts(glob_row,n,nprow,prv,nv)
do inv = 1, nv
indx_owner = prv(inv)
if (indx_owner == myprow) then
! local matrix pointer
element=1
! compute gridpoint coordinates
if (mod(glob_row,(idim*idim)).eq.0) then
x = glob_row/(idim*idim)
else
x = glob_row/(idim*idim)+1
endif
if (mod((glob_row-(x-1)*idim*idim),idim).eq.0) then
y = (glob_row-(x-1)*idim*idim)/idim
else
y = (glob_row-(x-1)*idim*idim)/idim+1
endif
z = glob_row-(x-1)*idim*idim-(y-1)*idim
! glob_x, glob_y, glob_x coordinates
glob_x=x*deltah
glob_y=y*deltah
glob_z=z*deltah
! check on boundary points
zt(1) = 0.d0
! internal point: build discretization
!
! term depending on (x-1,y,z)
!
if (x==1) then
val(element)=-b1(glob_x,glob_y,glob_z)&
& -a1(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
zt(1) = exp(-glob_y**2-glob_z**2)*(-val(element))
else
val(element)=-b1(glob_x,glob_y,glob_z)&
& -a1(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
icol(element)=(x-2)*idim*idim+(y-1)*idim+(z)
element=element+1
endif
! term depending on (x,y-1,z)
if (y==1) then
val(element)=-b2(glob_x,glob_y,glob_z)&
& -a2(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
zt(1) = exp(-glob_y**2-glob_z**2)*exp(-glob_x)*(-val(element))
else
val(element)=-b2(glob_x,glob_y,glob_z)&
& -a2(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
icol(element)=(x-1)*idim*idim+(y-2)*idim+(z)
element=element+1
endif
! term depending on (x,y,z-1)
if (z==1) then
val(element)=-b3(glob_x,glob_y,glob_z)&
& -a3(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
zt(1) = exp(-glob_y**2-glob_z**2)*exp(-glob_x)*(-val(element))
else
val(element)=-b3(glob_x,glob_y,glob_z)&
& -a3(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
icol(element)=(x-1)*idim*idim+(y-1)*idim+(z-1)
element=element+1
endif
! term depending on (x,y,z)
val(element)=2*b1(glob_x,glob_y,glob_z)&
& +2*b2(glob_x,glob_y,glob_z)&
& +2*b3(glob_x,glob_y,glob_z)&
& +a1(glob_x,glob_y,glob_z)&
& +a2(glob_x,glob_y,glob_z)&
& +a3(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
icol(element)=(x-1)*idim*idim+(y-1)*idim+(z)
element=element+1
! term depending on (x,y,z+1)
if (z==idim) then
val(element)=-b1(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
zt(1) = exp(-glob_y**2-glob_z**2)*exp(-glob_x)*(-val(element))
else
val(element)=-b1(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
icol(element)=(x-1)*idim*idim+(y-1)*idim+(z+1)
element=element+1
endif
! term depending on (x,y+1,z)
if (y==idim) then
val(element)=-b2(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
zt(1) = exp(-glob_y**2-glob_z**2)*exp(-glob_x)*(-val(element))
else
val(element)=-b2(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
icol(element)=(x-1)*idim*idim+(y)*idim+(z)
element=element+1
endif
! term depending on (x+1,y,z)
if (x<idim) then
val(element)=-b3(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
icol(element)=(x)*idim*idim+(y-1)*idim+(z)
element=element+1
endif
irow(1:element-1)=glob_row
ia=glob_row
t3 = mpi_wtime()
call psb_spins(element-1,irow,icol,val,a,desc_a,info)
if(info.ne.0) exit
tins = tins + (mpi_wtime()-t3)
call psb_geins(1,b,ia,zt(1:1),desc_a,info)
if(info.ne.0) exit
zt(1)=0.d0
call psb_geins(1,t,ia,zt(1:1),desc_a,info)
if(info.ne.0) exit
end if
end do
end do
call blacs_barrier(icontxt,'ALL')
t2 = mpi_wtime()-t1
if(info.ne.0) then
info=4010
ch_err='insert rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
deallocate(val,irow,icol)
t1 = mpi_wtime()
call psb_cdasb(desc_a,info)
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,afmt=afmt)
call blacs_barrier(icontxt,'ALL')
tasb = mpi_wtime()-t1
if(info.ne.0) then
info=4010
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
call gamx2d(icontxt,'a',t2)
call gamx2d(icontxt,'a',tins)
call gamx2d(icontxt,'a',tasb)
if(myprow.eq.psb_root_) then
write(*,'("The matrix has been generated and assembeld in ",a3," format.")')a%fida(1:3)
write(*,'("-pspins time : ",es10.4)')tins
write(*,'("-insert time : ",es10.4)')t2
write(*,'("-assembly time : ",es10.4)')tasb
end if
call psb_geasb(b,desc_a,info)
call psb_geasb(t,desc_a,info)
if(info.ne.0) then
info=4010
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
call psb_erractionrestore(err_act)
return
9999 continue
call psb_erractionrestore(err_act)
if (err_act.eq.act_abort) then
call psb_error(icontxt)
return
end if
return
end subroutine create_matrix
end program pde90
!
! functions parametrizing the differential equation
!
function a1(x,y,z)
real(kind(1.d0)) :: a1
real(kind(1.d0)) :: x,y,z
a1=1.d0
end function a1
function a2(x,y,z)
real(kind(1.d0)) :: a2
real(kind(1.d0)) :: x,y,z
a2=2.d1*y
end function a2
function a3(x,y,z)
real(kind(1.d0)) :: a3
real(kind(1.d0)) :: x,y,z
a3=1.d0
end function a3
function a4(x,y,z)
real(kind(1.d0)) :: a4
real(kind(1.d0)) :: x,y,z
a4=1.d0
end function a4
function b1(x,y,z)
real(kind(1.d0)) :: b1
real(kind(1.d0)) :: x,y,z
b1=1.d0
end function b1
function b2(x,y,z)
real(kind(1.d0)) :: b2
real(kind(1.d0)) :: x,y,z
b2=1.d0
end function b2
function b3(x,y,z)
real(kind(1.d0)) :: b3
real(kind(1.d0)) :: x,y,z
b3=1.d0
end function b3