You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
145 lines
5.2 KiB
Fortran
145 lines
5.2 KiB
Fortran
!!$
|
|
!!$ Parallel Sparse BLAS version 3.1
|
|
!!$ (C) Copyright 2006, 2007, 2008, 2009, 2010, 2012, 2013
|
|
!!$ Salvatore Filippone University of Rome Tor Vergata
|
|
!!$ Alfredo Buttari CNRS-IRIT, Toulouse
|
|
!!$
|
|
!!$ Redistribution and use in source and binary forms, with or without
|
|
!!$ modification, are permitted provided that the following conditions
|
|
!!$ are met:
|
|
!!$ 1. Redistributions of source code must retain the above copyright
|
|
!!$ notice, this list of conditions and the following disclaimer.
|
|
!!$ 2. Redistributions in binary form must reproduce the above copyright
|
|
!!$ notice, this list of conditions, and the following disclaimer in the
|
|
!!$ documentation and/or other materials provided with the distribution.
|
|
!!$ 3. The name of the PSBLAS group or the names of its contributors may
|
|
!!$ not be used to endorse or promote products derived from this
|
|
!!$ software without specific written permission.
|
|
!!$
|
|
!!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
!!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
!!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
!!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS
|
|
!!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
!!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
!!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
!!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
!!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
!!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
!!$ POSSIBILITY OF SUCH DAMAGE.
|
|
!!$
|
|
!!$
|
|
module psb_d_genpde_mod
|
|
|
|
use psb_base_mod, only : psb_dpk_, psb_ipk_, psb_desc_type,&
|
|
& psb_dspmat_type, psb_d_vect_type, dzero,&
|
|
& psb_d_base_sparse_mat, psb_d_base_vect_type
|
|
|
|
interface
|
|
function d_func_3d(x,y,z) result(val)
|
|
import :: psb_dpk_
|
|
real(psb_dpk_), intent(in) :: x,y,z
|
|
real(psb_dpk_) :: val
|
|
end function d_func_3d
|
|
end interface
|
|
|
|
interface psb_gen_pde3d
|
|
subroutine psb_d_gen_pde3d(ictxt,idim,a,bv,xv,desc_a,afmt, &
|
|
& a1,a2,a3,b1,b2,b3,c,g,info,f,amold,vmold)
|
|
!
|
|
! Discretizes the partial differential equation
|
|
!
|
|
! a1 dd(u) a2 dd(u) a3 dd(u) b1 d(u) b2 d(u) b3 d(u)
|
|
! - ------ - ------ - ------ + ----- + ------ + ------ + c u = f
|
|
! dxdx dydy dzdz dx dy dz
|
|
!
|
|
! with Dirichlet boundary conditions
|
|
! u = g
|
|
!
|
|
! on the unit cube 0<=x,y,z<=1.
|
|
!
|
|
!
|
|
! Note that if b1=b2=b3=c=0., the PDE is the Laplace equation.
|
|
!
|
|
import :: psb_ipk_, psb_desc_type, psb_dspmat_type, psb_d_vect_type,&
|
|
& d_func_3d, psb_d_base_sparse_mat, psb_d_base_vect_type
|
|
implicit none
|
|
procedure(d_func_3d) :: a1,a2,a3,c,b1,b2,b3,g
|
|
integer(psb_ipk_) :: idim
|
|
type(psb_dspmat_type) :: a
|
|
type(psb_d_vect_type) :: xv,bv
|
|
type(psb_desc_type) :: desc_a
|
|
integer(psb_ipk_) :: ictxt, info
|
|
character(len=*) :: afmt
|
|
procedure(d_func_3d), optional :: f
|
|
class(psb_d_base_sparse_mat), optional :: amold
|
|
class(psb_d_base_vect_type), optional :: vmold
|
|
end subroutine psb_d_gen_pde3d
|
|
end interface
|
|
|
|
|
|
interface
|
|
function d_func_2d(x,y) result(val)
|
|
import :: psb_dpk_
|
|
real(psb_dpk_), intent(in) :: x,y
|
|
real(psb_dpk_) :: val
|
|
end function d_func_2d
|
|
end interface
|
|
|
|
interface psb_gen_pde2d
|
|
subroutine psb_d_gen_pde2d(ictxt,idim,a,bv,xv,desc_a,afmt,&
|
|
& a1,a2,b1,b2,c,g,info,f,amold,vmold)
|
|
!
|
|
! Discretizes the partial differential equation
|
|
!
|
|
! a1 dd(u) a2 dd(u) b1 d(u) b2 d(u)
|
|
! - ------ - ------ + ----- + ------ + c u = f
|
|
! dxdx dydy dx dy
|
|
!
|
|
! with Dirichlet boundary conditions
|
|
! u = g
|
|
!
|
|
! on the unit square 0<=x,y<=1.
|
|
!
|
|
!
|
|
! Note that if b1=b2=c=0., the PDE is the Laplace equation.
|
|
!
|
|
import :: psb_ipk_, psb_desc_type, psb_dspmat_type, psb_d_vect_type,&
|
|
& d_func_2d, psb_d_base_sparse_mat, psb_d_base_vect_type
|
|
implicit none
|
|
procedure(d_func_2d) :: a1,a2,c,b1,b2,g
|
|
integer(psb_ipk_) :: idim
|
|
type(psb_dspmat_type) :: a
|
|
type(psb_d_vect_type) :: xv,bv
|
|
type(psb_desc_type) :: desc_a
|
|
integer(psb_ipk_) :: ictxt, info
|
|
character(len=*) :: afmt
|
|
procedure(d_func_2d), optional :: f
|
|
class(psb_d_base_sparse_mat), optional :: amold
|
|
class(psb_d_base_vect_type), optional :: vmold
|
|
end subroutine psb_d_gen_pde2d
|
|
end interface
|
|
|
|
contains
|
|
|
|
function d_null_func_3d(x,y,z) result(val)
|
|
|
|
real(psb_dpk_), intent(in) :: x,y,z
|
|
real(psb_dpk_) :: val
|
|
|
|
val = dzero
|
|
|
|
end function d_null_func_3d
|
|
|
|
function d_null_func_2d(x,y) result(val)
|
|
|
|
real(psb_dpk_), intent(in) :: x,y
|
|
real(psb_dpk_) :: val
|
|
|
|
val = dzero
|
|
|
|
end function d_null_func_2d
|
|
|
|
|
|
end module psb_d_genpde_mod
|