psblas3/test/kernel/pdgenspmv.f90

668 lines
20 KiB
Fortran

!
! Parallel Sparse BLAS version 3.5.1
! (C) Copyright 2015
! Salvatore Filippone
! Alfredo Buttari
!
! Redistribution and use in source and binary forms, with or without
! modification, are permitted provided that the following conditions
! are met:
! 1. Redistributions of source code must retain the above copyright
! notice, this list of conditions and the following disclaimer.
! 2. Redistributions in binary form must reproduce the above copyright
! notice, this list of conditions, and the following disclaimer in the
! documentation and/or other materials provided with the distribution.
! 3. The name of the PSBLAS group or the names of its contributors may
! not be used to endorse or promote products derived from this
! software without specific written permission.
!
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
! ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
! TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS
! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
! POSSIBILITY OF SUCH DAMAGE.
!
!
! File: ppde.f90
!
module psb_d_pde3d_mod
use psb_base_mod, only : psb_dpk_, psb_ipk_, psb_desc_type,&
& psb_dspmat_type, psb_d_vect_type, dzero,&
& psb_d_base_sparse_mat, psb_d_base_vect_type, psb_i_base_vect_type
interface
function d_func_3d(x,y,z) result(val)
import :: psb_dpk_
real(psb_dpk_), intent(in) :: x,y,z
real(psb_dpk_) :: val
end function d_func_3d
end interface
interface psb_gen_pde3d
module procedure psb_d_gen_pde3d
end interface psb_gen_pde3d
contains
function d_null_func_3d(x,y,z) result(val)
real(psb_dpk_), intent(in) :: x,y,z
real(psb_dpk_) :: val
val = dzero
end function d_null_func_3d
!
! subroutine to allocate and fill in the coefficient matrix and
! the rhs.
!
subroutine psb_d_gen_pde3d(ictxt,idim,a,bv,xv,desc_a,afmt,&
& a1,a2,a3,b1,b2,b3,c,g,info,f,amold,vmold,imold,nrl,iv)
use psb_base_mod
!
! Discretizes the partial differential equation
!
! a1 dd(u) a2 dd(u) a3 dd(u) b1 d(u) b2 d(u) b3 d(u)
! - ------ - ------ - ------ + ----- + ------ + ------ + c u = f
! dxdx dydy dzdz dx dy dz
!
! with Dirichlet boundary conditions
! u = g
!
! on the unit cube 0<=x,y,z<=1.
!
!
! Note that if b1=b2=b3=c=0., the PDE is the Laplace equation.
!
implicit none
procedure(d_func_3d) :: b1,b2,b3,c,a1,a2,a3,g
integer(psb_ipk_) :: idim
type(psb_dspmat_type) :: a
type(psb_d_vect_type) :: xv,bv
type(psb_desc_type) :: desc_a
integer(psb_ipk_) :: ictxt, info
character(len=*) :: afmt
procedure(d_func_3d), optional :: f
class(psb_d_base_sparse_mat), optional :: amold
class(psb_d_base_vect_type), optional :: vmold
class(psb_i_base_vect_type), optional :: imold
integer(psb_ipk_), optional :: nrl,iv(:)
! Local variables.
integer(psb_ipk_), parameter :: nb=20
type(psb_d_csc_sparse_mat) :: acsc
type(psb_d_coo_sparse_mat) :: acoo
type(psb_d_csr_sparse_mat) :: acsr
real(psb_dpk_) :: zt(nb),x,y,z
integer(psb_ipk_) :: m,n,nnz,glob_row,nlr,i,ii,ib,k
integer(psb_ipk_) :: ix,iy,iz,ia,indx_owner
integer(psb_ipk_) :: np, iam, nr, nt
integer(psb_ipk_) :: icoeff
integer(psb_ipk_), allocatable :: irow(:),icol(:),myidx(:)
real(psb_dpk_), allocatable :: val(:)
! deltah dimension of each grid cell
! deltat discretization time
real(psb_dpk_) :: deltah, sqdeltah, deltah2
real(psb_dpk_), parameter :: rhs=0.d0,one=1.d0,zero=0.d0
real(psb_dpk_) :: t0, t1, t2, t3, tasb, talc, ttot, tgen, tcdasb
integer(psb_ipk_) :: err_act
procedure(d_func_3d), pointer :: f_
character(len=20) :: name, ch_err,tmpfmt
info = psb_success_
name = 'create_matrix'
call psb_erractionsave(err_act)
call psb_info(ictxt, iam, np)
if (present(f)) then
f_ => f
else
f_ => d_null_func_3d
end if
deltah = 1.d0/(idim+2)
sqdeltah = deltah*deltah
deltah2 = 2.d0* deltah
! initialize array descriptor and sparse matrix storage. provide an
! estimate of the number of non zeroes
m = idim*idim*idim
n = m
nnz = ((n*9)/(np))
if(iam == psb_root_) write(psb_out_unit,'("Generating Matrix (size=",i0,")...")')n
if (.not.present(iv)) then
if (present(nrl)) then
nr = nrl
else
!
! Using a simple BLOCK distribution.
!
nt = (m+np-1)/np
nr = max(0,min(nt,m-(iam*nt)))
end if
nt = nr
call psb_sum(ictxt,nt)
if (nt /= m) then
write(psb_err_unit,*) iam, 'Initialization error ',nr,nt,m
info = -1
call psb_barrier(ictxt)
call psb_abort(ictxt)
return
end if
else
if (size(iv) /= m) then
write(psb_err_unit,*) iam, 'Initialization error IV',size(iv),m
info = -1
call psb_barrier(ictxt)
call psb_abort(ictxt)
return
end if
end if
call psb_barrier(ictxt)
t0 = psb_wtime()
if (present(iv)) then
call psb_cdall(ictxt,desc_a,info,vg=iv)
else
call psb_cdall(ictxt,desc_a,info,nl=nr)
end if
if (info == psb_success_) call psb_spall(a,desc_a,info,nnz=nnz)
! define rhs from boundary conditions; also build initial guess
if (info == psb_success_) call psb_geall(xv,desc_a,info)
if (info == psb_success_) call psb_geall(bv,desc_a,info)
call psb_barrier(ictxt)
talc = psb_wtime()-t0
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='allocation rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
! we build an auxiliary matrix consisting of one row at a
! time; just a small matrix. might be extended to generate
! a bunch of rows per call.
!
allocate(val(20*nb),irow(20*nb),&
&icol(20*nb),stat=info)
if (info /= psb_success_ ) then
info=psb_err_alloc_dealloc_
call psb_errpush(info,name)
goto 9999
endif
myidx = desc_a%get_global_indices()
nlr = size(myidx)
! loop over rows belonging to current process in a block
! distribution.
call psb_barrier(ictxt)
t1 = psb_wtime()
do ii=1, nlr,nb
ib = min(nb,nlr-ii+1)
icoeff = 1
do k=1,ib
i=ii+k-1
! local matrix pointer
glob_row=myidx(i)
! compute gridpoint coordinates
if (mod(glob_row,(idim*idim)) == 0) then
ix = glob_row/(idim*idim)
else
ix = glob_row/(idim*idim)+1
endif
if (mod((glob_row-(ix-1)*idim*idim),idim) == 0) then
iy = (glob_row-(ix-1)*idim*idim)/idim
else
iy = (glob_row-(ix-1)*idim*idim)/idim+1
endif
iz = glob_row-(ix-1)*idim*idim-(iy-1)*idim
! x, y, x coordinates
x = (ix-1)*deltah
y = (iy-1)*deltah
z = (iz-1)*deltah
zt(k) = f_(x,y,z)
! internal point: build discretization
!
! term depending on (x-1,y,z)
!
val(icoeff) = -a1(x,y,z)/sqdeltah-b1(x,y,z)/deltah2
if (ix == 1) then
zt(k) = g(dzero,y,z)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-2)*idim*idim+(iy-1)*idim+(iz)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y-1,z)
val(icoeff) = -a2(x,y,z)/sqdeltah-b2(x,y,z)/deltah2
if (iy == 1) then
zt(k) = g(x,dzero,z)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-1)*idim*idim+(iy-2)*idim+(iz)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y,z-1)
val(icoeff)=-a3(x,y,z)/sqdeltah-b3(x,y,z)/deltah2
if (iz == 1) then
zt(k) = g(x,y,dzero)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-1)*idim*idim+(iy-1)*idim+(iz-1)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y,z)
val(icoeff)=2.d0*(a1(x,y,z)+a2(x,y,z)+a3(x,y,z))/sqdeltah &
& + c(x,y,z)
icol(icoeff) = (ix-1)*idim*idim+(iy-1)*idim+(iz)
irow(icoeff) = glob_row
icoeff = icoeff+1
! term depending on (x,y,z+1)
val(icoeff)=-a3(x,y,z)/sqdeltah+b3(x,y,z)/deltah2
if (iz == idim) then
zt(k) = g(x,y,done)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-1)*idim*idim+(iy-1)*idim+(iz+1)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y+1,z)
val(icoeff)=-a2(x,y,z)/sqdeltah+b2(x,y,z)/deltah2
if (iy == idim) then
zt(k) = g(x,done,z)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix-1)*idim*idim+(iy)*idim+(iz)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x+1,y,z)
val(icoeff)=-a1(x,y,z)/sqdeltah+b1(x,y,z)/deltah2
if (ix==idim) then
zt(k) = g(done,y,z)*(-val(icoeff)) + zt(k)
else
icol(icoeff) = (ix)*idim*idim+(iy-1)*idim+(iz)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
end do
call psb_spins(icoeff-1,irow,icol,val,a,desc_a,info)
if(info /= psb_success_) exit
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),bv,desc_a,info)
if(info /= psb_success_) exit
zt(:)=0.d0
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),xv,desc_a,info)
if(info /= psb_success_) exit
end do
tgen = psb_wtime()-t1
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='insert rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
deallocate(val,irow,icol)
call psb_barrier(ictxt)
t1 = psb_wtime()
call psb_cdasb(desc_a,info,mold=imold)
tcdasb = psb_wtime()-t1
call psb_barrier(ictxt)
t1 = psb_wtime()
if (info == psb_success_) then
if (present(amold)) then
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,mold=amold)
else
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,afmt=afmt)
end if
end if
call psb_barrier(ictxt)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
if (info == psb_success_) call psb_geasb(xv,desc_a,info,mold=vmold)
if (info == psb_success_) call psb_geasb(bv,desc_a,info,mold=vmold)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
tasb = psb_wtime()-t1
call psb_barrier(ictxt)
ttot = psb_wtime() - t0
call psb_amx(ictxt,talc)
call psb_amx(ictxt,tgen)
call psb_amx(ictxt,tasb)
call psb_amx(ictxt,ttot)
if(iam == psb_root_) then
tmpfmt = a%get_fmt()
write(psb_out_unit,'("The matrix has been generated and assembled in ",a3," format.")')&
& tmpfmt
write(psb_out_unit,'("-allocation time : ",es12.5)') talc
write(psb_out_unit,'("-coeff. gen. time : ",es12.5)') tgen
write(psb_out_unit,'("-desc asbly time : ",es12.5)') tcdasb
write(psb_out_unit,'("- mat asbly time : ",es12.5)') tasb
write(psb_out_unit,'("-total time : ",es12.5)') ttot
end if
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(ictxt,err_act)
return
end subroutine psb_d_gen_pde3d
end module psb_d_pde3d_mod
program pdgenspmv
use psb_base_mod
use psb_util_mod
use psb_d_pde3d_mod
implicit none
! input parameters
character(len=20) :: kmethd, ptype
character(len=5) :: afmt
integer(psb_ipk_) :: idim
! miscellaneous
real(psb_dpk_), parameter :: one = 1.d0
real(psb_dpk_) :: t1, t2, tprec, flops, tflops, tt1, tt2, bdwdth
! sparse matrix and preconditioner
type(psb_dspmat_type) :: a
! descriptor
type(psb_desc_type) :: desc_a
! dense matrices
type(psb_d_vect_type) :: xv,bv, vtst
real(psb_dpk_), allocatable :: tst(:)
! blacs parameters
integer(psb_ipk_) :: ictxt, iam, np
! solver parameters
integer(psb_ipk_) :: iter, itmax,itrace, istopc, irst, nr
integer(psb_long_int_k_) :: amatsize, precsize, descsize, d2size, annz, nbytes
real(psb_dpk_) :: err, eps
integer(psb_ipk_), parameter :: times=10
! other variables
integer(psb_ipk_) :: info, i
character(len=20) :: name,ch_err
character(len=40) :: fname
info=psb_success_
call psb_init(ictxt)
call psb_info(ictxt,iam,np)
if (iam < 0) then
! This should not happen, but just in case
call psb_exit(ictxt)
stop
endif
if(psb_get_errstatus() /= 0) goto 9999
name='pde90'
call psb_set_errverbosity(itwo)
!
! Hello world
!
if (iam == psb_root_) then
write(*,*) 'Welcome to PSBLAS version: ',psb_version_string_
write(*,*) 'This is the ',trim(name),' sample program'
end if
!
! get parameters
!
call get_parms(ictxt,afmt,idim)
!
! allocate and fill in the coefficient matrix, rhs and initial guess
!
call psb_barrier(ictxt)
t1 = psb_wtime()
call psb_gen_pde3d(ictxt,idim,a,bv,xv,desc_a,afmt,&
& a1,a2,a3,b1,b2,b3,c,g,info)
call psb_barrier(ictxt)
t2 = psb_wtime() - t1
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='psb_gen_pde3d'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
if (iam == psb_root_) write(psb_out_unit,'("Overall matrix creation time : ",es12.5)')t2
if (iam == psb_root_) write(psb_out_unit,'(" ")')
call xv%set(done)
call psb_barrier(ictxt)
t1 = psb_wtime()
!
! Perform Ax multiple times to compute average performance
!
do i=1,times
call psb_spmm(done,a,xv,dzero,bv,desc_a,info,'n')
end do
call psb_barrier(ictxt)
t2 = psb_wtime() - t1
call psb_amx(ictxt,t2)
! FIXME: cache flush needed here
call psb_barrier(ictxt)
tt1 = psb_wtime()
!
! Perform A^Tx multiple times to compute average performance
!
do i=1,times
call psb_spmm(done,a,xv,dzero,bv,desc_a,info,'t')
end do
call psb_barrier(ictxt)
tt2 = psb_wtime() - tt1
call psb_amx(ictxt,tt2)
call psb_amx(ictxt,t2)
nr = desc_a%get_global_rows()
annz = a%get_nzeros()
amatsize = a%sizeof()
descsize = psb_sizeof(desc_a)
call psb_sum(ictxt,annz)
call psb_sum(ictxt,amatsize)
call psb_sum(ictxt,descsize)
if (iam == psb_root_) then
flops = 2.d0*times*annz
tflops=flops
write(psb_out_unit,'("Matrix: ell1 ",i0)') idim
write(psb_out_unit,'("Test on : ",i20," processors")') np
write(psb_out_unit,'("Size of matrix : ",i20," ")') nr
write(psb_out_unit,'("Number of nonzeros : ",i20," ")') annz
write(psb_out_unit,'("Memory occupation : ",i20," ")') amatsize
write(psb_out_unit,'("Number of flops (",i0," prod) : ",F20.0," ")') times,flops
flops = flops / (t2)
tflops = tflops / (tt2)
write(psb_out_unit,'("Time for ",i0," products (s) : ",F20.3)')times, t2
write(psb_out_unit,'("Time per product (ms) : ",F20.3)') t2*1.d3/(1.d0*times)
write(psb_out_unit,'("MFLOPS : ",F20.3)') flops/1.d6
write(psb_out_unit,'("Time for ",i0," products (s) (trans.): ",F20.3)') times,tt2
write(psb_out_unit,'("Time per product (ms) (trans.): ",F20.3)') tt2*1.d3/(1.d0*times)
write(psb_out_unit,'("MFLOPS (trans.): ",F20.3)') tflops/1.d6
!
! This computation is valid for CSR
!
nbytes = nr*(2*psb_sizeof_dp + psb_sizeof_int)+&
& annz*(psb_sizeof_dp + psb_sizeof_int)
bdwdth = times*nbytes/(t2*1.d6)
write(psb_out_unit,*)
write(psb_out_unit,'("MBYTES/S : ",F20.3)') bdwdth
bdwdth = times*nbytes/(tt2*1.d6)
write(psb_out_unit,'("MBYTES/S (trans): ",F20.3)') bdwdth
write(psb_out_unit,'("Storage type for DESC_A: ",a)') desc_a%get_fmt()
write(psb_out_unit,'("Total memory occupation for DESC_A: ",i12)')descsize
end if
!
! cleanup storage and exit
!
call psb_gefree(bv,desc_a,info)
call psb_gefree(xv,desc_a,info)
call psb_spfree(a,desc_a,info)
call psb_cdfree(desc_a,info)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='free routine'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
call psb_exit(ictxt)
stop
9999 call psb_error(ictxt)
stop
contains
!
! get iteration parameters from standard input
!
subroutine get_parms(ictxt,afmt,idim)
integer(psb_ipk_) :: ictxt
character(len=*) :: afmt
integer(psb_ipk_) :: idim
integer(psb_ipk_) :: np, iam
integer(psb_ipk_) :: intbuf(10), ip
call psb_info(ictxt, iam, np)
if (iam == 0) then
read(psb_inp_unit,*) afmt
read(psb_inp_unit,*) idim
endif
call psb_bcast(ictxt,afmt)
call psb_bcast(ictxt,idim)
if (iam == 0) then
write(psb_out_unit,'("Testing matrix : ell1")')
write(psb_out_unit,'("Grid dimensions : ",i4,"x",i4,"x",i4)')idim,idim,idim
write(psb_out_unit,'("Number of processors : ",i0)')np
write(psb_out_unit,'("Data distribution : BLOCK")')
write(psb_out_unit,'(" ")')
end if
return
end subroutine get_parms
!
! print an error message
!
subroutine pr_usage(iout)
integer(psb_ipk_) :: iout
write(iout,*)'incorrect parameter(s) found'
write(iout,*)' usage: pde90 methd prec dim &
&[istop itmax itrace]'
write(iout,*)' where:'
write(iout,*)' methd: cgstab cgs rgmres bicgstabl'
write(iout,*)' prec : bjac diag none'
write(iout,*)' dim number of points along each axis'
write(iout,*)' the size of the resulting linear '
write(iout,*)' system is dim**3'
write(iout,*)' istop stopping criterion 1, 2 '
write(iout,*)' itmax maximum number of iterations [500] '
write(iout,*)' itrace <=0 (no tracing, default) or '
write(iout,*)' >= 1 do tracing every itrace'
write(iout,*)' iterations '
end subroutine pr_usage
!
! functions parametrizing the differential equation
!
function b1(x,y,z)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: b1
real(psb_dpk_), intent(in) :: x,y,z
b1=1.d0/sqrt(3.d0)
end function b1
function b2(x,y,z)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: b2
real(psb_dpk_), intent(in) :: x,y,z
b2=1.d0/sqrt(3.d0)
end function b2
function b3(x,y,z)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: b3
real(psb_dpk_), intent(in) :: x,y,z
b3=1.d0/sqrt(3.d0)
end function b3
function c(x,y,z)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: c
real(psb_dpk_), intent(in) :: x,y,z
c=0.d0
end function c
function a1(x,y,z)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: a1
real(psb_dpk_), intent(in) :: x,y,z
a1=1.d0/80
end function a1
function a2(x,y,z)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: a2
real(psb_dpk_), intent(in) :: x,y,z
a2=1.d0/80
end function a2
function a3(x,y,z)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: a3
real(psb_dpk_), intent(in) :: x,y,z
a3=1.d0/80
end function a3
function g(x,y,z)
use psb_base_mod, only : psb_dpk_, done
real(psb_dpk_) :: g
real(psb_dpk_), intent(in) :: x,y,z
g = dzero
if (x == done) then
g = done
else if (x == dzero) then
g = exp(y**2-z**2)
end if
end function g
end program pdgenspmv