You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
psblas3/docs/src/psbrout.tex

1449 lines
44 KiB
TeX

\section{Computational routines}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% DENSE MATRIX SUM
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\clearpage\subsection{psb\_geaxpby --- General Dense Matrix Sum}
This subroutine is an interface to the computational kernel for
dense matrix sum:
\[ y \leftarrow \alpha\> x+ \beta y \]
%% where:
%% \begin{description}
%% \item[$x$] represents the global dense submatrix $x_{:, :1}$
%% \item[$y$] represents the global dense submatrix $y_{:, :}$
%% \end{description}
\begin{verbatim}
call psb_geaxpby(alpha, x, beta, y, desc_a, info)
\end{verbatim}
%% \syntax*{call psb\_geaxpby}{alpha, x, beta, y, desc\_a, info, n, jx, jy}
%( calculating y <- alpha*x+beta*y )
\begin{table}[h]
\begin{center}
\begin{tabular}{ll}
\hline
$x$, $y$, $\alpha$, $\beta$ & {\bf Subroutine}\\
\hline
Short Precision Real & psb\_geaxpby \\
Long Precision Real & psb\_geaxpby \\
Short Precision Complex & psb\_geaxpby \\
Long Precision Complex & psb\_geaxpby \\
\hline
\end{tabular}
\end{center}
\caption{Data types\label{tab:f90axpby}}
\end{table}
\begin{description}
\item[Type:] Synchronous.
\item[\bf On Entry]
\item[alpha] the scalar $\alpha$.\\ Scope: {\bf global} \\ Type: {\bf
required} \\ Intent: {\bf in}.\\ Specified as: a number of the data
type indicated in Table~\ref{tab:f90axpby}.
\item[x] the local portion of global dense matrix
$x$.\\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf in}.\\
Specified as: a rank one or two array or an object of type \vdata\
containing numbers of type
specified in Table~\ref{tab:f90axpby}. The rank of $x$ must be the same of $y$.
\item[beta] the scalar $\beta$.\\
Scope: {\bf global} \\
Type: {\bf required} \\
Intent: {\bf in}.\\
Specified as: a number of the data type indicated in Table~\ref{tab:f90axpby}.
\item[y] the local portion of the global dense matrix
$y$. \\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf inout}.\\
Specified as: a rank one or two array or an object of type \vdata\ containing numbers of the type
indicated in Table~\ref{tab:f90axpby}. The rank of $y$ must be the same of $x$.
\item[desc\_a] contains data structures for communications.\\
Scope: {\bf local} \\
Type: {\bf required}\\
Intent: {\bf in}.\\
Specified as: an object of type \descdata.
%% \item[n] number of columns in dense submatrices $x$ and $y$.\\
%% Scope: {\bf global} \\
%% Type: {\bf optional}; can only be present if $x$ and $y$ are of rank 2.\\
%% Default: \verb|min(size(x,2),size(y,2))|.\\
%% Specified as: an integer variable $n\ge 0$.
%% \item[jx] the column index of the global dense matrix $x$,
%% identifying the first column of the submatrix $x$.\\
%% Scope: {\bf global} \\
%% Type: {\bf optional}; can only be present if $x$ and $y$ are of rank 2.\\
%% Default: $jx = 1$.\\
%% Specified as: an integer variable $jx\ge 1$.
%% \item[jy] the column index of the global dense matrix $y$,
%% identifying the first column of the submatrix $y$.\\
%% Scope: {\bf global} \\
%% Type: {\bf optional}; can only be present if $x$ and $y$ are of rank 2.\\
%% Default: $jy = 1$.\\
%% Specified as: an integer variable $jy\ge 1$.
\end{description}
\begin{description}
\item[\bf On Return]
\item[y] the local portion of result submatrix $y$.\\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf inout}.\\
Specified as: a rank one or two array or an object of type \vdata\ containing numbers of the type
indicated in Table~\ref{tab:f90axpby}.
\item[info] Error code.\\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf out}.\\
An integer value; 0 means no error has been detected.
\end{description}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% F90DOT PRODUCT
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\clearpage\subsection{psb\_gedot --- Dot Product}
This function computes dot product between two vectors $x$ and
$y$.\\
If $x$ and $y$ are real vectors
it computes dot-product as:
\[dot \leftarrow x^T y\]
Else if $x$ and $y$ are complex vectors then it computes dot-product as:
\[dot \leftarrow x^H y\]
%% where:
%% \begin{description}
%% \item[$x$] represents the global vector $x_{:,jx}$
%% \item[$y$] represents the global vector $y_{:,jy}$
%% \end{description}
\begin{verbatim}
psb_gedot(x, y, desc_a, info [,global])
\end{verbatim}
%% \syntax*{psb\_gedot}{x, y, desc\_a, info, jx, jy}
\begin{table}[h]
\begin{center}
\begin{tabular}{ll}
\hline
$dot$, $x$, $y$ & {\bf Function}\\
\hline
Short Precision Real & psb\_gedot \\
Long Precision Real & psb\_gedot \\
Short Precision Complex & psb\_gedot \\
Long Precision Complex & psb\_gedot \\
\hline
\end{tabular}
\end{center}
\caption{Data types\label{tab:f90dot}}
\end{table}
\begin{description}
\item[Type:] Synchronous.
\item[\bf On Entry]
\item[x] the local portion of global dense matrix
$x$.\\
%% This function computes the location of the first element of
%% local subarray used, based on $jx$ and the field $matrix\_data$ of $desc\_a$ . \\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf in}.\\
Specified as: a rank one or two array or an object of type \vdata\
containing numbers of type specified in
Table~\ref{tab:f90dot}. The rank of $x$ must be the same of $y$.
\item[y] the local portion of global dense matrix
$y$. \\
%% This function computes the location of the first element of
%% local subarray used, based on $iy, jy$ and the field $matrix\_data$ of $desc\_a$ . \\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf in}.\\
Specified as: a rank one or two array or an object of type \vdata\
containing numbers of type specified in
Table~\ref{tab:f90dot}. The rank of $y$ must be the same of $x$.
\item[desc\_a] contains data structures for communications.\\
Scope: {\bf local} \\
Type: {\bf required}\\
Intent: {\bf in}.\\
Specified as: an object of type \descdata.
\item[global] Specifies whether the computation should include the
global reduction across all processes.\\
Scope: {\bf global} \\
Type: {\bf optional}.\\
Intent: {\bf in}.\\
Specified as: a logical scalar.
Default: \verb|global=.true.|\\
%% \item[jx] the column index of global dense matrix $x$,
%% identifying the column of vector $x$.\\
%% Scope: {\bf global} \\
%% Type: {\bf optional}; can only be present if $x$ and $y$ are of rank 2.\\
%% Default: $jx = 1$.\\
%% \item[jy] the column index of global dense matrix $y$,
%% identifying the column of vector $y$.\\
%% Scope: {\bf global} \\
%% Type: {\bf optional}; can only be present if $x$ and $y$ are of rank 2.\\
%% Default: $jy = 1$.\\
%% Specified as: an integer variable $jy\ge 1$.
\item[\bf On Return]
\item[Function value] is the dot product of vectors $x$ and $y$.\\
Scope: {\bf global} unless the optional variable
\verb|global=.false.| has been specified\\
Specified as: a number of the data type indicated in Table~\ref{tab:f90dot}.
\item[info] Error code.\\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf out}.\\
An integer value; 0 means no error has been detected.
\end{description}
{\par\noindent\large\bfseries Notes}
\begin{enumerate}
\item The computation of a global result requires a global
communication, which entails a significant overhead. It may be
necessary and/or advisable to compute multiple dot products at the same
time; in this case, it is possible to improve the runtime efficiency
by using the following scheme:
\begin{lstlisting}
vres(1) = psb_gedot(x1,y1,desc_a,info,global=.false.)
vres(2) = psb_gedot(x2,y2,desc_a,info,global=.false.)
vres(3) = psb_gedot(x3,y3,desc_a,info,global=.false.)
call psb_sum(ictxt,vres(1:3))
\end{lstlisting}
In this way the global communication, which for small sizes is a
latency-bound operation, is invoked only once.
\end{enumerate}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% F90DOT PRODUCT
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\clearpage\subsection{psb\_gedots --- Generalized Dot Product}
This subroutine computes a series of dot products among the columns of
two dense matrices $x$ and $y$:
\[ res(i) \leftarrow x(:,i)^T y(:,i)\]
If the matrices are complex, then the
usual convention applies, i.e. the conjugate transpose of $x$ is
used. If $x$ and $y$ are of rank one, then $res$ is a scalar, else it
is a rank one array.
\begin{verbatim}
call psb_gedots(res, x, y, desc_a, info)
\end{verbatim}
\begin{table}[h]
\begin{center}
\begin{tabular}{ll}
\hline
$res$, $x$, $y$ & {\bf Subroutine}\\
\hline
Short Precision Real & psb\_gedots \\
Long Precision Real & psb\_gedots \\
Short Precision Complex & psb\_gedots \\
Long Precision Complex & psb\_gedots \\
\hline
\end{tabular}
\end{center}
\caption{Data types\label{tab:f90mdot}}
\end{table}
\begin{description}
\item[Type:] Synchronous.
\item[\bf On Entry]
\item[x] the local portion of global dense matrix
$x$. \\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf in}.\\
Specified as: a rank one or two array or an object of type \vdata\
containing numbers of type specified in
Table~\ref{tab:f90mdot}. The rank of $x$ must be the same of $y$.
\item[y] the local portion of global dense matrix
$y$. \\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf in}.\\
Specified as: a rank one or two array or an object of type \vdata\
containing numbers of type specified in
Table~\ref{tab:f90mdot}. The rank of $y$ must be the same of $x$.
\item[desc\_a] contains data structures for communications.\\
Scope: {\bf local} \\
Type: {\bf required}\\
Intent: {\bf in}.\\
Specified as: an object of type \descdata.
\item[\bf On Return]
\item[res] is the dot product of vectors $x$ and $y$.\\
Scope: {\bf global} \\
Intent: {\bf out}.\\
Specified as: a number or a rank-one array of the data type indicated
in Table~\ref{tab:f90dot}.
\item[info] Error code.\\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf out}.\\
An integer value; 0 means no error has been detected.
\end{description}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% VECTOR INFINITY-NORM
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\clearpage\subsection{psb\_normi --- Infinity-Norm of Vector}
This function computes
the infinity-norm of a vector $x$.\\
If $x$ is a real vector
it computes infinity norm as:
\[ amax \leftarrow \max_i |x_i|\]
else if $x$ is a complex vector then it computes the infinity-norm as:
\[ amax \leftarrow \max_i {(|re(x_i)| + |im(x_i)|)}\]
%% where:
%% \begin{description}
%% \item[$x$] represents the global vector $x_{:,jx}$
%% \end{description}
\begin{verbatim}
psb_geamax(x, desc_a, info [,global])
psb_normi(x, desc_a, info [,global])
\end{verbatim}
%% \syntax*{psb\_geamax}{x, desc\_a, info, jx}
\begin{table}[h]
\begin{center}
\begin{tabular}{lll}
\hline
$amax$ & $x$ & {\bf Function}\\
\hline
Short Precision Real& Short Precision Real & psb\_geamax \\
Long Precision Real&Long Precision Real & psb\_geamax \\
Short Precision Real&Short Precision Complex & psb\_geamax \\
Long Precision Real&Long Precision Complex & psb\_geamax \\
\hline
\end{tabular}
\end{center}
\caption{Data types\label{tab:f90amax}}
\end{table}
\begin{description}
\item[Type:] Synchronous.
\item[\bf On Entry]
\item[x] the local portion of global dense matrix
$x$. %% This function computes the location of the first element of
%% local subarray used, based on $jx$ and the field $matrix\_data$ of $desc\_a$ .
\\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf in}.\\
Specified as: a rank one or two array or an object of type \vdata\
containing numbers of type specified in
Table~\ref{tab:f90amax}.
\item[desc\_a] contains data structures for communications.\\
Scope: {\bf local} \\
Type: {\bf required}\\
Intent: {\bf in}.\\
Specified as: an object of type \descdata.
\item[global] Specifies whether the computation should include the
global reduction across all processes.\\
Scope: {\bf global} \\
Type: {\bf optional}.\\
Intent: {\bf in}.\\
Specified as: a logical scalar.
Default: \verb|global=.true.|\\%% \item[jx] the column index of global dense matrix $x$,
%% identifying the column of vector $x$.\\
%% Scope: {\bf global} \\
%% Type: {\bf optional}; can only be present if $x$ is of rank 2.\\
%% Default: $jx = 1$\\
%% Specified as: an integer variable $jx\ge 1$.
\item[\bf On Return]
\item[Function value] is the infinity norm of vector $x$.\\
Scope: {\bf global} unless the optional variable
\verb|global=.false.| has been specified\\
Specified as: a long precision real number.
\item[info] Error code.\\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf out}.\\
An integer value; 0 means no error has been detected.
\end{description}
{\par\noindent\large\bfseries Notes}
\begin{enumerate}
\item The computation of a global result requires a global
communication, which entails a significant overhead. It may be
necessary and/or advisable to compute multiple norms at the same
time; in this case, it is possible to improve the runtime efficiency
by using the following scheme:
\begin{lstlisting}
vres(1) = psb_geamax(x1,desc_a,info,global=.false.)
vres(2) = psb_geamax(x2,desc_a,info,global=.false.)
vres(3) = psb_geamax(x3,desc_a,info,global=.false.)
call psb_amx(ictxt,vres(1:3))
\end{lstlisting}
In this way the global communication, which for small sizes is a
latency-bound operation, is invoked only once.
\end{enumerate}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Infinity norm
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\clearpage\subsection{psb\_geamaxs --- Generalized Infinity Norm}
This subroutine computes a series of infinity norms on the columns of
a dense matrix $x$:
\[ res(i) \leftarrow \max_k |x(k,i)| \]
\begin{verbatim}
call psb_geamaxs(res, x, desc_a, info)
\end{verbatim}
\begin{table}[h]
\begin{center}
\begin{tabular}{lll}
\hline
$res$& $x$& {\bf Subroutine}\\
\hline
Short Precision Real &Short Precision Real & psb\_geamaxs\\
Long Precision Real &Long Precision Real & psb\_geamaxs\\
Short Precision Real &Short Precision Complex & psb\_geamaxs\\
Long Precision Real &Long Precision Complex & psb\_geamaxs\\
\hline
\end{tabular}
\end{center}
\caption{Data types\label{tab:f90mamax}}
\end{table}
\begin{description}
\item[Type:] Synchronous.
\item[\bf On Entry]
\item[x] the local portion of global dense matrix
$x$. \\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf in}.\\
Specified as: a rank one or two array or an object of type \vdata\
containing numbers of type specified in
Table~\ref{tab:f90mamax}.
\item[desc\_a] contains data structures for communications.\\
Scope: {\bf local} \\
Type: {\bf required}\\
Intent: {\bf in}.\\
Specified as: an object of type \descdata.
\item[\bf On Return]
\item[res] is the infinity norm of the columns of $x$.\\
Scope: {\bf global} \\
Intent: {\bf out}.\\
Specified as: a number or a rank-one array of long precision real numbers.
\item[info] Error code.\\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf out}.\\
An integer value; 0 means no error has been detected.
\end{description}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% 1-NORM OF A VECTOR
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\clearpage\subsection{psb\_norm1 --- 1-Norm of Vector}
This function computes the 1-norm of a vector $x$.\\
If $x$ is a real vector
it computes 1-norm as:
\[ asum \leftarrow \|x_i\|\]
else if $x$ is a complex vector then it computes 1-norm as:
\[ asum \leftarrow \|re(x)\|_1 + \|im(x)\|_1\]
\begin{verbatim}
psb_geasum(x, desc_a, info [,global])
psb_norm1(x, desc_a, info [,global])
\end{verbatim}
\begin{table}[h]
\begin{center}
\begin{tabular}{lll}
\hline
$asum$ & $x$ & {\bf Function}\\
\hline
Short Precision Real&Short Precision Real & psb\_geasum \\
Long Precision Real&Long Precision Real & psb\_geasum \\
Short Precision Real&Short Precision Complex & psb\_geasum \\
Long Precision Real&Long Precision Complex & psb\_geasum \\
\hline
\end{tabular}
\end{center}
\caption{Data types\label{tab:f90asum}}
\end{table}
\begin{description}
\item[Type:] Synchronous.
\item[\bf On Entry]
\item[x] the local portion of global dense matrix
$x$. %% This function computes the location of the first element of
%% local subarray used, based on the field $matrix\_data$ of $desc\_a$ .
\\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf in}.\\
Specified as: a rank one or two array or an object of type \vdata\
containing numbers of type specified in
Table~\ref{tab:f90asum}.
\item[desc\_a] contains data structures for communications.\\
Scope: {\bf local} \\
Type: {\bf required}\\
Intent: {\bf in}.\\
Specified as: an object of type \descdata.
\item[global] Specifies whether the computation should include the
global reduction across all processes.\\
Scope: {\bf global} \\
Type: {\bf optional}.\\
Intent: {\bf in}.\\
Specified as: a logical scalar.
Default: \verb|global=.true.|\\
\item[\bf On Return]
\item[Function value] is the 1-norm of vector $x$.\\
Scope: {\bf global} unless the optional variable
\verb|global=.false.| has been specified\\
Specified as: a long precision real number.
\item[info] Error code.\\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf out}.\\
An integer value; 0 means no error has been detected.
\end{description}
{\par\noindent\large\bfseries Notes}
\begin{enumerate}
\item The computation of a global result requires a global
communication, which entails a significant overhead. It may be
necessary and/or advisable to compute multiple norms at the same
time; in this case, it is possible to improve the runtime efficiency
by using the following scheme:
\begin{lstlisting}
vres(1) = psb_geasum(x1,desc_a,info,global=.false.)
vres(2) = psb_geasum(x2,desc_a,info,global=.false.)
vres(3) = psb_geasum(x3,desc_a,info,global=.false.)
call psb_sum(ictxt,vres(1:3))
\end{lstlisting}
In this way the global communication, which for small sizes is a
latency-bound operation, is invoked only once.
\end{enumerate}
\clearpage\subsection{psb\_geasums --- Generalized 1-Norm of Vector}
This subroutine computes a series of 1-norms on the columns of
a dense matrix $x$:
\[ res(i) \leftarrow \max_k |x(k,i)| \]
This function computes the 1-norm of a vector $x$.\\
If $x$ is a real vector
it computes 1-norm as:
\[ res(i) \leftarrow \|x_i\|\]
else if $x$ is a complex vector then it computes 1-norm as:
\[ res(i) \leftarrow \|re(x)\|_1 + \|im(x)\|_1\]
\begin{verbatim}
call psb_geasums(res, x, desc_a, info)
\end{verbatim}
\begin{table}[h]
\begin{center}
\begin{tabular}{lll}
\hline
$res$ & $x$ & {\bf Subroutine}\\
\hline
Short Precision Real&Short Precision Real & psb\_geasums \\
Long Precision Real&Long Precision Real & psb\_geasums \\
Short Precision Real&Short Precision Complex & psb\_geasums \\
Long Precision Real&Long Precision Complex & psb\_geasums \\
\hline
\end{tabular}
\end{center}
\caption{Data types\label{tab:f90asums}}
\end{table}
\begin{description}
\item[Type:] Synchronous.
\item[\bf On Entry]
\item[x] the local portion of global dense matrix
$x$. %% This function computes the location of the first element of
%% local subarray used, based on the field $matrix\_data$ of $desc\_a$ .
\\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf in}.\\
Specified as: a rank one or two array or an object of type \vdata\
containing numbers of type specified in
Table~\ref{tab:f90asums}.
\item[desc\_a] contains data structures for communications.\\
Scope: {\bf local} \\
Type: {\bf required}\\
Intent: {\bf in}.\\
Specified as: an object of type \descdata.
\item[\bf On Return]
\item[res] contains the 1-norm of (the columns of) $x$.\\
Scope: {\bf global} \\
Intent: {\bf out}.\\
Short as: a long precision real number.
Specified as: a long precision real number.
\item[info] Error code.\\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf out}.\\
An integer value; 0 means no error has been detected.
\end{description}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% 2-NORM OF A VECTOR
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\clearpage\subsection{psb\_norm2 --- 2-Norm of Vector}
This function computes the 2-norm of a vector $x$.\\
If $x$ is a real vector
it computes 2-norm as:
\[ nrm2 \leftarrow \sqrt{x^T x}\]
else if $x$ is a complex vector then it computes 2-norm as:
\[ nrm2 \leftarrow \sqrt{x^H x}\]
%% where:
%% \begin{description}
%% \item[$x$] represents the global vector $x_{:,jx}$
%% \end{description}
\begin{table}[h]
\begin{center}
\begin{tabular}{lll}
\hline
$nrm2$ & $x$ & {\bf Function}\\
\hline
Short Precision Real&Short Precision Real & psb\_genrm2 \\
Long Precision Real&Long Precision Real & psb\_genrm2 \\
Short Precision Real&Short Precision Complex & psb\_genrm2 \\
Long Precision Real&Long Precision Complex & psb\_genrm2 \\
\hline
\end{tabular}
\end{center}
\caption{Data types\label{tab:f90nrm2}}
\end{table}
\begin{verbatim}
psb_genrm2(x, desc_a, info [,global])
psb_norm2(x, desc_a, info [,global])
\end{verbatim}
%% \syntax*{psb\_genrm2}{x, desc\_a, info, jx}
\begin{description}
\item[Type:] Synchronous.
\item[\bf On Entry]
\item[x] the local portion of global dense matrix
$x$.%% This function computes the location of the first element of
%% local subarray used, based on $jx$ and the field $matrix\_data$ of $desc\_a$ .
\\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf in}.\\
Specified as: a rank one or two array or an object of type \vdata\
containing numbers of type specified in
Table~\ref{tab:f90nrm2}.
\item[desc\_a] contains data structures for communications.\\
Scope: {\bf local} \\
Type: {\bf required}\\
Intent: {\bf in}.\\
Specified as: an object of type \descdata.
\item[global] Specifies whether the computation should include the
global reduction across all processes.\\
Scope: {\bf global} \\
Type: {\bf optional}.\\
Intent: {\bf in}.\\
Specified as: a logical scalar.
Default: \verb|global=.true.|\\%% \item[jx] the column index of global dense matrix $x$,
%% identifying the column of vector $x$.\\
%% Scope: {\bf global} \\
%% Type: {\bf optional}; can only be present if $x$ is of rank 2.\\
%% Default: $jx = 1$\\
%% Specified as: an integer variable $jx\ge 1$.
\item[\bf On Return]
\item[Function Value] is the 2-norm of vector $x$.\\
Scope: {\bf global} unless the optional variable
\verb|global=.false.| has been specified\\
Type: {\bf required} \\
Specified as: a long precision real number.
\item[info] Error code.\\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf out}.\\
An integer value; 0 means no error has been detected.
\end{description}
{\par\noindent\large\bfseries Notes}
\begin{enumerate}
\item The computation of a global result requires a global
communication, which entails a significant overhead. It may be
necessary and/or advisable to compute multiple norms at the same
time; in this case, it is possible to improve the runtime efficiency
by using the following scheme:
\begin{lstlisting}
vres(1) = psb_genrm2(x1,desc_a,info,global=.false.)
vres(2) = psb_genrm2(x2,desc_a,info,global=.false.)
vres(3) = psb_genrm2(x3,desc_a,info,global=.false.)
call psb_nrm2(ictxt,vres(1:3))
\end{lstlisting}
In this way the global communication, which for small sizes is a
latency-bound operation, is invoked only once.
\end{enumerate}
\clearpage\subsection{psb\_genrm2s --- Generalized 2-Norm of Vector}
This subroutine computes a series of 2-norms on the columns of
a dense matrix $x$:
\[ res(i) \leftarrow \|x(:,i)\|_2 \]
\begin{verbatim}
call psb_genrm2s(res, x, desc_a, info)
\end{verbatim}
\begin{table}[h]
\begin{center}
\begin{tabular}{lll}
\hline
$res$ & $x$ & {\bf Subroutine}\\
\hline
Short Precision Real&Short Precision Real & psb\_genrm2s \\
Long Precision Real&Long Precision Real & psb\_genrm2s \\
Short Precision Real&Short Precision Complex & psb\_genrm2s \\
Long Precision Real&Long Precision Complex & psb\_genrm2s \\
\hline
\end{tabular}
\end{center}
\caption{Data types\label{tab:f90nrm2s}}
\end{table}
\begin{description}
\item[Type:] Synchronous.
\item[\bf On Entry]
\item[x] the local portion of global dense matrix
$x$. %% This function computes the location of the first element of
%% local subarray used, based on the field $matrix\_data$ of $desc\_a$ .
\\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf in}.\\
Specified as: a rank one or two array or an object of type \vdata\
containing numbers of type specified in
Table~\ref{tab:f90nrm2s}.
\item[desc\_a] contains data structures for communications.\\
Scope: {\bf local} \\
Type: {\bf required}\\
Intent: {\bf in}.\\
Specified as: an object of type \descdata.
\item[\bf On Return]
\item[res] contains the 1-norm of (the columns of) $x$.\\
Scope: {\bf global} \\
Intent: {\bf out}.\\
Specified as: a long precision real number.
\item[info] Error code.\\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf out}.\\
An integer value; 0 means no error has been detected.
\end{description}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% 1-NORM OF A MATRIX
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\clearpage\subsection{psb\_norm1 --- 1-Norm of Sparse Matrix}
This function computes the 1-norm of a matrix $A$:\\
\[ nrm1 \leftarrow \|A\|_1 \]
where:
\begin{description}
\item[$A$] represents the global matrix $A$
\end{description}
\begin{table}[h]
\begin{center}
\begin{tabular}{ll}
\hline
$A$ & {\bf Function}\\
\hline
Short Precision Real & psb\_spnrm1 \\
Long Precision Real & psb\_spnrm1 \\
Short Precision Complex & psb\_spnrm1 \\
Long Precision Complex & psb\_spnrm1 \\
\hline
\end{tabular}
\end{center}
\caption{Data types\label{tab:f90nrm1}}
\end{table}
\begin{verbatim}
psb_spnrm1(A, desc_a, info)
psb_norm1(A, desc_a, info)
\end{verbatim}
\begin{description}
\item[Type:] Synchronous.
\item[\bf On Entry]
\item[a] the local portion of the global sparse matrix
$A$. \\
Scope: {\bf local} \\
Type: {\bf required}\\
Intent: {\bf in}.\\
Specified as: an object of type \spdata.
\item[desc\_a] contains data structures for communications.\\
Scope: {\bf local} \\
Type: {\bf required}\\
Intent: {\bf in}.\\
Specified as: an object of type \descdata.
\item[\bf On Return]
\item[Function value] is the 1-norm of sparse submatrix $A$.\\
Scope: {\bf global} \\
Specified as: a long precision real number.
\item[info] Error code.\\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf out}.\\
An integer value; 0 means no error has been detected.
\end{description}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% INFINITY-NORM OF A MATRIX
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\clearpage\subsection{psb\_normi --- Infinity Norm of Sparse Matrix}
This function computes the infinity-norm of a matrix $A$:\\
\[ nrmi \leftarrow \|A\|_\infty \]
where:
\begin{description}
\item[$A$] represents the global matrix $A$
\end{description}
\begin{table}[h]
\begin{center}
\begin{tabular}{ll}
\hline
$A$ & {\bf Function}\\
\hline
Short Precision Real & psb\_spnrmi \\
Long Precision Real & psb\_spnrmi \\
Short Precision Complex & psb\_spnrmi \\
Long Precision Complex & psb\_spnrmi \\
\hline
\end{tabular}
\end{center}
\caption{Data types\label{tab:f90nrmi}}
\end{table}
\begin{verbatim}
psb_spnrmi(A, desc_a, info)
psb_normi(A, desc_a, info)
\end{verbatim}
\begin{description}
\item[Type:] Synchronous.
\item[\bf On Entry]
\item[a] the local portion of the global sparse matrix
$A$. \\
Scope: {\bf local} \\
Type: {\bf required}\\
Intent: {\bf in}.\\
Specified as: an object of type \spdata.
\item[desc\_a] contains data structures for communications.\\
Scope: {\bf local} \\
Type: {\bf required}\\
Intent: {\bf in}.\\
Specified as: an object of type \descdata.
\item[\bf On Return]
\item[Function value] is the infinity-norm of sparse submatrix $A$.\\
Scope: {\bf global} \\
Specified as: a long precision real number.
\item[info] Error code.\\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf out}.\\
An integer value; 0 means no error has been detected.
\end{description}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% SPARSE MATRIX by DENSE MATRIX PRODUCT
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\clearpage\subsection{psb\_spmm --- Sparse Matrix by Dense Matrix
Product}
This subroutine computes the Sparse Matrix by Dense Matrix Product:
\begin{equation}
y \leftarrow \alpha A x + \beta y
\label{eq:f90spmm_no_tra}
\end{equation}
\begin{equation}
y \leftarrow \alpha A^T x + \beta y
\label{eq:f90spmm_tra}
\end{equation}
\begin{equation}
y \leftarrow \alpha A^H x + \beta y
\label{eq:f90spmm_con}
\end{equation}
where:
\begin{description}
\item[$x$] is the global dense matrix $x_{:, :}$
\item[$y$] is the global dense matrix $y_{:, :}$
\item[$A$] is the global sparse matrix $A$
\end{description}
\begin{table}[h]
\begin{center}
\begin{tabular}{ll}
\hline
$A$, $x$, $y$, $\alpha$, $\beta$ & {\bf Subroutine}\\
\hline
Short Precision Real & psb\_spmm \\
Long Precision Real & psb\_spmm \\
Short Precision Complex & psb\_spmm \\
Long Precision Complex & psb\_spmm \\
\hline
\end{tabular}
\end{center}
\caption{Data types\label{tab:f90spmm}}
\end{table}
\begin{verbatim}
call psb_spmm(alpha, a, x, beta, y, desc_a, info)
call psb_spmm(alpha, a, x, beta, y,desc_a, info, &
& trans, work)
\end{verbatim}
\begin{description}
\item[Type:] Synchronous.
\item[\bf On Entry]
\item[alpha] the scalar $\alpha$.\\
Scope: {\bf global} \\
Type: {\bf required}\\
Intent: {\bf in}.\\
Specified as: a number of the data type indicated in
Table~\ref{tab:f90spmm}.
\item[a] the local portion of the sparse matrix
$A$. \\
Scope: {\bf local} \\
Type: {\bf required}\\
Intent: {\bf in}.\\
Specified as: an object of type \spdata.
\item[x] the local portion of global dense matrix
$x$. %% This subroutine computes the location of the first element of
%% local subarray used, based on $jx$ and the field $matrix\_data$ of $desc\_a$ .
\\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf in}.\\
Specified as: a rank one or two array or an object of type \vdata\
containing numbers of type specified in
Table~\ref{tab:f90spmm}. The rank of $x$ must be the same of $y$.
\item[beta] the scalar $\beta$.\\
Scope: {\bf global} \\
Type: {\bf required} \\
Intent: {\bf in}.\\
Specified as: a number of the data type indicated in Table~\ref{tab:f90spmm}.
\item[y] the local portion of global dense matrix
$y$. %% This subroutine computes the location of the first element of
%% local subarray used, based on $jy$ and the field $matrix\_data$ of $desc\_a$ .
\\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf inout}.\\
Specified as: a rank one or two array or an object of type \vdata\
containing numbers of type specified in
Table~\ref{tab:f90spmm}. The rank of $y$ must be the same of $x$.
\item[desc\_a] contains data structures for communications.\\
Scope: {\bf local} \\
Type: {\bf required}\\
Intent: {\bf in}.\\
Specified as: an object of type \descdata.
\item[trans] indicates what kind of operation to perform.
\begin{description}
\item[trans = N] the operation is specified by equation \ref{eq:f90spmm_no_tra}
\item[trans = T] the operation is specified by equation
\ref{eq:f90spmm_tra}
\item[trans = C] the operation is specified by equation
\ref{eq:f90spmm_con}
\end{description}
Scope: {\bf global} \\
Type: {\bf optional}\\
Intent: {\bf in}.\\
Default: $trans = N$\\
Specified as: a character variable.
%% \item[k] number of columns in dense submatrices $x$ and $y$. \\
%% Scope: {\bf global} \\
%% Type: {\bf optional}\\
%% Default: \verb|min(size(x,2)-jx+1,size(y,2)-jy+1)|\\
%% Specified as: an integer variable $ k \ge 1$.
%% \item[jx] the column index of global dense matrix $x$,
%% identifying the column of vector $x$.\\
%% Scope: {\bf global} \\
%% Type: {\bf optional}; can only be present if $x$ is of rank 2.\\
%% Default: $iy = 1$\\
%% Specified as: an integer variable $jx\ge 1$.
%% \item[jy] the column index of global dense matrix $y$,
%% identifying the column of vector $y$.\\
%% Scope: {\bf global} \\
%% Type: {\bf optional}; can only be present if $y$ is of rank 2.\\
%% Default: $jy = 1$\\
%% Specified as: an integer variable $jy\ge 1$.
\item[work] work array.\\
Scope: {\bf local} \\
Type: {\bf optional}\\
Intent: {\bf inout}.\\
Specified as: a rank one array of the same type of $x$ and $y$ with
the TARGET attribute.
\item[\bf On Return]
\item[y] the local portion of result matrix $y$.\\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf inout}.\\
Specified as: an array of rank one or two
containing numbers of type specified in
Table~\ref{tab:f90spmm}.
\item[info] Error code.\\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf out}.\\
An integer value; 0 means no error has been detected.
\end{description}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% TRIANGULAR SYSTEM SOLVE
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\clearpage\subsection{psb\_spsm --- Triangular System Solve}
This subroutine computes the Triangular System Solve:
\begin{eqnarray*}
y &\leftarrow& \alpha T^{-1} x + \beta y\\
y &\leftarrow& \alpha D T^{-1} x + \beta y\\
y &\leftarrow& \alpha T^{-1} D x + \beta y\\
y &\leftarrow& \alpha T^{-T} x + \beta y\\
y &\leftarrow& \alpha D T^{-T} x + \beta y\\
y &\leftarrow& \alpha T^{-T} D x + \beta y\\
y &\leftarrow& \alpha T^{-H} x + \beta y\\
y &\leftarrow& \alpha D T^{-H} x + \beta y\\
y &\leftarrow& \alpha T^{-H} D x + \beta y\\
\end{eqnarray*}
where:
\begin{description}
\item[$x$] is the global dense matrix $x_{:, :}$
\item[$y$] is the global dense matrix $y_{:, :}$
\item[$T$] is the global sparse block triangular submatrix $T$
\item[$D$] is the scaling diagonal matrix.
\end{description}
\begin{verbatim}
call psb_spsm(alpha, t, x, beta, y, desc_a, info)
call psb_spsm(alpha, t, x, beta, y, desc_a, info,&
& trans, unit, choice, diag, work)
\end{verbatim}
\begin{table}[h]
\begin{center}
\begin{tabular}{ll}
\hline
$T$, $x$, $y$, $D$, $\alpha$, $\beta$ & {\bf Subroutine}\\
\hline
Short Precision Real & psb\_spsm \\
Long Precision Real & psb\_spsm \\
Short Precision Complex & psb\_spsm \\
Long Precision Complex & psb\_spsm \\
\hline
\end{tabular}
\end{center}
\caption{Data types\label{tab:f90spsm}}
\end{table}
\begin{description}
\item[Type:] Synchronous.
\item[\bf On Entry]
\item[alpha] the scalar $\alpha$.\\
Scope: {\bf global} \\
Type: {\bf required}\\
Intent: {\bf in}.\\
Specified as: a number of the data type indicated in
Table~\ref{tab:f90spsm}.
\item[t] the global portion of the sparse matrix
$T$. \\
Scope: {\bf local} \\
Type: {\bf required}\\
Intent: {\bf in}.\\
Specified as: an object type specified in
\S~\ref{sec:datastruct}.
\item[x] the local portion of global dense matrix
$x$. %% This subroutine computes the location of the first element of
%% local subarray used, based on $jx$ and the field $matrix\_data$ of $desc\_a$ .
\\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf in}.\\
Specified as: a rank one or two array or an object of type \vdata\
containing numbers of type specified in
Table~\ref{tab:f90spsm}. The rank of $x$ must be the same of $y$.
\item[beta] the scalar $\beta$.\\
Scope: {\bf global} \\
Type: {\bf required} \\
Intent: {\bf in}.\\
Specified as: a number of the data type indicated in Table~\ref{tab:f90spsm}.
\item[y] the local portion of global dense matrix
$y$. %% This subroutine computes the location of the first element of
%% local subarray used, based on $jy$ and the field $matrix\_data$ of $desc\_a$ .
\\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf inout}.\\
Specified as: a rank one or two array or an object of type \vdata\
containing numbers of type specified in
Table~\ref{tab:f90spsm}. The rank of $y$ must be the same of $x$.
\item[desc\_a] contains data structures for communications.\\
Scope: {\bf local} \\
Type: {\bf required}\\
Intent: {\bf in}.\\
Specified as: an object of type \descdata.
\item[trans] specify with {\em unitd} the operation to perform.
\begin{description}
\item[trans = 'N'] the operation is with no transposed matrix
\item[trans = 'T'] the operation is with transposed matrix.
\item[trans = 'C'] the operation is with conjugate transposed matrix.
\end{description}
Scope: {\bf global} \\
Type: {\bf optional}\\
Intent: {\bf in}.\\
Default: $trans = N$\\
Specified as: a character variable.
\item[unitd] specify with {\em trans} the operation to perform.
\begin{description}
\item[unitd = 'U'] the operation is with no scaling
\item[unitd = 'L'] the operation is with left scaling
\item[unitd = 'R'] the operation is with right scaling.
\end{description}
Scope: {\bf global} \\
Type: {\bf optional}\\
Intent: {\bf in}.\\
Default: $unitd = U$\\
Specified as: a character variable.
\item[choice] specifies the update of overlap elements to be performed
on exit:
\begin{description}
\item \verb|psb_none_|
\item \verb|psb_sum_|
\item \verb|psb_avg_|
\item \verb|psb_square_root_|
\end{description}
Scope: {\bf global} \\
Type: {\bf optional}\\
Intent: {\bf in}.\\
Default: \verb|psb_avg_|\\
Specified as: an integer variable.
\item[diag] the diagonal scaling matrix.\\
Scope: {\bf local} \\
Type: {\bf optional}\\
Intent: {\bf in}.\\
Default: $diag(1) = 1 (no scaling)$\\
Specified as: a rank one array containing numbers of the type
indicated in Table~\ref{tab:f90spsm}.
\item[work] a work array. \\
Scope: {\bf local} \\
Type: {\bf optional}\\
Intent: {\bf inout}.\\
Specified as: a rank one array of the same type of $x$ with the
TARGET attribute.
\item[\bf On Return]
\item[y] the local portion of global dense matrix
$y$. %% This subroutine computes the location of the first element of
%% local subarray used, based on $jy$ and the field $matrix\_data$ of $desc\_a$ .
\\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf inout}.\\
Specified as: an array of rank one or two
containing numbers of type specified in
Table~\ref{tab:f90spsm}.
\item[info] Error code.\\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf out}.\\
An integer value; 0 means no error has been detected.
\end{description}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% VECTOR VECTOR OPERATIONS
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\clearpage\subsection{psb\_gemlt --- Entrywise Product}
This function computes the entrywise product between two vectors $x$ and
$y$
\[dot \leftarrow x(i) y(i).\]
\begin{verbatim}
psb_gemlt(x, y, desc_a, info)
\end{verbatim}
%% \syntax*{psb\_gedot}{x, y, desc\_a, info, jx, jy}
\begin{table}[h]
\begin{center}
\begin{tabular}{ll}
\hline
$dot$, $x$, $y$ & {\bf Function}\\
\hline
Short Precision Real & psb\_gemlt \\
Long Precision Real & psb\_gemlt \\
Short Precision Complex & psb\_gemlt \\
Long Precision Complex & psb\_gemlt \\
\hline
\end{tabular}
\end{center}
\caption{Data types\label{tab:f90mlt}}
\end{table}
\begin{description}
\item[Type:] Synchronous.
\item[\bf On Entry]
\item[x] the local portion of global dense vector
$x$.\\
%% This function computes the location of the first element of
%% local subarray used, based on $jx$ and the field $matrix\_data$ of $desc\_a$ . \\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf in}.\\
Specified as: an object of type \vdata\
containing numbers of type specified in
Table~\ref{tab:f90dot}.
\item[y] the local portion of global dense vector
$y$. \\
%% This function computes the location of the first element of
%% local subarray used, based on $iy, jy$ and the field $matrix\_data$ of $desc\_a$ . \\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf in}.\\
Specified as: an object of type \vdata\
containing numbers of type specified in
Table~\ref{tab:f90dot}.
\item[desc\_a] contains data structures for communications.\\
Scope: {\bf local} \\
Type: {\bf required}\\
Intent: {\bf in}.\\
Specified as: an object of type \descdata.
\item[\bf On Return]
\item[y] the local portion of result submatrix $y$.\\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf inout}.\\
Specified as: an object of type \vdata\ containing numbers of the type
indicated in Table~\ref{tab:f90mlt}.
\item[info] Error code.\\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf out}.\\
An integer value; 0 means no error has been detected.
\end{description}
\clearpage\subsection{psb\_gediv --- Entrywise Division}
This function computes the entrywise division between two vectors $x$ and
$y$
\[/ \leftarrow x(i)/y(i).\]
\begin{verbatim}
psb_gediv(x, y, desc_a, info, [flag)
\end{verbatim}
%% \syntax*{psb\_gedot}{x, y, desc\_a, info, jx, jy}
\begin{table}[h]
\begin{center}
\begin{tabular}{ll}
\hline
$/$, $x$, $y$ & {\bf Function}\\
\hline
Short Precision Real & psb\_gediv \\
Long Precision Real & psb\_gediv \\
Short Precision Complex & psb\_gediv \\
Long Precision Complex & psb\_gediv \\
\hline
\end{tabular}
\end{center}
\caption{Data types\label{tab:f90div}}
\end{table}
\begin{description}
\item[Type:] Synchronous.
\item[\bf On Entry]
\item[x] the local portion of global dense vector
$x$.\\
%% This function computes the location of the first element of
%% local subarray used, based on $jx$ and the field $matrix\_data$ of $desc\_a$ . \\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf in}.\\
Specified as: an object of type \vdata\
containing numbers of type specified in
Table~\ref{tab:f90dot}.
\item[y] the local portion of global dense vector
$y$. \\
%% This function computes the location of the first element of
%% local subarray used, based on $iy, jy$ and the field $matrix\_data$ of $desc\_a$ . \\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf in}.\\
Specified as: an object of type \vdata\
containing numbers of type specified in
Table~\ref{tab:f90dot}.
\item[desc\_a] contains data structures for communications.\\
Scope: {\bf local} \\
Type: {\bf required}\\
Intent: {\bf in}.\\
Specified as: an object of type \descdata.
\item[flag] check if any of the $y(i) = 0$, and in case returns error halting the computation.\\
Scope: {\bf local} \\
Type: {\bf optional}
Intent: {\bf in}.\\
Specified as: the logical value \verb|flag=.true.|
\item[\bf On Return]
\item[x] the local portion of result submatrix $x$.\\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf inout}.\\
Specified as: an object of type \vdata\ containing numbers of the type
indicated in Table~\ref{tab:f90mlt}.
\item[info] Error code.\\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf out}.\\
An integer value; 0 means no error has been detected.
\end{description}
\clearpage\subsection{psb\_geinv --- Entrywise Inversion}
This function computes the entrywise inverse of a vector $x$ and puts it into
$y$
\[/ \leftarrow 1/x(i).\]
\begin{verbatim}
psb_geinv(x, y, desc_a, info, [flag)
\end{verbatim}
%% \syntax*{psb\_gedot}{x, y, desc\_a, info, jx, jy}
\begin{table}[h]
\begin{center}
\begin{tabular}{ll}
\hline
$/$, $x$, $y$ & {\bf Function}\\
\hline
Short Precision Real & psb\_geinv \\
Long Precision Real & psb\_geinv \\
Short Precision Complex & psb\_geinv \\
Long Precision Complex & psb\_geinv \\
\hline
\end{tabular}
\end{center}
\caption{Data types\label{tab:f90inv}}
\end{table}
\begin{description}
\item[Type:] Synchronous.
\item[\bf On Entry]
\item[x] the local portion of global dense vector
$x$.\\
%% This function computes the location of the first element of
%% local subarray used, based on $jx$ and the field $matrix\_data$ of $desc\_a$ . \\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf in}.\\
Specified as: an object of type \vdata\
containing numbers of type specified in
Table~\ref{tab:f90dot}.
\item[desc\_a] contains data structures for communications.\\
Scope: {\bf local} \\
Type: {\bf required}\\
Intent: {\bf in}.\\
Specified as: an object of type \descdata.
\item[flag] check if any of the $x(i) = 0$, and in case returns error halting the computation.\\
Scope: {\bf local} \\
Type: {\bf optional}
Intent: {\bf in}.\\
Specified as: the logical value \verb|flag=.true.|
\item[\bf On Return]
\item[y] the local portion of result submatrix $x$.\\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf out}.\\
Specified as: an object of type \vdata\ containing numbers of the type
indicated in Table~\ref{tab:f90inv}.
\item[info] Error code.\\
Scope: {\bf local} \\
Type: {\bf required} \\
Intent: {\bf out}.\\
An integer value; 0 means no error has been detected.
\end{description}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "userguide"
%%% End: