You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
psblas3/gpu/fcusparse_fct.h

771 lines
24 KiB
C

/* Parallel Sparse BLAS GPU plugin */
/* (C) Copyright 2013 */
/* Salvatore Filippone */
/* Alessandro Fanfarillo */
/* Redistribution and use in source and binary forms, with or without */
/* modification, are permitted provided that the following conditions */
/* are met: */
/* 1. Redistributions of source code must retain the above copyright */
/* notice, this list of conditions and the following disclaimer. */
/* 2. Redistributions in binary form must reproduce the above copyright */
/* notice, this list of conditions, and the following disclaimer in the */
/* documentation and/or other materials provided with the distribution. */
/* 3. The name of the PSBLAS group or the names of its contributors may */
/* not be used to endorse or promote products derived from this */
/* software without specific written permission. */
/* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS */
/* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED */
/* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR */
/* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS */
/* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR */
/* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF */
/* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS */
/* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN */
/* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) */
/* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
/* POSSIBILITY OF SUCH DAMAGE. */
typedef struct T_CSRGDeviceMat
{
#if CUDA_SHORT_VERSION <= 10
cusparseMatDescr_t descr;
cusparseSolveAnalysisInfo_t triang;
#elif CUDA_VERSION < 11030
cusparseMatDescr_t descr;
csrsv2Info_t triang;
size_t mvbsize, svbsize;
void *mvbuffer, *svbuffer;
#else
cusparseSpMatDescr_t descr;
cusparseSpSVDescr_t *spsvDescr;
size_t mvbsize, svbsize;
void *mvbuffer, *svbuffer;
#endif
int m, n, nz;
TYPE *val;
int *irp;
int *ja;
} T_CSRGDeviceMat;
/* Interoperability: type coming from Fortran side to distinguish D/S/C/Z. */
typedef struct T_Cmat
{
T_CSRGDeviceMat *mat;
} T_Cmat;
#if CUDA_SHORT_VERSION <= 10
typedef struct T_HYBGDeviceMat
{
cusparseMatDescr_t descr;
cusparseSolveAnalysisInfo_t triang;
cusparseHybMat_t hybA;
int m, n, nz;
TYPE *val;
int *irp;
int *ja;
} T_HYBGDeviceMat;
/* Interoperability: type coming from Fortran side to distinguish D/S/C/Z. */
typedef struct T_Hmat
{
T_HYBGDeviceMat *mat;
} T_Hmat;
#endif
int T_spmvCSRGDevice(T_Cmat *Mat, TYPE alpha, void *deviceX,
TYPE beta, void *deviceY);
int T_spsvCSRGDevice(T_Cmat *Mat, TYPE alpha, void *deviceX,
TYPE beta, void *deviceY);
int T_CSRGDeviceAlloc(T_Cmat *Mat,int nr, int nc, int nz);
int T_CSRGDeviceFree(T_Cmat *Mat);
int T_CSRGHost2Device(T_Cmat *Mat, int m, int n, int nz,
int *irp, int *ja, TYPE *val);
int T_CSRGDevice2Host(T_Cmat *Mat, int m, int n, int nz,
int *irp, int *ja, TYPE *val);
int T_CSRGDeviceGetParms(T_Cmat *Mat,int *nr, int *nc, int *nz);
#if CUDA_SHORT_VERSION <= 10
int T_CSRGDeviceSetMatType(T_Cmat *Mat, int type);
int T_CSRGDeviceSetMatFillMode(T_Cmat *Mat, int type);
int T_CSRGDeviceSetMatDiagType(T_Cmat *Mat, int type);
int T_CSRGDeviceSetMatIndexBase(T_Cmat *Mat, int type);
int T_CSRGDeviceCsrsmAnalysis(T_Cmat *Mat);
#elif CUDA_VERSION < 11030
int T_CSRGDeviceSetMatType(T_Cmat *Mat, int type);
int T_CSRGDeviceSetMatFillMode(T_Cmat *Mat, int type);
int T_CSRGDeviceSetMatDiagType(T_Cmat *Mat, int type);
int T_CSRGDeviceSetMatIndexBase(T_Cmat *Mat, int type);
#endif
#if CUDA_SHORT_VERSION <= 10
int T_HYBGDeviceFree(T_Hmat *Matrix);
int T_spmvHYBGDevice(T_Hmat *Matrix, TYPE alpha, void *deviceX,
TYPE beta, void *deviceY);
int T_HYBGDeviceAlloc(T_Hmat *Matrix,int nr, int nc, int nz);
int T_HYBGDeviceSetMatDiagType(T_Hmat *Matrix, int type);
int T_HYBGDeviceSetMatIndexBase(T_Hmat *Matrix, int type);
int T_HYBGDeviceSetMatType(T_Hmat *Matrix, int type);
int T_HYBGDeviceSetMatFillMode(T_Hmat *Matrix, int type);
int T_HYBGDeviceHybsmAnalysis(T_Hmat *Matrix);
int T_spsvHYBGDevice(T_Hmat *Matrix, TYPE alpha, void *deviceX,
TYPE beta, void *deviceY);
int T_HYBGHost2Device(T_Hmat *Matrix, int m, int n, int nz,
int *irp, int *ja, TYPE *val);
#endif
int T_spmvCSRGDevice(T_Cmat *Matrix, TYPE alpha, void *deviceX,
TYPE beta, void *deviceY)
{
T_CSRGDeviceMat *cMat=Matrix->mat;
struct MultiVectDevice *x = (struct MultiVectDevice *) deviceX;
struct MultiVectDevice *y = (struct MultiVectDevice *) deviceY;
void *vX, *vY;
int r,n;
cusparseHandle_t *my_handle=getHandle();
TYPE ealpha=alpha, ebeta=beta;
#if CUDA_SHORT_VERSION <= 10
/*getAddrMultiVecDevice(deviceX, &vX);
getAddrMultiVecDevice(deviceY, &vY); */
vX=x->v_;
vY=y->v_;
return cusparseTcsrmv(*my_handle,CUSPARSE_OPERATION_NON_TRANSPOSE,
cMat->m,cMat->n,cMat->nz,(const TYPE *) &alpha,cMat->descr,
cMat->val, cMat->irp, cMat->ja,
(const TYPE *) vX, (const TYPE *) &beta, (TYPE *) vY);
#elif CUDA_VERSION < 11030
size_t bfsz;
vX=x->v_;
vY=y->v_;
#if 1
CHECK_CUSPARSE(cusparseCsrmvEx_bufferSize(*my_handle,CUSPARSE_ALG_MERGE_PATH,
CUSPARSE_OPERATION_NON_TRANSPOSE,
cMat->m,cMat->n,cMat->nz,
(const void *) &ealpha,CUSPARSE_BASE_TYPE,
cMat->descr,
(const void *) cMat->val,
CUSPARSE_BASE_TYPE,
(const int *) cMat->irp,
(const int *) cMat->ja,
(const void *) vX, CUSPARSE_BASE_TYPE,
(const void *) &ebeta, CUSPARSE_BASE_TYPE,
(void *) vY, CUSPARSE_BASE_TYPE,
CUSPARSE_BASE_TYPE, &bfsz));
#else
bfsz=cMat->nz;
#endif
if (bfsz > cMat->mvbsize) {
if (cMat->mvbuffer != NULL) {
CHECK_CUDA(cudaFree(cMat->mvbuffer));
cMat->mvbuffer = NULL;
}
CHECK_CUDA(cudaMalloc((void **) &(cMat->mvbuffer), bfsz));
cMat->mvbsize = bfsz;
}
CHECK_CUSPARSE(cusparseCsrmvEx(*my_handle,
CUSPARSE_ALG_MERGE_PATH,
CUSPARSE_OPERATION_NON_TRANSPOSE,
cMat->m,cMat->n,cMat->nz,
(const void *) &ealpha,CUSPARSE_BASE_TYPE,
cMat->descr,
(const void *) cMat->val, CUSPARSE_BASE_TYPE,
(const int *) cMat->irp, (const int *) cMat->ja,
(const void *) vX, CUSPARSE_BASE_TYPE,
(const void *) &ebeta, CUSPARSE_BASE_TYPE,
(void *) vY, CUSPARSE_BASE_TYPE,
CUSPARSE_BASE_TYPE, (void *) cMat->mvbuffer));
#else
cusparseDnVecDescr_t vecX, vecY;
size_t bfsz;
vX=x->v_;
vY=y->v_;
CHECK_CUSPARSE( cusparseCreateDnVec(&vecY, cMat->m, vY, CUSPARSE_BASE_TYPE) );
CHECK_CUSPARSE( cusparseCreateDnVec(&vecX, cMat->n, vX, CUSPARSE_BASE_TYPE) );
CHECK_CUSPARSE(cusparseSpMV_bufferSize(*my_handle,CUSPARSE_OPERATION_NON_TRANSPOSE,
&alpha,cMat->descr,vecX,&beta,vecY,
CUSPARSE_BASE_TYPE,CUSPARSE_SPMV_ALG_DEFAULT,
&bfsz));
if (bfsz > cMat->mvbsize) {
if (cMat->mvbuffer != NULL) {
CHECK_CUDA(cudaFree(cMat->mvbuffer));
cMat->mvbuffer = NULL;
}
CHECK_CUDA(cudaMalloc((void **) &(cMat->mvbuffer), bfsz));
cMat->mvbsize = bfsz;
}
CHECK_CUSPARSE(cusparseSpMV(*my_handle,CUSPARSE_OPERATION_NON_TRANSPOSE,
&alpha,cMat->descr,vecX,&beta,vecY,
CUSPARSE_BASE_TYPE,CUSPARSE_SPMV_ALG_DEFAULT,
cMat->mvbuffer));
CHECK_CUSPARSE(cusparseDestroyDnVec(vecX) );
CHECK_CUSPARSE(cusparseDestroyDnVec(vecY) );
#endif
}
int T_spsvCSRGDevice(T_Cmat *Matrix, TYPE alpha, void *deviceX,
TYPE beta, void *deviceY)
{
T_CSRGDeviceMat *cMat=Matrix->mat;
struct MultiVectDevice *x = (struct MultiVectDevice *) deviceX;
struct MultiVectDevice *y = (struct MultiVectDevice *) deviceY;
void *vX, *vY;
int r,n;
cusparseHandle_t *my_handle=getHandle();
#if CUDA_SHORT_VERSION <= 10
vX=x->v_;
vY=y->v_;
return cusparseTcsrsv_solve(*my_handle,CUSPARSE_OPERATION_NON_TRANSPOSE,
cMat->m,(const TYPE *) &alpha,cMat->descr,
cMat->val, cMat->irp, cMat->ja, cMat->triang,
(const TYPE *) vX, (TYPE *) vY);
#elif CUDA_VERSION < 11030
vX=x->v_;
vY=y->v_;
CHECK_CUSPARSE(cusparseTcsrsv2_solve(*my_handle,CUSPARSE_OPERATION_NON_TRANSPOSE,
cMat->m,cMat->nz,
(const TYPE *) &alpha,
cMat->descr,
cMat->val, cMat->irp, cMat->ja,
cMat->triang,
(const TYPE *) vX, (TYPE *) vY,
CUSPARSE_SOLVE_POLICY_USE_LEVEL,
(void *) cMat->svbuffer));
#else
cusparseDnVecDescr_t vecX, vecY;
size_t bfsz;
vX=x->v_;
vY=y->v_;
cMat->spsvDescr=(cusparseSpSVDescr_t *) malloc(sizeof(cusparseSpSVDescr_t *));
CHECK_CUSPARSE( cusparseCreateDnVec(&vecY, cMat->m, vY, CUSPARSE_BASE_TYPE) );
CHECK_CUSPARSE( cusparseCreateDnVec(&vecX, cMat->n, vX, CUSPARSE_BASE_TYPE) );
CHECK_CUSPARSE(cusparseSpSV_bufferSize(*my_handle,CUSPARSE_OPERATION_NON_TRANSPOSE,
&alpha,cMat->descr,vecX,vecY,
CUSPARSE_BASE_TYPE,
CUSPARSE_SPSV_ALG_DEFAULT,
*(cMat->spsvDescr),
&bfsz));
if (bfsz > cMat->svbsize) {
if (cMat->svbuffer != NULL) {
CHECK_CUDA(cudaFree(cMat->svbuffer));
cMat->svbuffer = NULL;
}
CHECK_CUDA(cudaMalloc((void **) &(cMat->svbuffer), bfsz));
cMat->svbsize=bfsz;
}
if (cMat->spsvDescr==NULL) {
CHECK_CUSPARSE(cusparseSpSV_analysis(*my_handle,
CUSPARSE_OPERATION_NON_TRANSPOSE,
&alpha,
cMat->descr,
vecX, vecY,
CUSPARSE_BASE_TYPE,
CUSPARSE_SPSV_ALG_DEFAULT,
*(cMat->spsvDescr),
cMat->svbuffer));
}
CHECK_CUSPARSE(cusparseSpSV_solve(*my_handle,CUSPARSE_OPERATION_NON_TRANSPOSE,
&alpha,cMat->descr,vecX,vecY,
CUSPARSE_BASE_TYPE,
CUSPARSE_SPSV_ALG_DEFAULT,
*(cMat->spsvDescr)));
CHECK_CUSPARSE(cusparseDestroyDnVec(vecX) );
CHECK_CUSPARSE(cusparseDestroyDnVec(vecY) );
#endif
}
int T_CSRGDeviceAlloc(T_Cmat *Matrix,int nr, int nc, int nz)
{
T_CSRGDeviceMat *cMat;
int nr1=nr, nz1=nz, rc;
cusparseHandle_t *my_handle=getHandle();
int bfsz;
if ((nr<0)||(nc<0)||(nz<0))
return((int) CUSPARSE_STATUS_INVALID_VALUE);
if ((cMat=(T_CSRGDeviceMat *) malloc(sizeof(T_CSRGDeviceMat)))==NULL)
return((int) CUSPARSE_STATUS_ALLOC_FAILED);
cMat->m = nr;
cMat->n = nc;
cMat->nz = nz;
if (nr1 == 0) nr1 = 1;
if (nz1 == 0) nz1 = 1;
if ((rc= allocRemoteBuffer(((void **) &(cMat->irp)), ((nr1+1)*sizeof(int)))) != 0)
return(rc);
if ((rc= allocRemoteBuffer(((void **) &(cMat->ja)), ((nz1)*sizeof(int)))) != 0)
return(rc);
if ((rc= allocRemoteBuffer(((void **) &(cMat->val)), ((nz1)*sizeof(TYPE)))) != 0)
return(rc);
#if CUDA_SHORT_VERSION <= 10
if ((rc= cusparseCreateMatDescr(&(cMat->descr))) !=0)
return(rc);
if ((rc= cusparseCreateSolveAnalysisInfo(&(cMat->triang))) !=0)
return(rc);
#elif CUDA_VERSION < 11030
if ((rc= cusparseCreateMatDescr(&(cMat->descr))) !=0)
return(rc);
CHECK_CUSPARSE(cusparseSetMatType(cMat->descr,CUSPARSE_MATRIX_TYPE_GENERAL));
CHECK_CUSPARSE(cusparseSetMatDiagType(cMat->descr,CUSPARSE_DIAG_TYPE_NON_UNIT));
CHECK_CUSPARSE(cusparseSetMatIndexBase(cMat->descr,CUSPARSE_INDEX_BASE_ONE));
CHECK_CUSPARSE(cusparseCreateCsrsv2Info(&(cMat->triang)));
if (cMat->nz > 0) {
CHECK_CUSPARSE(cusparseTcsrsv2_bufferSize(*my_handle,
CUSPARSE_OPERATION_NON_TRANSPOSE,
cMat->m,cMat->nz, cMat->descr,
cMat->val, cMat->irp, cMat->ja,
cMat->triang, &bfsz));
} else {
bfsz = 0;
}
/* if (cMat->svbuffer != NULL) { */
/* fprintf(stderr,"Calling cudaFree\n"); */
/* CHECK_CUDA(cudaFree(cMat->svbuffer)); */
/* cMat->svbuffer = NULL; */
/* } */
if (bfsz > 0) {
CHECK_CUDA(cudaMalloc((void **) &(cMat->svbuffer), bfsz));
} else {
cMat->svbuffer=NULL;
}
cMat->svbsize=bfsz;
cMat->mvbuffer=NULL;
cMat->mvbsize = 0;
#else
int64_t rows=nr, cols=nc, nnz=nz;
CHECK_CUSPARSE(cusparseCreateCsr(&(cMat->descr),
rows, cols, nnz,
(void *) cMat->irp,
(void *) cMat->ja,
(void *) cMat->val,
CUSPARSE_INDEX_32I,
CUSPARSE_INDEX_32I,
CUSPARSE_INDEX_BASE_ONE,
CUSPARSE_BASE_TYPE) );
cMat->spsvDescr=NULL;
cMat->mvbuffer=NULL;
cMat->svbuffer=NULL;
cMat->mvbsize=0;
cMat->svbsize=0;
#endif
Matrix->mat = cMat;
return(CUSPARSE_STATUS_SUCCESS);
}
int T_CSRGDeviceFree(T_Cmat *Matrix)
{
T_CSRGDeviceMat *cMat= Matrix->mat;
if (cMat!=NULL) {
freeRemoteBuffer(cMat->irp);
freeRemoteBuffer(cMat->ja);
freeRemoteBuffer(cMat->val);
#if CUDA_SHORT_VERSION <= 10
cusparseDestroyMatDescr(cMat->descr);
cusparseDestroySolveAnalysisInfo(cMat->triang);
#elif CUDA_VERSION < 11030
cusparseDestroyMatDescr(cMat->descr);
cusparseDestroyCsrsv2Info(cMat->triang);
#else
cusparseDestroySpMat(cMat->descr);
if (cMat->spsvDescr!=NULL) {
CHECK_CUSPARSE( cusparseSpSV_destroyDescr(*(cMat->spsvDescr)));
free(cMat->spsvDescr);
cMat->spsvDescr=NULL;
}
if (cMat->mvbuffer!=NULL)
CHECK_CUDA( cudaFree(cMat->mvbuffer));
if (cMat->svbuffer!=NULL)
CHECK_CUDA( cudaFree(cMat->svbuffer));
cMat->spsvDescr=NULL;
cMat->mvbuffer=NULL;
cMat->svbuffer=NULL;
cMat->mvbsize=0;
cMat->svbsize=0;
#endif
free(cMat);
Matrix->mat = NULL;
}
return(CUSPARSE_STATUS_SUCCESS);
}
int T_CSRGDeviceGetParms(T_Cmat *Matrix,int *nr, int *nc, int *nz)
{
T_CSRGDeviceMat *cMat= Matrix->mat;
if (cMat!=NULL) {
*nr = cMat->m ;
*nc = cMat->n ;
*nz = cMat->nz ;
return(CUSPARSE_STATUS_SUCCESS);
} else {
return((int) CUSPARSE_STATUS_ALLOC_FAILED);
}
}
#if CUDA_SHORT_VERSION <= 10
int T_CSRGDeviceSetMatType(T_Cmat *Matrix, int type)
{
T_CSRGDeviceMat *cMat= Matrix->mat;
return ((int) cusparseSetMatType(cMat->descr,type));
}
int T_CSRGDeviceSetMatFillMode(T_Cmat *Matrix, int type)
{
T_CSRGDeviceMat *cMat= Matrix->mat;
return ((int) cusparseSetMatFillMode(cMat->descr,type));
}
int T_CSRGDeviceSetMatDiagType(T_Cmat *Matrix, int type)
{
T_CSRGDeviceMat *cMat= Matrix->mat;
return ((int) cusparseSetMatDiagType(cMat->descr,type));
}
int T_CSRGDeviceSetMatIndexBase(T_Cmat *Matrix, int type)
{
T_CSRGDeviceMat *cMat= Matrix->mat;
return ((int) cusparseSetMatIndexBase(cMat->descr,type));
}
int T_CSRGDeviceCsrsmAnalysis(T_Cmat *Matrix)
{
T_CSRGDeviceMat *cMat= Matrix->mat;
int rc, buffersize;
cusparseHandle_t *my_handle=getHandle();
cusparseSolveAnalysisInfo_t info;
rc= (int) cusparseTcsrsv_analysis(*my_handle,CUSPARSE_OPERATION_NON_TRANSPOSE,
cMat->m,cMat->nz,cMat->descr,
cMat->val, cMat->irp, cMat->ja,
cMat->triang);
if (rc !=0) {
fprintf(stderr,"From csrsv_analysis: %d\n",rc);
}
return(rc);
}
#elif CUDA_VERSION < 11030
int T_CSRGDeviceSetMatType(T_Cmat *Matrix, int type)
{
T_CSRGDeviceMat *cMat= Matrix->mat;
return ((int) cusparseSetMatType(cMat->descr,type));
}
int T_CSRGDeviceSetMatFillMode(T_Cmat *Matrix, int type)
{
T_CSRGDeviceMat *cMat= Matrix->mat;
return ((int) cusparseSetMatFillMode(cMat->descr,type));
}
int T_CSRGDeviceSetMatDiagType(T_Cmat *Matrix, int type)
{
T_CSRGDeviceMat *cMat= Matrix->mat;
return ((int) cusparseSetMatDiagType(cMat->descr,type));
}
int T_CSRGDeviceSetMatIndexBase(T_Cmat *Matrix, int type)
{
T_CSRGDeviceMat *cMat= Matrix->mat;
return ((int) cusparseSetMatIndexBase(cMat->descr,type));
}
#else
int T_CSRGDeviceSetMatFillMode(T_Cmat *Matrix, int type)
{
T_CSRGDeviceMat *cMat= Matrix->mat;
cusparseFillMode_t mode=type;
CHECK_CUSPARSE(cusparseSpMatSetAttribute(cMat->descr,
CUSPARSE_SPMAT_FILL_MODE,
(const void*) &mode,
sizeof(cusparseFillMode_t)));
return(0);
}
int T_CSRGDeviceSetMatDiagType(T_Cmat *Matrix, int type)
{
T_CSRGDeviceMat *cMat= Matrix->mat;
cusparseDiagType_t cutype=type;
CHECK_CUSPARSE(cusparseSpMatSetAttribute(cMat->descr,
CUSPARSE_SPMAT_DIAG_TYPE,
(const void*) &cutype,
sizeof(cusparseDiagType_t)));
return(0);
}
#endif
int T_CSRGHost2Device(T_Cmat *Matrix, int m, int n, int nz,
int *irp, int *ja, TYPE *val)
{
int rc;
T_CSRGDeviceMat *cMat= Matrix->mat;
cusparseHandle_t *my_handle=getHandle();
if ((rc=writeRemoteBuffer((void *) irp, (void *) cMat->irp,
(m+1)*sizeof(int)))
!= SPGPU_SUCCESS)
return(rc);
if ((rc=writeRemoteBuffer((void *) ja,(void *) cMat->ja,
(nz)*sizeof(int)))
!= SPGPU_SUCCESS)
return(rc);
if ((rc=writeRemoteBuffer((void *) val, (void *) cMat->val,
(nz)*sizeof(TYPE)))
!= SPGPU_SUCCESS)
return(rc);
#if (CUDA_SHORT_VERSION > 10 ) && (CUDA_VERSION < 11030)
if (cusparseGetMatType(cMat->descr)== CUSPARSE_MATRIX_TYPE_TRIANGULAR) {
// Why do we need to set TYPE_GENERAL??? cuSPARSE can be misterious sometimes.
cusparseSetMatType(cMat->descr,CUSPARSE_MATRIX_TYPE_GENERAL);
CHECK_CUSPARSE(cusparseTcsrsv2_analysis(*my_handle,CUSPARSE_OPERATION_NON_TRANSPOSE,
cMat->m,cMat->nz, cMat->descr,
cMat->val, cMat->irp, cMat->ja,
cMat->triang, CUSPARSE_SOLVE_POLICY_USE_LEVEL,
cMat->svbuffer));
}
#endif
return(CUSPARSE_STATUS_SUCCESS);
}
int T_CSRGDevice2Host(T_Cmat *Matrix, int m, int n, int nz,
int *irp, int *ja, TYPE *val)
{
int rc;
T_CSRGDeviceMat *cMat = Matrix->mat;
if ((rc=readRemoteBuffer((void *) irp, (void *) cMat->irp, (m+1)*sizeof(int)))
!= SPGPU_SUCCESS)
return(rc);
if ((rc=readRemoteBuffer((void *) ja, (void *) cMat->ja, (nz)*sizeof(int)))
!= SPGPU_SUCCESS)
return(rc);
if ((rc=readRemoteBuffer((void *) val, (void *) cMat->val, (nz)*sizeof(TYPE)))
!= SPGPU_SUCCESS)
return(rc);
return(CUSPARSE_STATUS_SUCCESS);
}
#if CUDA_SHORT_VERSION <= 10
int T_HYBGDeviceFree(T_Hmat *Matrix)
{
T_HYBGDeviceMat *hMat= Matrix->mat;
if (hMat != NULL) {
cusparseDestroyMatDescr(hMat->descr);
cusparseDestroySolveAnalysisInfo(hMat->triang);
cusparseDestroyHybMat(hMat->hybA);
free(hMat);
}
Matrix->mat = NULL;
return(CUSPARSE_STATUS_SUCCESS);
}
int T_spmvHYBGDevice(T_Hmat *Matrix, TYPE alpha, void *deviceX,
TYPE beta, void *deviceY)
{
T_HYBGDeviceMat *hMat=Matrix->mat;
struct MultiVectDevice *x = (struct MultiVectDevice *) deviceX;
struct MultiVectDevice *y = (struct MultiVectDevice *) deviceY;
void *vX, *vY;
int r,n,rc;
cusparseMatrixType_t type;
cusparseHandle_t *my_handle=getHandle();
/*getAddrMultiVecDevice(deviceX, &vX);
getAddrMultiVecDevice(deviceY, &vY); */
vX=x->v_;
vY=y->v_;
/* rc = (int) cusparseGetMatType(hMat->descr); */
/* fprintf(stderr,"Spmv MatType: %d\n",rc); */
/* rc = (int) cusparseGetMatDiagType(hMat->descr); */
/* fprintf(stderr,"Spmv DiagType: %d\n",rc); */
/* rc = (int) cusparseGetMatFillMode(hMat->descr); */
/* fprintf(stderr,"Spmv FillMode: %d\n",rc); */
/* Dirty trick: apparently hybmv does not accept a triangular
matrix even though it should not make a difference. So
we claim it's general anyway */
type = cusparseGetMatType(hMat->descr);
rc = cusparseSetMatType(hMat->descr,CUSPARSE_MATRIX_TYPE_GENERAL);
if (rc == 0)
rc = (int) cusparseThybmv(*my_handle, CUSPARSE_OPERATION_NON_TRANSPOSE,
(const TYPE *) &alpha, hMat->descr, hMat->hybA,
(const TYPE *) vX, (const TYPE *) &beta,
(TYPE *) vY);
if (rc == 0)
rc = cusparseSetMatType(hMat->descr,type);
return(rc);
}
int T_HYBGDeviceAlloc(T_Hmat *Matrix,int nr, int nc, int nz)
{
T_HYBGDeviceMat *hMat;
int nr1=nr, nz1=nz, rc;
if ((nr<0)||(nc<0)||(nz<0))
return((int) CUSPARSE_STATUS_INVALID_VALUE);
if ((hMat=(T_HYBGDeviceMat *) malloc(sizeof(T_HYBGDeviceMat)))==NULL)
return((int) CUSPARSE_STATUS_ALLOC_FAILED);
hMat->m = nr;
hMat->n = nc;
hMat->nz = nz;
if ((rc= cusparseCreateMatDescr(&(hMat->descr))) !=0)
return(rc);
if ((rc= cusparseCreateSolveAnalysisInfo(&(hMat->triang))) !=0)
return(rc);
if((rc = cusparseCreateHybMat(&(hMat->hybA))) != 0)
return(rc);
Matrix->mat = hMat;
return(CUSPARSE_STATUS_SUCCESS);
}
int T_HYBGDeviceSetMatDiagType(T_Hmat *Matrix, int type)
{
T_HYBGDeviceMat *hMat= Matrix->mat;
return ((int) cusparseSetMatDiagType(hMat->descr,type));
}
int T_HYBGDeviceSetMatIndexBase(T_Hmat *Matrix, int type)
{
T_HYBGDeviceMat *hMat= Matrix->mat;
return ((int) cusparseSetMatIndexBase(hMat->descr,type));
}
int T_HYBGDeviceSetMatType(T_Hmat *Matrix, int type)
{
T_HYBGDeviceMat *hMat= Matrix->mat;
return ((int) cusparseSetMatType(hMat->descr,type));
}
int T_HYBGDeviceSetMatFillMode(T_Hmat *Matrix, int type)
{
T_HYBGDeviceMat *hMat= Matrix->mat;
return ((int) cusparseSetMatFillMode(hMat->descr,type));
}
int T_spsvHYBGDevice(T_Hmat *Matrix, TYPE alpha, void *deviceX,
TYPE beta, void *deviceY)
{
//beta??
T_HYBGDeviceMat *hMat=Matrix->mat;
struct MultiVectDevice *x = (struct MultiVectDevice *) deviceX;
struct MultiVectDevice *y = (struct MultiVectDevice *) deviceY;
void *vX, *vY;
int r,n;
cusparseHandle_t *my_handle=getHandle();
/*getAddrMultiVecDevice(deviceX, &vX);
getAddrMultiVecDevice(deviceY, &vY); */
vX=x->v_;
vY=y->v_;
return cusparseThybsv_solve(*my_handle,CUSPARSE_OPERATION_NON_TRANSPOSE,
(const TYPE *) &alpha, hMat->descr,
hMat->hybA, hMat->triang,
(const TYPE *) vX, (TYPE *) vY);
}
int T_HYBGDeviceHybsmAnalysis(T_Hmat *Matrix)
{
T_HYBGDeviceMat *hMat= Matrix->mat;
cusparseSolveAnalysisInfo_t info;
int rc;
cusparseHandle_t *my_handle=getHandle();
/* rc = (int) cusparseGetMatType(hMat->descr); */
/* fprintf(stderr,"Analysis MatType: %d\n",rc); */
/* rc = (int) cusparseGetMatDiagType(hMat->descr); */
/* fprintf(stderr,"Analysis DiagType: %d\n",rc); */
/* rc = (int) cusparseGetMatFillMode(hMat->descr); */
/* fprintf(stderr,"Analysis FillMode: %d\n",rc); */
rc = (int) cusparseThybsv_analysis(*my_handle,CUSPARSE_OPERATION_NON_TRANSPOSE,
hMat->descr, hMat->hybA, hMat->triang);
if (rc !=0) {
fprintf(stderr,"From csrsv_analysis: %d\n",rc);
}
return(rc);
}
int T_HYBGHost2Device(T_Hmat *Matrix, int m, int n, int nz,
int *irp, int *ja, TYPE *val)
{
int rc; double t1,t2;
int nr1=m, nz1=nz;
T_HYBGDeviceMat *hMat= Matrix->mat;
cusparseHandle_t *my_handle=getHandle();
if (nr1 == 0) nr1 = 1;
if (nz1 == 0) nz1 = 1;
if ((rc= allocRemoteBuffer(((void **) &(hMat->irp)), ((nr1+1)*sizeof(int)))) != 0)
return(rc);
if ((rc= allocRemoteBuffer(((void **) &(hMat->ja)), ((nz1)*sizeof(int)))) != 0)
return(rc);
if ((rc= allocRemoteBuffer(((void **) &(hMat->val)), ((nz1)*sizeof(TYPE)))) != 0)
return(rc);
if ((rc=writeRemoteBuffer((void *) irp, (void *) hMat->irp,
(m+1)*sizeof(int)))
!= SPGPU_SUCCESS)
return(rc);
if ((rc=writeRemoteBuffer((void *) ja,(void *) hMat->ja,
(nz)*sizeof(int)))
!= SPGPU_SUCCESS)
return(rc);
if ((rc=writeRemoteBuffer((void *) val, (void *) hMat->val,
(nz)*sizeof(TYPE)))
!= SPGPU_SUCCESS)
return(rc);
/* rc = (int) cusparseGetMatType(hMat->descr); */
/* fprintf(stderr,"Conversion MatType: %d\n",rc); */
/* rc = (int) cusparseGetMatDiagType(hMat->descr); */
/* fprintf(stderr,"Conversion DiagType: %d\n",rc); */
/* rc = (int) cusparseGetMatFillMode(hMat->descr); */
/* fprintf(stderr,"Conversion FillMode: %d\n",rc); */
//t1=etime();
rc = (int) cusparseTcsr2hyb(*my_handle, m, n,
hMat->descr,
(const TYPE *)hMat->val,
(const int *)hMat->irp, (const int *)hMat->ja,
hMat->hybA,0,
CUSPARSE_HYB_PARTITION_AUTO);
freeRemoteBuffer(hMat->irp); hMat->irp = NULL;
freeRemoteBuffer(hMat->ja); hMat->ja = NULL;
freeRemoteBuffer(hMat->val); hMat->val = NULL;
//cudaSync();
//t2 = etime();
//fprintf(stderr,"Inner call to cusparseTcsr2hyb: %lf\n",(t2-t1));
if (rc != 0) {
fprintf(stderr,"From csr2hyb: %d\n",rc);
}
return(rc);
}
#endif