You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
psblas3/base/modules/psb_z_base_vect_mod.f90

808 lines
22 KiB
Fortran

!!$
!!$ Parallel Sparse BLAS version 3.0
!!$ (C) Copyright 2006, 2007, 2008, 2009, 2010
!!$ Salvatore Filippone University of Rome Tor Vergata
!!$ Alfredo Buttari CNRS-IRIT, Toulouse
!!$
!!$ Redistribution and use in source and binary forms, with or without
!!$ modification, are permitted provided that the following conditions
!!$ are met:
!!$ 1. Redistributions of source code must retain the above copyright
!!$ notice, this list of conditions and the following disclaimer.
!!$ 2. Redistributions in binary form must reproduce the above copyright
!!$ notice, this list of conditions, and the following disclaimer in the
!!$ documentation and/or other materials provided with the distribution.
!!$ 3. The name of the PSBLAS group or the names of its contributors may
!!$ not be used to endorse or promote products derived from this
!!$ software without specific written permission.
!!$
!!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
!!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
!!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
!!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS
!!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
!!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
!!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
!!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
!!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
!!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
!!$ POSSIBILITY OF SUCH DAMAGE.
!!$
!!$
!
! package: psb_z_base_vect_mod
!
! This module contains the definition of the psb_z_base_vect type which
! is a container for dense vectors.
! This is encapsulated instead of being just a simple array to allow for
! more complicated situations, such as GPU programming, where the memory
! area we are interested in is not easily accessible from the host/Fortran
! side. It is also meant to be encapsulated in an outer type, to allow
! runtime switching as per the STATE design pattern, similar to the
! sparse matrix types.
!
!
module psb_z_base_vect_mod
use psb_const_mod
use psb_error_mod
!> \namespace psb_base_mod \class psb_z_base_vect_type
!! The psb_z_base_vect_type
!! defines a middle level complex(psb_dpk_) encapsulated dense vector.
!! The encapsulation is needed, in place of a simple array, to allow
!! for complicated situations, such as GPU programming, where the memory
!! area we are interested in is not easily accessible from the host/Fortran
!! side. It is also meant to be encapsulated in an outer type, to allow
!! runtime switching as per the STATE design pattern, similar to the
!! sparse matrix types.
!!
type psb_z_base_vect_type
complex(psb_dpk_), allocatable :: v(:)
contains
!
! Constructors/allocators
!
procedure, pass(x) :: bld_x => z_base_bld_x
procedure, pass(x) :: bld_n => z_base_bld_n
generic, public :: bld => bld_x, bld_n
procedure, pass(x) :: all => z_base_all
!
! Insert/set. Assembly and free.
! Assembly does almost nothing here, but is important
! in derived classes.
!
procedure, pass(x) :: ins => z_base_ins
procedure, pass(x) :: zero => z_base_zero
procedure, pass(x) :: asb => z_base_asb
procedure, pass(x) :: free => z_base_free
!
! Sync: centerpiece of handling of external storage.
! Any derived class having extra storage upon sync
! will guarantee that both fortran/host side and
! external side contain the same data. The base
! version is only a placeholder.
!
procedure, pass(x) :: sync => z_base_sync
procedure, pass(x) :: is_host => z_base_is_host
procedure, pass(x) :: is_dev => z_base_is_dev
procedure, pass(x) :: is_sync => z_base_is_sync
procedure, pass(x) :: set_host => z_base_set_host
procedure, pass(x) :: set_dev => z_base_set_dev
procedure, pass(x) :: set_sync => z_base_set_sync
!
! Basic info
procedure, pass(x) :: get_nrows => z_base_get_nrows
procedure, pass(x) :: sizeof => z_base_sizeof
!
! Set/get data from/to an external array; also
! overload assignment.
!
procedure, pass(x) :: get_vect => z_base_get_vect
procedure, pass(x) :: set_scal => z_base_set_scal
procedure, pass(x) :: set_vect => z_base_set_vect
generic, public :: set => set_vect, set_scal
!
! Dot product and AXPBY
!
procedure, pass(x) :: dot_v => z_base_dot_v
procedure, pass(x) :: dot_a => z_base_dot_a
generic, public :: dot => dot_v, dot_a
procedure, pass(y) :: axpby_v => z_base_axpby_v
procedure, pass(y) :: axpby_a => z_base_axpby_a
generic, public :: axpby => axpby_v, axpby_a
!
! Vector by vector multiplication. Need all variants
! to handle multiple requirements from preconditioners
!
procedure, pass(y) :: mlt_v => z_base_mlt_v
procedure, pass(y) :: mlt_a => z_base_mlt_a
procedure, pass(z) :: mlt_a_2 => z_base_mlt_a_2
procedure, pass(z) :: mlt_v_2 => z_base_mlt_v_2
procedure, pass(z) :: mlt_va => z_base_mlt_va
procedure, pass(z) :: mlt_av => z_base_mlt_av
generic, public :: mlt => mlt_v, mlt_a, mlt_a_2, mlt_v_2, mlt_av, mlt_va
!
! Scaling and norms
!
procedure, pass(x) :: scal => z_base_scal
procedure, pass(x) :: nrm2 => z_base_nrm2
procedure, pass(x) :: amax => z_base_amax
procedure, pass(x) :: asum => z_base_asum
!
! Gather/scatter. These are needed for MPI interfacing.
! May have to be reworked.
!
procedure, pass(x) :: gthab => z_base_gthab
procedure, pass(x) :: gthzv => z_base_gthzv
generic, public :: gth => gthab, gthzv
procedure, pass(y) :: sctb => z_base_sctb
generic, public :: sct => sctb
end type psb_z_base_vect_type
public :: psb_z_base_vect
private :: constructor, size_const
interface psb_z_base_vect
module procedure constructor, size_const
end interface psb_z_base_vect
contains
!
! Constructors.
!
function constructor(x) result(this)
complex(psb_dpk_) :: x(:)
type(psb_z_base_vect_type) :: this
integer(psb_ipk_) :: info
this%v = x
call this%asb(size(x,kind=psb_ipk_),info)
end function constructor
function size_const(n) result(this)
integer(psb_ipk_), intent(in) :: n
type(psb_z_base_vect_type) :: this
integer(psb_ipk_) :: info
call this%asb(n,info)
end function size_const
!
! Build from a sample
!
subroutine z_base_bld_x(x,this)
use psb_realloc_mod
complex(psb_dpk_), intent(in) :: this(:)
class(psb_z_base_vect_type), intent(inout) :: x
integer(psb_ipk_) :: info
call psb_realloc(size(this),x%v,info)
if (info /= 0) then
call psb_errpush(psb_err_alloc_dealloc_,'base_vect_bld')
return
end if
x%v(:) = this(:)
end subroutine z_base_bld_x
!
! Create with size, but no initialization
!
subroutine z_base_bld_n(x,n)
use psb_realloc_mod
integer(psb_ipk_), intent(in) :: n
class(psb_z_base_vect_type), intent(inout) :: x
integer(psb_ipk_) :: info
call psb_realloc(n,x%v,info)
call x%asb(n,info)
end subroutine z_base_bld_n
subroutine z_base_all(n, x, info)
use psi_serial_mod
use psb_realloc_mod
implicit none
integer(psb_ipk_), intent(in) :: n
class(psb_z_base_vect_type), intent(out) :: x
integer(psb_ipk_), intent(out) :: info
call psb_realloc(n,x%v,info)
end subroutine z_base_all
!
! Insert a bunch of values at specified positions.
!
subroutine z_base_ins(n,irl,val,dupl,x,info)
use psi_serial_mod
implicit none
class(psb_z_base_vect_type), intent(inout) :: x
integer(psb_ipk_), intent(in) :: n, dupl
integer(psb_ipk_), intent(in) :: irl(:)
complex(psb_dpk_), intent(in) :: val(:)
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i
info = 0
if (psb_errstatus_fatal()) return
if (.not.allocated(x%v)) then
info = psb_err_invalid_vect_state_
else if (n > min(size(irl),size(val))) then
info = psb_err_invalid_input_
else
select case(dupl)
case(psb_dupl_ovwrt_)
do i = 1, n
!loop over all val's rows
! row actual block row
if (irl(i) > 0) then
! this row belongs to me
! copy i-th row of block val in x
x%v(irl(i)) = val(i)
end if
enddo
case(psb_dupl_add_)
do i = 1, n
!loop over all val's rows
if (irl(i) > 0) then
! this row belongs to me
! copy i-th row of block val in x
x%v(irl(i)) = x%v(irl(i)) + val(i)
end if
enddo
case default
info = 321
!!$ call psb_errpush(info,name)
!!$ goto 9999
end select
end if
if (info /= 0) then
call psb_errpush(info,'base_vect_ins')
return
end if
end subroutine z_base_ins
!
subroutine z_base_zero(x)
use psi_serial_mod
implicit none
class(psb_z_base_vect_type), intent(inout) :: x
if (allocated(x%v)) x%v=zzero
end subroutine z_base_zero
!
! Assembly.
! For derived classes: after this the vector
! storage is supposed to be in sync.
!
subroutine z_base_asb(n, x, info)
use psi_serial_mod
use psb_realloc_mod
implicit none
integer(psb_ipk_), intent(in) :: n
class(psb_z_base_vect_type), intent(inout) :: x
integer(psb_ipk_), intent(out) :: info
if (x%get_nrows() < n) &
& call psb_realloc(n,x%v,info)
if (info /= 0) &
& call psb_errpush(psb_err_alloc_dealloc_,'vect_asb')
end subroutine z_base_asb
subroutine z_base_free(x, info)
use psi_serial_mod
use psb_realloc_mod
implicit none
class(psb_z_base_vect_type), intent(inout) :: x
integer(psb_ipk_), intent(out) :: info
info = 0
if (allocated(x%v)) deallocate(x%v, stat=info)
if (info /= 0) call &
& psb_errpush(psb_err_alloc_dealloc_,'vect_free')
end subroutine z_base_free
!
! The base version of SYNC & friends does nothing, it's just
! a placeholder.
!
subroutine z_base_sync(x)
implicit none
class(psb_z_base_vect_type), intent(inout) :: x
end subroutine z_base_sync
subroutine z_base_set_host(x)
implicit none
class(psb_z_base_vect_type), intent(inout) :: x
end subroutine z_base_set_host
subroutine z_base_set_dev(x)
implicit none
class(psb_z_base_vect_type), intent(inout) :: x
end subroutine z_base_set_dev
subroutine z_base_set_sync(x)
implicit none
class(psb_z_base_vect_type), intent(inout) :: x
end subroutine z_base_set_sync
function z_base_is_dev(x) result(res)
implicit none
class(psb_z_base_vect_type), intent(in) :: x
logical :: res
res = .false.
end function z_base_is_dev
function z_base_is_host(x) result(res)
implicit none
class(psb_z_base_vect_type), intent(in) :: x
logical :: res
res = .true.
end function z_base_is_host
function z_base_is_sync(x) result(res)
implicit none
class(psb_z_base_vect_type), intent(in) :: x
logical :: res
res = .true.
end function z_base_is_sync
!
! Size info.
!
function z_base_get_nrows(x) result(res)
implicit none
class(psb_z_base_vect_type), intent(in) :: x
integer(psb_ipk_) :: res
res = 0
if (allocated(x%v)) res = size(x%v)
end function z_base_get_nrows
function z_base_sizeof(x) result(res)
implicit none
class(psb_z_base_vect_type), intent(in) :: x
integer(psb_long_int_k_) :: res
! Force 8-byte integers.
res = (1_psb_long_int_k_ * (2*psb_sizeof_dp)) * x%get_nrows()
end function z_base_sizeof
!
! Two versions of extracting an array: one of them
! overload the assignment.
!
function z_base_get_vect(x) result(res)
class(psb_z_base_vect_type), intent(inout) :: x
complex(psb_dpk_), allocatable :: res(:)
integer(psb_ipk_) :: info
if (.not.allocated(x%v)) return
call x%sync()
allocate(res(x%get_nrows()),stat=info)
if (info /= 0) then
call psb_errpush(psb_err_alloc_dealloc_,'base_get_vect')
return
end if
res(:) = x%v(:)
end function z_base_get_vect
!
! Reset all values
!
subroutine z_base_set_scal(x,val)
class(psb_z_base_vect_type), intent(inout) :: x
complex(psb_dpk_), intent(in) :: val
integer(psb_ipk_) :: info
x%v = val
end subroutine z_base_set_scal
subroutine z_base_set_vect(x,val)
class(psb_z_base_vect_type), intent(inout) :: x
complex(psb_dpk_), intent(in) :: val(:)
integer(psb_ipk_) :: nr
integer(psb_ipk_) :: info
if (allocated(x%v)) then
nr = min(size(x%v),size(val))
x%v(1:nr) = val(1:nr)
else
x%v = val
end if
end subroutine z_base_set_vect
!
! Dot products
!
function z_base_dot_v(n,x,y) result(res)
implicit none
class(psb_z_base_vect_type), intent(inout) :: x, y
integer(psb_ipk_), intent(in) :: n
complex(psb_dpk_) :: res
complex(psb_dpk_), external :: zdotc
res = zzero
!
! Note: this is the base implementation.
! When we get here, we are sure that X is of
! TYPE psb_z_base_vect.
! If Y is not, throw the burden on it, implicitly
! calling dot_a
!
select type(yy => y)
type is (psb_z_base_vect_type)
res = zdotc(n,x%v,1,y%v,1)
class default
res = y%dot(n,x%v)
end select
end function z_base_dot_v
!
! Base workhorse is good old BLAS1
!
function z_base_dot_a(n,x,y) result(res)
implicit none
class(psb_z_base_vect_type), intent(inout) :: x
complex(psb_dpk_), intent(in) :: y(:)
integer(psb_ipk_), intent(in) :: n
complex(psb_dpk_) :: res
complex(psb_dpk_), external :: zdotc
res = zdotc(n,y,1,x%v,1)
end function z_base_dot_a
!
! AXPBY is invoked via Y, hence the structure below.
!
subroutine z_base_axpby_v(m,alpha, x, beta, y, info)
use psi_serial_mod
implicit none
integer(psb_ipk_), intent(in) :: m
class(psb_z_base_vect_type), intent(inout) :: x
class(psb_z_base_vect_type), intent(inout) :: y
complex(psb_dpk_), intent (in) :: alpha, beta
integer(psb_ipk_), intent(out) :: info
select type(xx => x)
type is (psb_z_base_vect_type)
call psb_geaxpby(m,alpha,x%v,beta,y%v,info)
class default
call y%axpby(m,alpha,x%v,beta,info)
end select
end subroutine z_base_axpby_v
subroutine z_base_axpby_a(m,alpha, x, beta, y, info)
use psi_serial_mod
implicit none
integer(psb_ipk_), intent(in) :: m
complex(psb_dpk_), intent(in) :: x(:)
class(psb_z_base_vect_type), intent(inout) :: y
complex(psb_dpk_), intent (in) :: alpha, beta
integer(psb_ipk_), intent(out) :: info
call psb_geaxpby(m,alpha,x,beta,y%v,info)
end subroutine z_base_axpby_a
!
! Multiple variants of two operations:
! Simple multiplication Y(:) = X(:)*Y(:)
! blas-like: Z(:) = alpha*X(:)*Y(:)+beta*Z(:)
!
! Variants expanded according to the dynamic type
! of the involved entities
!
subroutine z_base_mlt_v(x, y, info)
use psi_serial_mod
implicit none
class(psb_z_base_vect_type), intent(inout) :: x
class(psb_z_base_vect_type), intent(inout) :: y
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, n
info = 0
select type(xx => x)
type is (psb_z_base_vect_type)
n = min(size(y%v), size(xx%v))
do i=1, n
y%v(i) = y%v(i)*xx%v(i)
end do
class default
call y%mlt(x%v,info)
end select
end subroutine z_base_mlt_v
subroutine z_base_mlt_a(x, y, info)
use psi_serial_mod
implicit none
complex(psb_dpk_), intent(in) :: x(:)
class(psb_z_base_vect_type), intent(inout) :: y
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, n
info = 0
n = min(size(y%v), size(x))
do i=1, n
y%v(i) = y%v(i)*x(i)
end do
end subroutine z_base_mlt_a
subroutine z_base_mlt_a_2(alpha,x,y,beta,z,info)
use psi_serial_mod
implicit none
complex(psb_dpk_), intent(in) :: alpha,beta
complex(psb_dpk_), intent(in) :: y(:)
complex(psb_dpk_), intent(in) :: x(:)
class(psb_z_base_vect_type), intent(inout) :: z
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, n
info = 0
n = min(size(z%v), size(x), size(y))
!!$ write(0,*) 'Mlt_a_2: ',n
if (alpha == zzero) then
if (beta == zone) then
return
else
do i=1, n
z%v(i) = beta*z%v(i)
end do
end if
else
if (alpha == zone) then
if (beta == zzero) then
do i=1, n
z%v(i) = y(i)*x(i)
end do
else if (beta == zone) then
do i=1, n
z%v(i) = z%v(i) + y(i)*x(i)
end do
else
do i=1, n
z%v(i) = beta*z%v(i) + y(i)*x(i)
end do
end if
else if (alpha == -zone) then
if (beta == zzero) then
do i=1, n
z%v(i) = -y(i)*x(i)
end do
else if (beta == zone) then
do i=1, n
z%v(i) = z%v(i) - y(i)*x(i)
end do
else
do i=1, n
z%v(i) = beta*z%v(i) - y(i)*x(i)
end do
end if
else
if (beta == zzero) then
do i=1, n
z%v(i) = alpha*y(i)*x(i)
end do
else if (beta == zone) then
do i=1, n
z%v(i) = z%v(i) + alpha*y(i)*x(i)
end do
else
do i=1, n
z%v(i) = beta*z%v(i) + alpha*y(i)*x(i)
end do
end if
end if
end if
end subroutine z_base_mlt_a_2
subroutine z_base_mlt_v_2(alpha,x,y,beta,z,info,conjgx,conjgy)
use psi_serial_mod
use psb_string_mod
implicit none
complex(psb_dpk_), intent(in) :: alpha,beta
class(psb_z_base_vect_type), intent(inout) :: x
class(psb_z_base_vect_type), intent(inout) :: y
class(psb_z_base_vect_type), intent(inout) :: z
integer(psb_ipk_), intent(out) :: info
character(len=1), intent(in), optional :: conjgx, conjgy
integer(psb_ipk_) :: i, n
logical :: conjgx_, conjgy_
info = 0
if (.not.psb_z_is_complex_) then
call z%mlt(alpha,x%v,y%v,beta,info)
else
conjgx_=.false.
if (present(conjgx)) conjgx_ = (psb_toupper(conjgx)=='C')
conjgy_=.false.
if (present(conjgy)) conjgy_ = (psb_toupper(conjgy)=='C')
if (conjgx_) x%v=conjg(x%v)
if (conjgy_) y%v=conjg(y%v)
call z%mlt(alpha,x%v,y%v,beta,info)
if (conjgx_) x%v=conjg(x%v)
if (conjgy_) y%v=conjg(y%v)
end if
end subroutine z_base_mlt_v_2
subroutine z_base_mlt_av(alpha,x,y,beta,z,info)
use psi_serial_mod
implicit none
complex(psb_dpk_), intent(in) :: alpha,beta
complex(psb_dpk_), intent(in) :: x(:)
class(psb_z_base_vect_type), intent(inout) :: y
class(psb_z_base_vect_type), intent(inout) :: z
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, n
info = 0
call z%mlt(alpha,x,y%v,beta,info)
end subroutine z_base_mlt_av
subroutine z_base_mlt_va(alpha,x,y,beta,z,info)
use psi_serial_mod
implicit none
complex(psb_dpk_), intent(in) :: alpha,beta
complex(psb_dpk_), intent(in) :: y(:)
class(psb_z_base_vect_type), intent(inout) :: x
class(psb_z_base_vect_type), intent(inout) :: z
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: i, n
info = 0
call z%mlt(alpha,y,x,beta,info)
end subroutine z_base_mlt_va
!
! Simple scaling
!
subroutine z_base_scal(alpha, x)
use psi_serial_mod
implicit none
class(psb_z_base_vect_type), intent(inout) :: x
complex(psb_dpk_), intent (in) :: alpha
if (allocated(x%v)) x%v = alpha*x%v
end subroutine z_base_scal
!
! Norms 1, 2 and infinity
!
function z_base_nrm2(n,x) result(res)
implicit none
class(psb_z_base_vect_type), intent(inout) :: x
integer(psb_ipk_), intent(in) :: n
real(psb_dpk_) :: res
real(psb_dpk_), external :: dznrm2
res = dznrm2(n,x%v,1)
end function z_base_nrm2
function z_base_amax(n,x) result(res)
implicit none
class(psb_z_base_vect_type), intent(inout) :: x
integer(psb_ipk_), intent(in) :: n
real(psb_dpk_) :: res
res = maxval(abs(x%v(1:n)))
end function z_base_amax
function z_base_asum(n,x) result(res)
implicit none
class(psb_z_base_vect_type), intent(inout) :: x
integer(psb_ipk_), intent(in) :: n
real(psb_dpk_) :: res
res = sum(abs(x%v(1:n)))
end function z_base_asum
!
! Gather: Y = beta * Y + alpha * X(IDX(:))
!
subroutine z_base_gthab(n,idx,alpha,x,beta,y)
use psi_serial_mod
integer(psb_ipk_) :: n, idx(:)
complex(psb_dpk_) :: alpha, beta, y(:)
class(psb_z_base_vect_type) :: x
call x%sync()
call psi_gth(n,idx,alpha,x%v,beta,y)
end subroutine z_base_gthab
!
! shortcut alpha=1 beta=0
!
subroutine z_base_gthzv(n,idx,x,y)
use psi_serial_mod
integer(psb_ipk_) :: n, idx(:)
complex(psb_dpk_) :: y(:)
class(psb_z_base_vect_type) :: x
call x%sync()
call psi_gth(n,idx,x%v,y)
end subroutine z_base_gthzv
!
! Scatter:
! Y(IDX(:)) = beta*Y(IDX(:)) + X(:)
!
subroutine z_base_sctb(n,idx,x,beta,y)
use psi_serial_mod
integer(psb_ipk_) :: n, idx(:)
complex(psb_dpk_) :: beta, x(:)
class(psb_z_base_vect_type) :: y
call y%sync()
call psi_sct(n,idx,x,beta,y%v)
call y%set_host()
end subroutine z_base_sctb
end module psb_z_base_vect_mod