You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
415 lines
13 KiB
Fortran
415 lines
13 KiB
Fortran
!
|
|
!
|
|
! AMG-AINV: Approximate Inverse plugin for
|
|
! AMG4PSBLAS version 1.0
|
|
!
|
|
! (C) Copyright 2020
|
|
!
|
|
! Salvatore Filippone University of Rome Tor Vergata
|
|
!
|
|
! Redistribution and use in source and binary forms, with or without
|
|
! modification, are permitted provided that the following conditions
|
|
! are met:
|
|
! 1. Redistributions of source code must retain the above copyright
|
|
! notice, this list of conditions and the following disclaimer.
|
|
! 2. Redistributions in binary form must reproduce the above copyright
|
|
! notice, this list of conditions, and the following disclaimer in the
|
|
! documentation and/or other materials provided with the distribution.
|
|
! 3. The name of the AMG4PSBLAS group or the names of its contributors may
|
|
! not be used to endorse or promote products derived from this
|
|
! software without specific written permission.
|
|
!
|
|
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
! ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
! TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AMG4PSBLAS GROUP OR ITS CONTRIBUTORS
|
|
! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
! POSSIBILITY OF SUCH DAMAGE.
|
|
!
|
|
!
|
|
subroutine psb_csparse_biconjg_s_ft_llk(n,a,p,z,w,nzrmax,sp_thresh,info)
|
|
use psb_base_mod
|
|
use psb_c_ainv_tools_mod
|
|
use psb_c_biconjg_mod, psb_protect_name => psb_csparse_biconjg_s_ft_llk
|
|
|
|
!
|
|
! Left-looking variant, stabilized i.e. product by A is applied
|
|
! to compute the diagonal elements.
|
|
!
|
|
!
|
|
implicit none
|
|
integer(psb_ipk_), intent(in) :: n
|
|
type(psb_c_csr_sparse_mat), intent(in) :: a
|
|
type(psb_c_csc_sparse_mat), intent(inout) :: z,w
|
|
integer(psb_ipk_), intent(in) :: nzrmax
|
|
real(psb_spk_), intent(in) :: sp_thresh
|
|
complex(psb_spk_), intent(out) :: p(:)
|
|
integer(psb_ipk_), intent(out) :: info
|
|
|
|
! Locals
|
|
integer(psb_ipk_), allocatable :: ia(:), ja(:), izkr(:), izcr(:),iww(:)
|
|
complex(psb_spk_), allocatable :: zval(:),val(:), q(:), ww(:)
|
|
integer(psb_ipk_) :: i,j,k, kc, kr, err_act, nz, nzra, nzrz, ipzi,ipzj, nzww,&
|
|
& nzzi,nzzj, nzz, ip1, ip2, ipza,ipzz, ipzn, nzzn, ipz1, ipz2,&
|
|
& ipj, lastj, nextj, nzw, nzrw
|
|
type(psb_i_heap) :: heap, rheap
|
|
type(psb_c_csc_sparse_mat) :: ac
|
|
complex(psb_spk_) :: alpha, tmpq,tmpq2
|
|
character(len=20) :: name='psb_orth_llk'
|
|
logical, parameter :: debug=.false.
|
|
|
|
allocate(zval(n),ia(n),val(n),izkr(n),izcr(n),q(n),iww(n),ww(n),stat=info)
|
|
if (info == psb_success_) call ac%cp_from_fmt(a,info)
|
|
if (info /= psb_success_) then
|
|
call psb_errpush(psb_err_from_subroutine_,name,a_err='Allocate')
|
|
return
|
|
end if
|
|
!
|
|
! Init pointers to:
|
|
! ljr(i): last occupied column index within row I
|
|
! izcr(i): first occupied row index within column I
|
|
!
|
|
do i=1,n
|
|
izkr(i) = 0
|
|
izcr(i) = 0
|
|
zval(i) = czero
|
|
end do
|
|
|
|
! Init z_1=e_1 and p_1=a_11
|
|
p(1) = czero
|
|
i = 1
|
|
nz = a%irp(i+1) - a%irp(i)
|
|
do j=1,nz
|
|
if (a%ja(j) == 1) then
|
|
p(1) = a%val(j)
|
|
exit
|
|
end if
|
|
end do
|
|
if (abs(p(1)) < s_epstol) &
|
|
& p(1) = 1.d-3
|
|
|
|
q(1) = p(1)
|
|
!
|
|
!
|
|
call z%allocate(n,n,n*nzrmax)
|
|
|
|
z%icp(1) = 1
|
|
z%icp(2) = 2
|
|
z%ia(1) = 1
|
|
z%val(1) = cone
|
|
nzz = 1
|
|
|
|
call w%allocate(n,n,n*nzrmax)
|
|
w%icp(1) = 1
|
|
w%icp(2) = 2
|
|
w%ia(1) = 1
|
|
w%val(1) = cone
|
|
nzw = 1
|
|
|
|
do i = 2, n
|
|
if (debug) write(0,*) 'Main loop iteration ',i,n
|
|
|
|
!
|
|
! Update loop on Z.
|
|
! Must be separated from update loop of W because of
|
|
! the conflict on J that would result.
|
|
!
|
|
|
|
! ZVAL = e_i
|
|
! !$ do j=1, i-1
|
|
! !$ zval(j) = czero
|
|
! !$ end do
|
|
zval(i) = cone
|
|
izkr(i) = 1
|
|
call heap%init(info)
|
|
if (info == psb_success_) call heap%insert(i,info)
|
|
if (info == psb_success_) call rheap%init(info)
|
|
do j = ac%icp(i), ac%icp(i+1)-1
|
|
if (ac%ia(j)<i) then
|
|
if (info == psb_success_) call rheap%insert(ac%ia(j),info)
|
|
izcr(ac%ia(j)) = 1
|
|
end if
|
|
end do
|
|
if (info /= psb_success_) then
|
|
info=psb_err_from_subroutine_
|
|
call psb_errpush(info,name,a_err='psb_init_heap')
|
|
return
|
|
end if
|
|
|
|
! Update loop
|
|
! The idea is to keep track of the indices of the nonzeros in zval,
|
|
! so as to only do the dot products on the rows which have nonzeros
|
|
! in their positions; to do this we keep an extra
|
|
! copy of A in CSC, and the row indices to be considered are in rheap.
|
|
lastj = -1
|
|
outer: do
|
|
inner: do
|
|
call rheap%get_first(j,info)
|
|
if (debug) write(0,*) 'from get_first: ',j,info
|
|
if (info == -1) exit outer ! Empty heap
|
|
if (j > lastj) then
|
|
lastj = j
|
|
exit inner
|
|
end if
|
|
end do inner
|
|
izcr(j) = 0
|
|
if (j>=i) exit outer
|
|
if (debug) write(0,*) 'update loop, using row: ',j
|
|
ip1 = w%icp(j)
|
|
ip2 = w%icp(j+1) - 1
|
|
nzra = max(0,ip2 - ip1 + 1)
|
|
nzww = 0
|
|
call psb_c_spvspm(cone,a,nzra,w%ia(ip1:ip2),w%val(ip1:ip2),&
|
|
& czero,nzww,iww,ww,info)
|
|
|
|
p(i) = psb_spge_dot(nzww,iww,ww,zval)
|
|
|
|
ipz1 = z%icp(j)
|
|
ipz2 = z%icp(j+1)
|
|
nzrz = ipz2-ipz1
|
|
alpha = (-p(i)/p(j))
|
|
!!$ write(0,*) ' p(i)/p(j) ',i,j,alpha,p(i),p(j)
|
|
if (.false..or.(abs(alpha) > sp_thresh)) then
|
|
|
|
do k=ipz1, ipz2-1
|
|
kr = z%ia(k)
|
|
zval(kr) = zval(kr) + alpha*z%val(k)
|
|
if (izkr(kr) == 0) then
|
|
call heap%insert(kr,info)
|
|
if (info /= psb_success_) exit
|
|
izkr(kr) = 1
|
|
! We have just added a new nonzero in KR. Thus, we will
|
|
! need to explicitly compute the dot products on all
|
|
! rows j<k<i with nonzeros in column kr; we keep them in
|
|
! a heap.
|
|
!
|
|
do kc = ac%icp(kr), ac%icp(kr+1)-1
|
|
nextj=ac%ia(kc)
|
|
if ((info == psb_success_).and.(izcr(nextj)==0)&
|
|
& .and.(nextj>j).and.(nextj<i)) then
|
|
call rheap%insert(nextj,info)
|
|
izcr(nextj) = 1
|
|
end if
|
|
end do
|
|
if (debug) write(0,*) 'update loop, adding indices: ',&
|
|
& ac%ia(ac%icp(kr):ac%icp(kr+1)-1)
|
|
|
|
end if
|
|
if (info /= psb_success_) exit
|
|
end do
|
|
if (info /= psb_success_) then
|
|
info=psb_err_from_subroutine_
|
|
call psb_errpush(info,name,a_err='psb_insert_heap')
|
|
return
|
|
end if
|
|
end if
|
|
!!$ izcr(j) = 0
|
|
end do outer
|
|
|
|
if (.false.) then
|
|
! We can't do the proper thing until we have bot Z_i and W_i.
|
|
call a%csget(i,i,nzra,ia,ja,val,info)
|
|
call rwclip(nzra,ia,ja,val,ione,n,ione,n)
|
|
p(i) = psb_spge_dot(nzra,ja,val,zval)
|
|
if (abs(p(i)) < s_epstol) &
|
|
& p(i) = 1.d-3
|
|
end if
|
|
|
|
!
|
|
! Sparsify current ZVAL and put into ZMAT
|
|
!
|
|
call sparsify(i,nzrmax,sp_thresh,n,zval,nzrz,ia,val,info,iheap=heap,ikr=izkr)
|
|
if (info /= psb_success_) then
|
|
info = psb_err_internal_error_
|
|
call psb_errpush(info,name,a_err='sparsify')
|
|
return
|
|
end if
|
|
call psb_ensure_size(nzz+nzrz, z%ia, info)
|
|
call psb_ensure_size(nzz+nzrz, z%val, info)
|
|
ipz1 = z%icp(i)
|
|
do j=1, nzrz
|
|
z%ia(ipz1 + j -1) = ia(j)
|
|
z%val(ipz1 + j -1) = val(j)
|
|
end do
|
|
z%icp(i+1) = ipz1 + nzrz
|
|
nzz = nzz + nzrz
|
|
|
|
|
|
|
|
|
|
! WVAL = e_i
|
|
! !$ do j=1, i-1
|
|
! !$ zval(j) = czero
|
|
! !$ end do
|
|
zval(i) = cone
|
|
izkr(i) = 1
|
|
call heap%init(info)
|
|
if (info == psb_success_) call heap%insert(i,info)
|
|
!!$ write(0,*) 'Inserting into heap ',i
|
|
if (info == psb_success_) call rheap%init(info)
|
|
do j = a%irp(i), a%irp(i+1)-1
|
|
if (a%ja(j)<i) then
|
|
if (info == psb_success_) call rheap%insert(a%ja(j),info)
|
|
izcr(a%ja(j)) = 1
|
|
end if
|
|
end do
|
|
if (info /= psb_success_) then
|
|
info=psb_err_from_subroutine_
|
|
call psb_errpush(info,name,a_err='psb_init_heap')
|
|
return
|
|
end if
|
|
|
|
! Update loop
|
|
! The idea is to keep track of the indices of the nonzeros in zval,
|
|
! so as to only do the dot products on the rows which have nonzeros
|
|
! in their positions; to do this we keep an extra
|
|
! copy of A in CSC, and the row indices to be considered are in rheap.
|
|
lastj = -1
|
|
outerw: do
|
|
innerw: do
|
|
call rheap%get_first(j,info)
|
|
if (debug) write(0,*) 'from get_first: ',j,info
|
|
if (info == -1) exit outerw ! Empty heap
|
|
if (j > lastj) then
|
|
lastj = j
|
|
exit innerw
|
|
end if
|
|
end do innerw
|
|
izcr(j) = 0
|
|
if (j>=i) exit outerw
|
|
if (debug) write(0,*) 'update loop, using row: ',j
|
|
if (.false.) then
|
|
ip1 = ac%icp(j)
|
|
ip2 = ac%icp(j+1) - 1
|
|
do
|
|
if (ip2 < ip1 ) exit
|
|
if (ac%ia(ip2) <= n) exit
|
|
ip2 = ip2 -1
|
|
end do
|
|
nzra = max(0,ip2 - ip1 + 1)
|
|
q(i) = psb_spge_dot(nzra,ac%ia(ip1:ip2),ac%val(ip1:ip2),zval)
|
|
! !$ write(psb_err_unit,*) j,i,p(i)
|
|
else
|
|
ip1 = z%icp(j)
|
|
ip2 = z%icp(j+1) - 1
|
|
nzra = max(0,ip2 - ip1 + 1)
|
|
nzww = 0
|
|
call psb_c_spmspv(cone,ac,nzra,z%ia(ip1:ip2),z%val(ip1:ip2),&
|
|
& czero,nzww,iww,ww,info)
|
|
|
|
q(i) = psb_spge_dot(nzww,iww,ww,zval)
|
|
end if
|
|
|
|
ipz1 = w%icp(j)
|
|
ipz2 = w%icp(j+1)
|
|
nzrz = ipz2-ipz1
|
|
alpha = (-q(i)/q(j))
|
|
!!$ write(0,*) ' q(i)/q(j) ',i,j,alpha,q(i),q(j)
|
|
if (.false..or.(abs(alpha) > sp_thresh)) then
|
|
|
|
do k=ipz1, ipz2-1
|
|
kr = w%ia(k)
|
|
zval(kr) = zval(kr) + alpha*w%val(k)
|
|
if (izkr(kr) == 0) then
|
|
call heap%insert(kr,info)
|
|
if (info /= psb_success_) exit
|
|
izkr(kr) = 1
|
|
! We have just added a new nonzero in KR. Thus, we will
|
|
! need to explicitly compute the dot products on all
|
|
! rows j<k<i with nonzeros in column kr; we keep them in
|
|
! a heap.
|
|
!
|
|
do kc = a%irp(kr), a%irp(kr+1)-1
|
|
nextj=a%ja(kc)
|
|
if ((info == psb_success_).and.(izcr(nextj)==0)&
|
|
& .and.(nextj>j).and.(nextj<i)) then
|
|
call rheap%insert(nextj,info)
|
|
izcr(nextj) = 1
|
|
end if
|
|
end do
|
|
if (debug) write(0,*) 'update loop, adding indices: ',&
|
|
& a%ja(a%irp(kr):a%irp(kr+1)-1)
|
|
|
|
end if
|
|
if (info /= psb_success_) exit
|
|
end do
|
|
if (info /= psb_success_) then
|
|
info=psb_err_from_subroutine_
|
|
call psb_errpush(info,name,a_err='psb_insert_heap')
|
|
return
|
|
end if
|
|
end if
|
|
!!$ izcr(j) = 0
|
|
end do outerw
|
|
|
|
!!$ ip1 = ac%icp(i)
|
|
!!$ ip2 = ac%icp(i+1) - 1
|
|
!!$ do
|
|
!!$ if (ip2 < ip1 ) exit
|
|
!!$ if (ac%ia(ip2) <= n) exit
|
|
!!$ ip2 = ip2 -1
|
|
!!$ end do
|
|
!!$ nzra = max(0,ip2 - ip1 + 1)
|
|
!!$
|
|
!!$ q(i) = psb_spge_dot(nzra,ac%ia(ip1:ip2),ac%val(ip1:ip2),zval)
|
|
!!$ if (abs(q(i)) < s_epstol) &
|
|
!!$ & q(i) = 1.d-3
|
|
!
|
|
! Sparsify current ZVAL and put into ZMAT
|
|
!
|
|
call sparsify(i,nzrmax,sp_thresh,n,zval,nzrw,ia,val,info,iheap=heap,ikr=izkr)
|
|
if (info /= psb_success_) then
|
|
info = psb_err_internal_error_
|
|
call psb_errpush(info,name,a_err='sparsify')
|
|
return
|
|
end if
|
|
call psb_ensure_size(nzw+nzrw, w%ia, info)
|
|
call psb_ensure_size(nzw+nzrw, w%val, info)
|
|
ipz1 = w%icp(i)
|
|
do j=1, nzrw
|
|
w%ia(ipz1 + j -1) = ia(j)
|
|
w%val(ipz1 + j -1) = val(j)
|
|
end do
|
|
w%icp(i+1) = ipz1 + nzrw
|
|
nzw = nzw + nzrw
|
|
|
|
!!$ !
|
|
!!$ ! Ok, now compute w_i^T A z_i
|
|
!!$ !
|
|
nzww = 0
|
|
nzrz = z%icp(i+1)-z%icp(i)
|
|
ipz1 = z%icp(i)
|
|
call psb_c_spmspv(cone,ac,&
|
|
& nzrz,z%ia(ipz1:ipz1+nzrz-1),z%val(ipz1:ipz1+nzrz-1),&
|
|
& czero,nzww,iww,ww,info)
|
|
tmpq = psb_spdot_srtd(nzww,iww,ww,nzrw,ia,val)
|
|
q(i) = tmpq
|
|
! if (tmpq <0) then
|
|
!!$ write(0,*) 'On negative dot prod at ',i
|
|
!!$ write(0,*) 'On negative dot prod a ',ia(1:nzrw),val(1:nzrw)
|
|
!!$ write(0,*) 'On negative dot prod w ',iww(1:nzww),ww(1:nzww)
|
|
!!$ ip1 = ac%icp(i)
|
|
!!$ ip2 = ac%icp(i+1) - 1
|
|
!!$ do
|
|
!!$ if (ip2 < ip1 ) exit
|
|
!!$ if (ac%ia(ip2) <= n) exit
|
|
!!$ ip2 = ip2 -1
|
|
!!$ end do
|
|
!!$ nzra = max(0,ip2 - ip1 + 1)
|
|
!!$ write(0,*) 'On negative dot prod a ',ac%ia(ip1:ip2),ac%val(ip1:ip2)
|
|
!
|
|
! end if
|
|
|
|
if (abs(q(i)) < s_epstol) &
|
|
& q(i) = 1.d-3
|
|
p(i) = q(i)
|
|
|
|
end do
|
|
|
|
end subroutine psb_csparse_biconjg_s_ft_llk
|