psblas3/base/serial/f77/dcssm.f

393 lines
13 KiB
Fortran

C
C Parallel Sparse BLAS version 2.2
C (C) Copyright 2006/2007/2008
C Salvatore Filippone University of Rome Tor Vergata
C Alfredo Buttari University of Rome Tor Vergata
C
C Redistribution and use in source and binary forms, with or without
C modification, are permitted provided that the following conditions
C are met:
C 1. Redistributions of source code must retain the above copyright
C notice, this list of conditions and the following disclaimer.
C 2. Redistributions in binary form must reproduce the above copyright
C notice, this list of conditions, and the following disclaimer in the
C documentation and/or other materials provided with the distribution.
C 3. The name of the PSBLAS group or the names of its contributors may
C not be used to endorse or promote products derived from this
C software without specific written permission.
C
C THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
C ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
C TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
C PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS
C BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
C CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
C SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
C INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
C CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
C ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
C POSSIBILITY OF SUCH DAMAGE.
C
C
C SUBROUTINE DCSSM(TRANS,M,N,ALPHA,UNITD,D,PL,FIDT,DESCRT,T,IT1,IT2,
C INFOT,PR,B,LDB,BETA,C,LDC,WORK,LWORK,IERROR)
C
C Purpose
C =======
C
C Solving triangular systems of equations with multiple right-hand sides
C C <-- ALPHA PL D T-1 PR B + BETA C or
C C <-- ALPHA PL D T-t PR B + BETA C or
C C <-- ALPHA PL T-1 D PR B + BETA C or
C C <-- ALPHA PL T-t D PR B + BETA C
C
C Parameters
C ==========
C
C TRANS - CHARACTER*1
C On entry TRANS specifies whether the routine operates with
C matrix T or with the transpose of T as follows:
C TRANS = 'N' -> use matrix T
C TRANS = 'T' or 'C' -> use T' (transpose of matrix T)
C Unchanged on exit.
C
C M - INTEGER
C On entry: number of rows and columns of matrix Ty
C and number of rows of matrices B and C.
C Unchanged on exit.
C
C N - INTEGER
C On entry: number of columns of matrices B and C
C (number of right-hand sides).
C Unchanged on exit.
C
C ALPHA - DOUBLE PRECISION
C On entry: multiplicative constant.
C Unchanged on exit.
C
C UNITD - CHARACTER*1
C On entry UNITD specifies whether the diagonal matrix is unit
C or whether row or column scaling has to be performed, as follows:
C UNITD = 'U' -> unit matrix (no scaling)
C UNITD = 'L' -> scale on the left (row scaling)
C UNITD = 'R' -> scale on the right (column scaling)
C UNITD = 'B' -> scale on the right and on the left
C with D^1/2
C Unchanged on exit.
C
C D - DOUBLE PRECISION array of dimension (M)
C On entry D specifies the main diagonal of the matrix used
C for scaling.
C Unchanged on exit.
C
C PL - INTEGER array of dimension (M)
C On entry PL specifies the row permutation of matrix T
C (PL(1) == 0 if no permutation).
C Unchanged on exit.
C
C FIDT - CHARACTER*5
C On entry FIDT defines the format of the input sparse matrix.
C Unchanged on exit.
C
C DESCRT - CHARACTER*1 array of DIMENSION (9)
C On entry DESCRT describes the characteristics of the input
C sparse matrix.
C Unchanged on exit.
C
C
C T - DOUBLE PRECISION array of DIMENSION (*)
C On entry T specifies the values of the input sparse
C matrix.
C Unchanged on exit.
C
C IT1 - INTEGER array of dimension (*)
C On entry IT1 holds integer information on input sparse
C matrix. Actual information will depend on data format used.
C Unchanged on exit.
C
C IT2 - INTEGER array of dimension (*)
C On entry IT2 holds integer information on input sparse
C matrix. Actual information will depend on data format used.
C Unchanged on exit.
C
C INFOT - INTEGER array of dimension (10)
C On entry can hold auxiliary information on input matrices
C formats or environment of subsequent calls.
C Might be changed on exit.
C
C PR - INTEGER array of dimension (M)
C On entry PR specifies the column permutation of matrix T
C (PR(1) == 0 if no permutation).
C Unchanged on exit.
C
C B - DOUBLE PRECISION array of dimension (LDB,*)
C On entry: matrix of right-hand sides
C Unchanged on exit.
C
C LDB - INTEGER
C On entry: leading dimension of B.
C Unchanged on exit.
C
C BETA - DOUBLE PRECISION
C On entry: multiplicative constant.
C Unchanged on exit.
C
C C - DOUBLE PRECISION array of dimension (LDC,*)
C On exit: solutions of triangular systems
C
C LDC - INTEGER
C On entry: leading dimension of C.
C Unchanged on exit.
C
C WORK - DOUBLE PRECISION array of dimension (LWORK)
C On entry: work area.
C On exit INT(WORK(1)) contains the minimum value
C for LWORK satisfying DCSSM memory requirements.
C
C LWORK - INTEGER
C On entry LWORK specifies the dimension of WORK
C LWORK should be set as follows:
C LWORK = (LWORK for DxxxSM) + Pr*M*N + Pl*M*N
C where Pr <20>Pl<50> = 1 if right <20>left<66> permutation has to
C be performed, 0 otherwise.
C Unchanged on exit.
C
C IERROR - INTEGER
C On exit IERROR contains the value of error flag as follows:
C IERROR = 0 no error
C IERROR > 0 warning
C IERROR < 0 fatal error
C
C Local Variables
C ===============
C
C LWORKM - INTEGER
C Minimum work area dimension for DCSSM
C
C LWORKB - INTEGER
C Work area dimension for matrices B, C in subroutines DLPUPD
C
C LWORKS - INTEGER
C Work area dimension for subroutine DSWSM
C
C P - INTEGER
C Pointer to work area
C
C LP - LOGICAL
C LP is true if left permutation is required
C
C RP - LOGICAL
C RP is true if right permutation is required
C
C Notes
C =====
C Some tests have shown that it is more efficient to divide the
C sparse matrix-dense matrix multiplication step and the dense
C matrix permutation and update (C <- xxx + BETA C) step.
C So, the sequence of operations is:
C Right permutation DLPUPD
C Matrix-Matrix product DSWSM
C Left permutation and update DLPUPD
C In order to avoid useless memory transfer, the above scheme is
C simplified according to whether right and left permutation
C have to be performed.
C
C
SUBROUTINE DCSSM(TRANS,M,N,ALPHA,UNITD,D,
+ PL,FIDT,DESCRT,T,IT1,IT2,INFOT,PR,
+ B,LDB,BETA,C,LDC,WORK,LWORK,IERROR)
C .. Scalar Arguments ..
use psb_const_mod
use psb_error_mod
use psb_string_mod
IMPLICIT NONE
real(psb_dpk_) ALPHA, BETA
INTEGER N, LDB, LDC, M, LWORK, IERROR
CHARACTER UNITD, TRANS
C .. Array Arguments ..
real(psb_dpk_) T(*), B(LDB,*), C(LDC,*), D(*), WORK(*)
INTEGER IT1(*), IT2(*), INFOT(*), PL(*), PR(*)
CHARACTER DESCRT*11, FIDT*5
C .. Local Scalars ..
INTEGER LWORKM, LWORKB, LWORKS, P, ERR_ACT
LOGICAL LP, RP
C .. Local Array..
INTEGER INT_VAL(5)
CHARACTER*30 STRINGS(2)
CHARACTER NAME*20
integer :: debug_level, debug_unit
C .. External Subroutines ..
EXTERNAL DSWSM, DLPUPD
C .. Intrinsic Functions ..
INTRINSIC DBLE, IDINT
C .. Executable Statements ..
C
C Check for argument errors
C
IERROR = 0
NAME = 'DCSSM'
CALL FCPSB_ERRACTIONSAVE(ERR_ACT)
debug_unit = psb_get_debug_unit()
debug_level = psb_get_debug_level()
IF (M.LT.0) THEN
IERROR = 10
INT_VAL(1) = 2
INT_VAL(2) = M
ELSE IF (N.LT.0) THEN
IERROR = 10
INT_VAL(1) = 3
INT_VAL(2) = N
ELSE IF (psb_toupper(TRANS).NE.'T' .AND.
+ psb_toupper(TRANS).NE.'N' .AND.
+ psb_toupper(TRANS).NE.'C') THEN
IERROR = 40
INT_VAL(1) = 1
STRINGS(1) = TRANS//'\0'
ELSE IF (psb_toupper(UNITD).NE.'U' .AND.
+ psb_toupper(UNITD).NE.'L' .AND.
+ psb_toupper(UNITD).NE.'R' .AND.
+ psb_toupper(UNITD).NE.'B') THEN
IERROR = 40
INT_VAL(1) = 5
STRINGS(1) = UNITD//'\0'
ELSE IF (LDB.LT.M) THEN
IERROR = 50
INT_VAL(1) = 16
INT_VAL(2) = 2
INT_VAL(3) = LDB
INT_VAL(4) = M
ELSE IF (LDC.LT.M) THEN
IERROR = 50
INT_VAL(1) = 19
INT_VAL(2) = 2
INT_VAL(3) = LDC
INT_VAL(4) = M
ENDIF
C
C Error handling
C
IF(IERROR.NE.0) THEN
CALL FCPSB_ERRPUSH(IERROR,NAME,INT_VAL)
GOTO 9999
ENDIF
C
C Inizializations
C
LP = PL(1).NE.0
RP = PR(1).NE.0
LWORKB = M*N
LWORKM = 0
IF (RP) LWORKM = LWORKB
IF (LP) LWORKM = LWORKM + LWORKB
P = LWORKB+1
IF (LWORK.LT.LWORKM) THEN
IERROR = 60
INT_VAL(1) = 21
INT_VAL(2) = LWORKM
INT_VAL(3) = LWORK
CALL FCPSB_ERRPUSH(IERROR,NAME,INT_VAL)
GOTO 9999
ENDIF
LWORKS = LWORK - LWORKM
C Check for M, N
C
IF (M.LE.0 .OR. N.LE.0) THEN
GOTO 9999
ENDIF
C
C Switching on xP
C
IF (LP .AND. RP) THEN
C
C Both right and left permutations required
C
if (debug_level >= psb_debug_serial_comp_)
+ write(debug_unit,*) trim(name),': RP LP ',m,n,ierror
CALL DLPUPD(M,N,PR,B,LDB,BETA,WORK,M)
CALL DSWSM(TRANS,M,N,ALPHA,UNITD,D,FIDT,DESCRT,T,IT1,IT2,
& INFOT,WORK,M,DZERO,WORK(P),M,WORK(P+LWORKB),LWORK,IERROR)
LWORKS = IDINT(WORK(P+LWORKB))
IF(IERROR .NE. 0) THEN
IF (IERROR.EQ.3010) THEN
CALL FCPSB_ERRPUSH(IERROR,NAME,INT_VAL)
GOTO 9999
ENDIF
ENDIF
CALL DLPUPD(M,N,PL,WORK(P),M,BETA,C,LDC)
ELSE IF(.NOT.LP .AND. RP) THEN
C
C Only right permutation required
C
if (debug_level >= psb_debug_serial_comp_)
+ write(debug_unit,*) trim(name),': RP NLP ',m,n,ierror
CALL DLPUPD(M,N,PR,B,LDB,BETA,WORK,M)
CALL DSWSM(TRANS,M,N,ALPHA,UNITD,D,FIDT,DESCRT,T,IT1,IT2,
& INFOT,WORK,M,DZERO,C,LDC,WORK(P),LWORK,IERROR)
LWORKS = IDINT(WORK(P))
IF(IERROR .NE. 0) THEN
NAME = 'DCSSM\0'
IF (IERROR.EQ.3010) THEN
CALL FCPSB_ERRPUSH(IERROR,NAME,INT_VAL)
GOTO 9999
ENDIF
ENDIF
ELSE IF(.NOT.RP .AND. LP) THEN
C
C Only left permutation required
C
if (debug_level >= psb_debug_serial_comp_)
+ write(debug_unit,*) trim(name),': NRP LP ',m,n,ierror
CALL DSWSM(TRANS,M,N,ALPHA,UNITD,D,FIDT,DESCRT,T,IT1,IT2,
& INFOT,B,LDB,BETA,WORK,M,WORK(P),LWORK,IERROR)
LWORKS = IDINT(WORK(P))
IF(IERROR .NE. 0) THEN
IF (IERROR.EQ.3010) THEN
CALL FCPSB_ERRPUSH(IERROR,NAME,INT_VAL)
GOTO 9999
ENDIF
ENDIF
CALL DLPUPD(M,N,PL,WORK,M,BETA,C,LDC)
ELSE IF(.NOT.RP .AND. .NOT.LP) THEN
C
C Only triangular systems solver required
C
if (debug_level >= psb_debug_serial_comp_)
+ write(debug_unit,*) trim(name),': NRP NLP ',m,n,ierror
CALL DSWSM(TRANS,M,N,ALPHA,UNITD,D,FIDT,DESCRT,T,IT1,IT2,
& INFOT,B,LDB,BETA,C,LDC,WORK,LWORK,IERROR)
LWORKS = IDINT(WORK(1))
IF(IERROR .NE. 0) THEN
IF (IERROR.EQ.3010) THEN
CALL FCPSB_ERRPUSH(IERROR,NAME,INT_VAL)
GOTO 9999
ENDIF
ENDIF
ENDIF
C
C Return minimum workarea dimension
C
LWORKM = LWORKM + LWORKS
WORK(1) = DBLE(LWORKM)
CALL FCPSB_ERRACTIONRESTORE(ERR_ACT)
RETURN
9999 CONTINUE
CALL FCPSB_ERRACTIONRESTORE(ERR_ACT)
IF ( ERR_ACT .NE. 0 ) THEN
CALL FCPSB_SERROR()
RETURN
ENDIF
RETURN
END