You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
238 lines
7.2 KiB
Fortran
238 lines
7.2 KiB
Fortran
C
|
|
C Parallel Sparse BLAS version 2.2
|
|
C (C) Copyright 2006/2007/2008
|
|
C Salvatore Filippone University of Rome Tor Vergata
|
|
C Alfredo Buttari University of Rome Tor Vergata
|
|
C
|
|
C Redistribution and use in source and binary forms, with or without
|
|
C modification, are permitted provided that the following conditions
|
|
C are met:
|
|
C 1. Redistributions of source code must retain the above copyright
|
|
C notice, this list of conditions and the following disclaimer.
|
|
C 2. Redistributions in binary form must reproduce the above copyright
|
|
C notice, this list of conditions, and the following disclaimer in the
|
|
C documentation and/or other materials provided with the distribution.
|
|
C 3. The name of the PSBLAS group or the names of its contributors may
|
|
C not be used to endorse or promote products derived from this
|
|
C software without specific written permission.
|
|
C
|
|
C THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
C ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
C TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
C PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS
|
|
C BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
C CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
C SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
C INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
C CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
C ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
C POSSIBILITY OF SUCH DAMAGE.
|
|
C
|
|
C
|
|
SUBROUTINE CGIND_TRI(M,N_BLOCKS,A,IA1,IA2,ARN,KA,IA,JA,
|
|
+ LARN,LKA,LJA,IPERM,WORK, LWORK, IERROR)
|
|
|
|
use psb_const_mod
|
|
IMPLICIT NONE
|
|
|
|
C ... Scalar arguments ...
|
|
|
|
INTEGER M, LWORK,N_BLOCKS,LARN,LKA,LJA, IERROR
|
|
|
|
C ... Array arguments ...
|
|
|
|
complex(psb_spk_) A(*), ARN(*), WORK(*)
|
|
INTEGER IA1(*), IA2(*), KA(*),
|
|
+ IA(3,*), IPERM(M), JA(*)
|
|
|
|
C .... Local scalars ...
|
|
INTEGER I, J, BLOCK, ROW, COL, POINT_AR, POINT_JA,
|
|
+ DIM_BLOCK, LIMIT, ERR_ACT
|
|
LOGICAL CSR
|
|
c .. Local Arrays ..
|
|
CHARACTER*20 NAME
|
|
INTEGER INT_VAL(5)
|
|
|
|
NAME = 'CGIND_TRI\0'
|
|
IERROR = 0
|
|
CALL FCPSB_ERRACTIONSAVE(ERR_ACT)
|
|
|
|
POINT_AR = 1
|
|
POINT_JA = 0
|
|
IERROR = 0
|
|
|
|
IF ((LARN.LT.POINT_AR).OR.(LKA.LT.POINT_AR)) THEN
|
|
IERROR = 60
|
|
INT_VAL(1) = 10
|
|
INT_VAL(2) = POINT_AR
|
|
INT_VAL(3) = LARN
|
|
CALL FCPSB_ERRPUSH(IERROR,NAME,INT_VAL)
|
|
GOTO 9999
|
|
ENDIF
|
|
|
|
C .... Invert Permutation Matrix...
|
|
IF (IPERM(1).NE.0) THEN
|
|
DO I = 1, M
|
|
WORK(IPERM(I)) = I
|
|
ENDDO
|
|
ENDIF
|
|
|
|
DO BLOCK = 1, N_BLOCKS
|
|
COL = 1
|
|
DIM_BLOCK = IA(1,BLOCK+1)-IA(1,BLOCK)
|
|
LIMIT = INT(DIM_BLOCK*PSB_PERCENT_)
|
|
POINT_JA = POINT_JA+1
|
|
IF (LJA.LT.POINT_JA) THEN
|
|
IERROR = 60
|
|
INT_VAL(1) = 12
|
|
INT_VAL(2) = POINT_JA
|
|
INT_VAL(3) = LJA
|
|
CALL FCPSB_ERRPUSH(IERROR,NAME,INT_VAL)
|
|
GOTO 9999
|
|
ENDIF
|
|
|
|
IA(2,BLOCK) = POINT_JA
|
|
JA(POINT_JA) = POINT_AR
|
|
CSR = .FALSE.
|
|
|
|
IF (DIM_BLOCK.NE.0) THEN
|
|
C ... If current block is not empty ...
|
|
C ... For each Column belonging to Block ...
|
|
DO WHILE(.TRUE.)
|
|
C ... For each row belonging to the block BLOCK ...
|
|
DO I = IA(1,BLOCK), IA(1,BLOCK+1)-1
|
|
IF (IPERM(1).EQ.0) THEN
|
|
ROW = I
|
|
ELSE
|
|
ROW = WORK(I)
|
|
ENDIF
|
|
|
|
C ... If the current row is too short ...
|
|
IF (IA2(ROW)+COL-1.GE.IA2(ROW+1)) THEN
|
|
C ... Switch to CSR representation ...
|
|
IF (I.LE.IA(1,BLOCK)+LIMIT) THEN
|
|
CSR=.TRUE.
|
|
POINT_AR = POINT_AR - I + IA(1,BLOCK)
|
|
GOTO 998
|
|
ELSE
|
|
ARN(POINT_AR) = 0.D0
|
|
C
|
|
C The following statement assumes that we never get here with POINT_AR=1
|
|
C
|
|
KA (POINT_AR) = KA(POINT_AR-1)
|
|
|
|
POINT_AR = POINT_AR+1
|
|
IF ((LARN.LT.POINT_AR).OR.(LKA.LT.POINT_AR))
|
|
+ THEN
|
|
IERROR = 60
|
|
INT_VAL(1) = 10
|
|
INT_VAL(2) = POINT_AR
|
|
INT_VAL(3) = LARN
|
|
CALL FCPSB_ERRPUSH(IERROR,NAME,INT_VAL)
|
|
GOTO 9999
|
|
ENDIF
|
|
ENDIF
|
|
ELSE
|
|
ARN(POINT_AR) = A(IA2(ROW)+COL-1)
|
|
KA (POINT_AR) = IPERM(IA1(IA2(ROW)+COL-1))
|
|
|
|
POINT_AR = POINT_AR+1
|
|
IF ((LARN.LT.POINT_AR).OR.(LKA.LT.POINT_AR)) THEN
|
|
IERROR = 60
|
|
INT_VAL(1) = 10
|
|
INT_VAL(2) = POINT_AR
|
|
INT_VAL(3) = LARN
|
|
CALL FCPSB_ERRPUSH(IERROR,NAME,INT_VAL)
|
|
GOTO 9999
|
|
ENDIF
|
|
ENDIF
|
|
ENDDO
|
|
|
|
IF (CSR) GOTO 998
|
|
|
|
IF (LJA.LT.POINT_JA+COL) THEN
|
|
IERROR = 60
|
|
INT_VAL(1) = 12
|
|
INT_VAL(2) = POINT_JA
|
|
INT_VAL(3) = LJA
|
|
CALL FCPSB_ERRPUSH(IERROR,NAME,INT_VAL)
|
|
GOTO 9999
|
|
ENDIF
|
|
|
|
JA(POINT_JA+COL) = POINT_AR
|
|
COL = COL+1
|
|
ENDDO
|
|
998 CONTINUE
|
|
|
|
ENDIF
|
|
|
|
POINT_JA = POINT_JA+COL-1
|
|
|
|
IF (LJA.LT.POINT_JA) THEN
|
|
IERROR = 60
|
|
INT_VAL(1) = 12
|
|
INT_VAL(2) = POINT_JA
|
|
INT_VAL(3) = LJA
|
|
CALL FCPSB_ERRPUSH(IERROR,NAME,INT_VAL)
|
|
GOTO 9999
|
|
ENDIF
|
|
|
|
IA(3,BLOCK) = POINT_JA
|
|
|
|
C ... Start CSR Format ...
|
|
|
|
C ... For each row belonging to the block BLOCK ...
|
|
DO I = IA(1,BLOCK), IA(1,BLOCK+1)-1
|
|
IF (IPERM(1).EQ.0) THEN
|
|
ROW = I
|
|
ELSE
|
|
ROW = WORK(I)
|
|
ENDIF
|
|
|
|
C ... For each nnzero elements belonging to current row ...
|
|
DO J = IA2(ROW)+COL-1, IA2(ROW+1)-1
|
|
ARN(POINT_AR) = A(J)
|
|
KA (POINT_AR) = IPERM(IA1(J))
|
|
|
|
POINT_AR = POINT_AR+1
|
|
IF ((LARN.LT.POINT_AR).OR.(LKA.LT.POINT_AR)) THEN
|
|
IERROR = 60
|
|
INT_VAL(1) = 10
|
|
INT_VAL(2) = POINT_AR
|
|
INT_VAL(3) = LARN
|
|
CALL FCPSB_ERRPUSH(IERROR,NAME,INT_VAL)
|
|
GOTO 9999
|
|
ENDIF
|
|
ENDDO
|
|
|
|
POINT_JA = POINT_JA+1
|
|
IF (LJA.LT.POINT_JA) THEN
|
|
IERROR = 60
|
|
INT_VAL(1) = 12
|
|
INT_VAL(2) = POINT_JA
|
|
INT_VAL(3) = LJA
|
|
CALL FCPSB_ERRPUSH(IERROR,NAME,INT_VAL)
|
|
GOTO 9999
|
|
ENDIF
|
|
|
|
JA(POINT_JA) = POINT_AR
|
|
ENDDO
|
|
ENDDO
|
|
|
|
IA(2,N_BLOCKS+1) = POINT_JA
|
|
|
|
CALL FCPSB_ERRACTIONRESTORE(ERR_ACT)
|
|
RETURN
|
|
|
|
9999 CONTINUE
|
|
CALL FCPSB_ERRACTIONRESTORE(ERR_ACT)
|
|
|
|
IF ( ERR_ACT .NE. 0 ) THEN
|
|
CALL FCPSB_SERROR()
|
|
RETURN
|
|
ENDIF
|
|
|
|
RETURN
|
|
END
|
|
|