You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
psblas3/test/openacc/psb_d_oacc_pde3d.F90

1075 lines
35 KiB
Fortran

!
! Parallel Sparse BLAS version 3.5
! (C) Copyright 2006-2018
! Salvatore Filippone
! Alfredo Buttari
!
! Redistribution and use in source and binary forms, with or without
! modification, are permitted provided that the following conditions
! are met:
! 1. Redistributions of source code must retain the above copyright
! notice, this list of conditions and the following disclaimer.
! 2. Redistributions in binary form must reproduce the above copyright
! notice, this list of conditions, and the following disclaimer in the
! documentation and/or other materials provided with the distribution.
! 3. The name of the PSBLAS group or the names of its contributors may
! not be used to endorse or promote products derived from this
! software without specific written permission.
!
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
! ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
! TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS
! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
! POSSIBILITY OF SUCH DAMAGE.
!
!
! File: psb_d_pde3d.f90
!
! Program: psb_d_pde3d
! This sample program solves a linear system obtained by discretizing a
! PDE with Dirichlet BCs.
!
!
! The PDE is a general second order equation in 3d
!
! a1 dd(u) a2 dd(u) a3 dd(u) b1 d(u) b2 d(u) b3 d(u)
! - ------ - ------ - ------ + ----- + ------ + ------ + c u = f
! dxdx dydy dzdz dx dy dz
!
! with Dirichlet boundary conditions
! u = g
!
! on the unit cube 0<=x,y,z<=1.
!
!
! Note that if b1=b2=b3=c=0., the PDE is the Laplace equation.
!
! There are three choices available for data distribution:
! 1. A simple BLOCK distribution
! 2. A ditribution based on arbitrary assignment of indices to processes,
! typically from a graph partitioner
! 3. A 3D distribution in which the unit cube is partitioned
! into subcubes, each one assigned to a process.
!
!
module psb_d_pde3d_mod
use psb_base_mod, only : psb_dpk_, psb_ipk_, psb_lpk_, psb_desc_type,&
& psb_dspmat_type, psb_d_vect_type, dzero,&
& psb_d_base_sparse_mat, psb_d_base_vect_type, &
& psb_i_base_vect_type, psb_l_base_vect_type
interface
function d_func_3d(x,y,z) result(val)
import :: psb_dpk_
real(psb_dpk_), intent(in) :: x,y,z
real(psb_dpk_) :: val
end function d_func_3d
end interface
interface psb_gen_pde3d
module procedure psb_d_gen_pde3d
end interface psb_gen_pde3d
contains
function d_null_func_3d(x,y,z) result(val)
real(psb_dpk_), intent(in) :: x,y,z
real(psb_dpk_) :: val
val = dzero
end function d_null_func_3d
!
! functions parametrizing the differential equation
!
!
! Note: b1, b2 and b3 are the coefficients of the first
! derivative of the unknown function. The default
! we apply here is to have them zero, so that the resulting
! matrix is symmetric/hermitian and suitable for
! testing with CG and FCG.
! When testing methods for non-hermitian matrices you can
! change the B1/B2/B3 functions to e.g. done/sqrt((3*done))
!
function b1(x,y,z)
use psb_base_mod, only : psb_dpk_, done, dzero
implicit none
real(psb_dpk_) :: b1
real(psb_dpk_), intent(in) :: x,y,z
b1=dzero
end function b1
function b2(x,y,z)
use psb_base_mod, only : psb_dpk_, done, dzero
implicit none
real(psb_dpk_) :: b2
real(psb_dpk_), intent(in) :: x,y,z
b2=dzero
end function b2
function b3(x,y,z)
use psb_base_mod, only : psb_dpk_, done, dzero
implicit none
real(psb_dpk_) :: b3
real(psb_dpk_), intent(in) :: x,y,z
b3=dzero
end function b3
function c(x,y,z)
use psb_base_mod, only : psb_dpk_, done, dzero
implicit none
real(psb_dpk_) :: c
real(psb_dpk_), intent(in) :: x,y,z
c=dzero
end function c
function a1(x,y,z)
use psb_base_mod, only : psb_dpk_, done, dzero
implicit none
real(psb_dpk_) :: a1
real(psb_dpk_), intent(in) :: x,y,z
a1=done/80
end function a1
function a2(x,y,z)
use psb_base_mod, only : psb_dpk_, done, dzero
implicit none
real(psb_dpk_) :: a2
real(psb_dpk_), intent(in) :: x,y,z
a2=done/80
end function a2
function a3(x,y,z)
use psb_base_mod, only : psb_dpk_, done, dzero
implicit none
real(psb_dpk_) :: a3
real(psb_dpk_), intent(in) :: x,y,z
a3=done/80
end function a3
function g(x,y,z)
use psb_base_mod, only : psb_dpk_, done, dzero
implicit none
real(psb_dpk_) :: g
real(psb_dpk_), intent(in) :: x,y,z
g = dzero
if (x == done) then
g = done
else if (x == dzero) then
g = exp(y**2-z**2)
end if
end function g
!
! subroutine to allocate and fill in the coefficient matrix and
! the rhs.
!
subroutine psb_d_gen_pde3d(ctxt,idim,a,bv,xv,desc_a,afmt,info,&
& f,amold,vmold,imold,partition,nrl,iv)
use psb_base_mod
use psb_util_mod
#if defined(OPENMP)
use omp_lib
#endif
!
! Discretizes the partial differential equation
!
! a1 dd(u) a2 dd(u) a3 dd(u) b1 d(u) b2 d(u) b3 d(u)
! - ------ - ------ - ------ + ----- + ------ + ------ + c u = f
! dxdx dydy dzdz dx dy dz
!
! with Dirichlet boundary conditions
! u = g
!
! on the unit cube 0<=x,y,z<=1.
!
!
! Note that if b1=b2=b3=c=0., the PDE is the Laplace equation.
!
implicit none
integer(psb_ipk_) :: idim
type(psb_dspmat_type) :: a
type(psb_d_vect_type) :: xv,bv
type(psb_desc_type) :: desc_a
type(psb_ctxt_type) :: ctxt
integer(psb_ipk_) :: info
character(len=*) :: afmt
procedure(d_func_3d), optional :: f
class(psb_d_base_sparse_mat), optional :: amold
class(psb_d_base_vect_type), optional :: vmold
class(psb_i_base_vect_type), optional :: imold
integer(psb_ipk_), optional :: partition, nrl,iv(:)
! Local variables.
integer(psb_ipk_), parameter :: nb=20
type(psb_d_csc_sparse_mat) :: acsc
type(psb_d_coo_sparse_mat) :: acoo
type(psb_d_csr_sparse_mat) :: acsr
real(psb_dpk_) :: zt(nb),x,y,z
integer(psb_ipk_) :: nnz,nr,nlr,i,j,ii,ib,k, partition_, mysz
integer(psb_lpk_) :: m,n,glob_row,nt
integer(psb_ipk_) :: ix,iy,iz,ia,indx_owner
! For 3D partition
! Note: integer control variables going directly into an MPI call
! must be 4 bytes, i.e. psb_mpk_
integer(psb_mpk_) :: npdims(3), npp, minfo
integer(psb_ipk_) :: npx,npy,npz, iamx,iamy,iamz,mynx,myny,mynz
integer(psb_ipk_), allocatable :: bndx(:),bndy(:),bndz(:)
! Process grid
integer(psb_ipk_) :: np, iam
integer(psb_ipk_) :: icoeff
integer(psb_lpk_), allocatable :: myidx(:)
! deltah dimension of each grid cell
! deltat discretization time
real(psb_dpk_) :: deltah, sqdeltah, deltah2
real(psb_dpk_), parameter :: rhs=dzero,one=done,zero=dzero
real(psb_dpk_) :: t0, t1, t2, t3, tasb, talc, ttot, tgen, tcdasb
integer(psb_ipk_) :: err_act
procedure(d_func_3d), pointer :: f_
character(len=20) :: name, ch_err,tmpfmt
info = psb_success_
name = 'create_matrix'
call psb_erractionsave(err_act)
call psb_info(ctxt, iam, np)
if (present(f)) then
f_ => f
else
f_ => d_null_func_3d
end if
deltah = done/(idim+1)
sqdeltah = deltah*deltah
deltah2 = (2*done)* deltah
if (present(partition)) then
if ((1<= partition).and.(partition <= 3)) then
partition_ = partition
else
write(*,*) 'Invalid partition choice ',partition,' defaulting to 3'
partition_ = 3
end if
else
partition_ = 3
end if
! initialize array descriptor and sparse matrix storage. provide an
! estimate of the number of non zeroes
m = (1_psb_lpk_*idim)*idim*idim
n = m
nnz = ((n*7)/(np))
if(iam == psb_root_) write(psb_out_unit,'("Generating Matrix (size=",i0,")...")')n
t0 = psb_wtime()
select case(partition_)
case(1)
! A BLOCK partition
if (present(nrl)) then
nr = nrl
else
!
! Using a simple BLOCK distribution.
!
nt = (m+np-1)/np
nr = max(0,min(nt,m-(iam*nt)))
end if
nt = nr
call psb_sum(ctxt,nt)
if (nt /= m) then
write(psb_err_unit,*) iam, 'Initialization error ',nr,nt,m
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
return
end if
!
! First example of use of CDALL: specify for each process a number of
! contiguous rows
!
call psb_cdall(ctxt,desc_a,info,nl=nr)
myidx = desc_a%get_global_indices()
nlr = size(myidx)
case(2)
! A partition defined by the user through IV
if (present(iv)) then
if (size(iv) /= m) then
write(psb_err_unit,*) iam, 'Initialization error: wrong IV size',size(iv),m
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
return
end if
else
write(psb_err_unit,*) iam, 'Initialization error: IV not present'
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
return
end if
!
! Second example of use of CDALL: specify for each row the
! process that owns it
!
call psb_cdall(ctxt,desc_a,info,vg=iv)
myidx = desc_a%get_global_indices()
nlr = size(myidx)
case(3)
! A 3-dimensional partition
! A nifty MPI function will split the process list
npdims = 0
#if defined(SERIAL_MPI)
npdims = 1
#else
call mpi_dims_create(np,3,npdims,info)
#endif
npx = npdims(1)
npy = npdims(2)
npz = npdims(3)
allocate(bndx(0:npx),bndy(0:npy),bndz(0:npz))
! We can reuse idx2ijk for process indices as well.
call idx2ijk(iamx,iamy,iamz,iam,npx,npy,npz,base=0)
! Now let's split the 3D cube in hexahedra
call dist1Didx(bndx,idim,npx)
mynx = bndx(iamx+1)-bndx(iamx)
call dist1Didx(bndy,idim,npy)
myny = bndy(iamy+1)-bndy(iamy)
call dist1Didx(bndz,idim,npz)
mynz = bndz(iamz+1)-bndz(iamz)
! How many indices do I own?
nlr = mynx*myny*mynz
allocate(myidx(nlr))
! Now, let's generate the list of indices I own
nr = 0
do i=bndx(iamx),bndx(iamx+1)-1
do j=bndy(iamy),bndy(iamy+1)-1
do k=bndz(iamz),bndz(iamz+1)-1
nr = nr + 1
call ijk2idx(myidx(nr),i,j,k,idim,idim,idim)
end do
end do
end do
if (nr /= nlr) then
write(psb_err_unit,*) iam,iamx,iamy,iamz, 'Initialization error: NR vs NLR ',&
& nr,nlr,mynx,myny,mynz
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
end if
!
! Third example of use of CDALL: specify for each process
! the set of global indices it owns.
!
call psb_cdall(ctxt,desc_a,info,vl=myidx)
!
! Specify process topology
!
block
!
! Use adjcncy methods
!
integer(psb_mpk_), allocatable :: neighbours(:)
integer(psb_mpk_) :: cnt
logical, parameter :: debug_adj=.true.
if (debug_adj.and.(np > 1)) then
cnt = 0
allocate(neighbours(np))
if (iamx < npx-1) then
cnt = cnt + 1
call ijk2idx(neighbours(cnt),iamx+1,iamy,iamz,npx,npy,npz,base=0)
end if
if (iamy < npy-1) then
cnt = cnt + 1
call ijk2idx(neighbours(cnt),iamx,iamy+1,iamz,npx,npy,npz,base=0)
end if
if (iamz < npz-1) then
cnt = cnt + 1
call ijk2idx(neighbours(cnt),iamx,iamy,iamz+1,npx,npy,npz,base=0)
end if
if (iamx >0) then
cnt = cnt + 1
call ijk2idx(neighbours(cnt),iamx-1,iamy,iamz,npx,npy,npz,base=0)
end if
if (iamy >0) then
cnt = cnt + 1
call ijk2idx(neighbours(cnt),iamx,iamy-1,iamz,npx,npy,npz,base=0)
end if
if (iamz >0) then
cnt = cnt + 1
call ijk2idx(neighbours(cnt),iamx,iamy,iamz-1,npx,npy,npz,base=0)
end if
call psb_realloc(cnt, neighbours,info)
call desc_a%set_p_adjcncy(neighbours)
!write(0,*) iam,' Check on neighbours: ',desc_a%get_p_adjcncy()
end if
end block
case default
write(psb_err_unit,*) iam, 'Initialization error: should not get here'
info = -1
call psb_barrier(ctxt)
call psb_abort(ctxt)
return
end select
if (info == psb_success_) call psb_spall(a,desc_a,info,nnz=nnz, &
& bldmode=psb_matbld_remote_,dupl=psb_dupl_add_)
! define rhs from boundary conditions; also build initial guess
if (info == psb_success_) call psb_geall(xv,desc_a,info)
if (info == psb_success_) call psb_geall(bv,desc_a,info,&
& bldmode=psb_matbld_remote_,dupl=psb_dupl_add_)
call psb_barrier(ctxt)
talc = psb_wtime()-t0
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='allocation rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
call psb_barrier(ctxt)
t1 = psb_wtime()
!$omp parallel shared(deltah,myidx,a,desc_a)
!
block
integer(psb_ipk_) :: i,j,k,ii,ib,icoeff, ix,iy,iz, ith,nth
integer(psb_lpk_) :: glob_row
integer(psb_lpk_), allocatable :: irow(:),icol(:)
real(psb_dpk_), allocatable :: val(:)
real(psb_dpk_) :: x,y,z, zt(nb)
#if defined(OPENMP)
nth = omp_get_num_threads()
ith = omp_get_thread_num()
#else
nth = 1
ith = 0
#endif
allocate(val(20*nb),irow(20*nb),&
&icol(20*nb),stat=info)
if (info /= psb_success_ ) then
info=psb_err_alloc_dealloc_
call psb_errpush(info,name)
!goto 9999
endif
!$omp do schedule(dynamic)
!
do ii=1, nlr, nb
if(info /= psb_success_) cycle
ib = min(nb,nlr-ii+1)
!ib = min(nb,mysz-ii+1)
icoeff = 1
do k=1,ib
i=ii+k-1
! local matrix pointer
glob_row=myidx(i)
! compute gridpoint coordinates
call idx2ijk(ix,iy,iz,glob_row,idim,idim,idim)
! x, y, z coordinates
x = (ix-1)*deltah
y = (iy-1)*deltah
z = (iz-1)*deltah
zt(k) = f_(x,y,z)
! internal point: build discretization
!
! term depending on (x-1,y,z)
!
val(icoeff) = -a1(x,y,z)/sqdeltah-b1(x,y,z)/deltah2
if (ix == 1) then
zt(k) = g(dzero,y,z)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix-1,iy,iz,idim,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y-1,z)
val(icoeff) = -a2(x,y,z)/sqdeltah-b2(x,y,z)/deltah2
if (iy == 1) then
zt(k) = g(x,dzero,z)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix,iy-1,iz,idim,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y,z-1)
val(icoeff)=-a3(x,y,z)/sqdeltah-b3(x,y,z)/deltah2
if (iz == 1) then
zt(k) = g(x,y,dzero)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix,iy,iz-1,idim,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y,z)
val(icoeff)=(2*done)*(a1(x,y,z)+a2(x,y,z)+a3(x,y,z))/sqdeltah &
& + c(x,y,z)
call ijk2idx(icol(icoeff),ix,iy,iz,idim,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
! term depending on (x,y,z+1)
val(icoeff)=-a3(x,y,z)/sqdeltah+b3(x,y,z)/deltah2
if (iz == idim) then
zt(k) = g(x,y,done)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix,iy,iz+1,idim,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x,y+1,z)
val(icoeff)=-a2(x,y,z)/sqdeltah+b2(x,y,z)/deltah2
if (iy == idim) then
zt(k) = g(x,done,z)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix,iy+1,iz,idim,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
! term depending on (x+1,y,z)
val(icoeff)=-a1(x,y,z)/sqdeltah+b1(x,y,z)/deltah2
if (ix==idim) then
zt(k) = g(done,y,z)*(-val(icoeff)) + zt(k)
else
call ijk2idx(icol(icoeff),ix+1,iy,iz,idim,idim,idim)
irow(icoeff) = glob_row
icoeff = icoeff+1
endif
end do
#if defined(OPENMP)
!!$ write(0,*) omp_get_thread_num(),' Check insertion ',&
!!$ & irow(1:icoeff-1),':',icol(1:icoeff-1)
#endif
call psb_spins(icoeff-1,irow,icol,val,a,desc_a,info)
if(info /= psb_success_) cycle
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),bv,desc_a,info)
if(info /= psb_success_) cycle
zt(:)=dzero
call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),xv,desc_a,info)
if(info /= psb_success_) cycle
end do
!$omp end do
deallocate(val,irow,icol)
end block
!$omp end parallel
tgen = psb_wtime()-t1
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='insert rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
call psb_barrier(ctxt)
t1 = psb_wtime()
call psb_cdasb(desc_a,info,mold=imold)
tcdasb = psb_wtime()-t1
call psb_barrier(ctxt)
t1 = psb_wtime()
if (info == psb_success_) then
if (present(amold)) then
call psb_spasb(a,desc_a,info,mold=amold)
else
call psb_spasb(a,desc_a,info,afmt=afmt)
end if
end if
call psb_barrier(ctxt)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
if (info == psb_success_) call psb_geasb(xv,desc_a,info,mold=vmold)
if (info == psb_success_) call psb_geasb(bv,desc_a,info,mold=vmold)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
tasb = psb_wtime()-t1
call psb_barrier(ctxt)
ttot = psb_wtime() - t0
call psb_amx(ctxt,talc)
call psb_amx(ctxt,tgen)
call psb_amx(ctxt,tasb)
call psb_amx(ctxt,ttot)
if(iam == psb_root_) then
tmpfmt = a%get_fmt()
write(psb_out_unit,'("The matrix has been generated and assembled in ",a3," format.")')&
& tmpfmt
write(psb_out_unit,'("-allocation time : ",es12.5)') talc
write(psb_out_unit,'("-coeff. gen. time : ",es12.5)') tgen
write(psb_out_unit,'("-desc asbly time : ",es12.5)') tcdasb
write(psb_out_unit,'("- mat asbly time : ",es12.5)') tasb
write(psb_out_unit,'("-total time : ",es12.5)') ttot
end if
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(ctxt,err_act)
return
end subroutine psb_d_gen_pde3d
function outside(i,j,k,bndx,bndy,bndz,iamx,iamy,iamz) result(res)
logical :: res
integer(psb_ipk_), intent(in) :: i,j,k,iamx,iamy,iamz
integer(psb_ipk_), intent(in) :: bndx(0:),bndy(0:),bndz(0:)
res = (i<bndx(iamx)).or.(i>=bndx(iamx+1)) &
& .or.(j<bndy(iamy)).or.(j>=bndy(iamy+1)) &
& .or.(k<bndz(iamz)).or.(k>=bndz(iamz+1))
end function outside
end module psb_d_pde3d_mod
program psb_d_oacc_pde3d
use psb_base_mod
use psb_prec_mod
use psb_linsolve_mod
use psb_util_mod
use psb_d_pde3d_mod
#if defined(OPENACC)
use psb_oacc_mod
#endif
implicit none
! input parameters
character(len=20) :: kmethd, ptype
character(len=5) :: afmt, agfmt
integer(psb_ipk_) :: idim
integer(psb_epk_) :: system_size
! miscellaneous
real(psb_dpk_), parameter :: one = done
real(psb_dpk_) :: t1, t2, tprec
! sparse matrix and preconditioner
type(psb_dspmat_type) :: a, agpu
type(psb_dprec_type) :: prec
! descriptor
type(psb_desc_type) :: desc_a
! dense vectors
type(psb_d_vect_type), target :: xxv, bv, xg, bg
#ifdef OPENACC
type(psb_d_vect_oacc) :: vmold
type(psb_i_vect_oacc) :: imold
type(psb_d_oacc_csr_sparse_mat) :: acsrg
#endif
real(psb_dpk_), allocatable :: x0(:)
! parallel environment
type(psb_ctxt_type) :: ctxt
integer(psb_ipk_) :: iam, np, nth
! solver parameters
integer(psb_ipk_) :: iter, itmax, itrace, istopc, irst, ipart
integer(psb_epk_) :: amatsize, precsize, descsize, d2size
real(psb_dpk_) :: err, eps
! Parameters for solvers in Block-Jacobi preconditioner
type ainvparms
character(len=12) :: alg, orth_alg, ilu_alg, ilut_scale
integer(psb_ipk_) :: fill, inv_fill
real(psb_dpk_) :: thresh, inv_thresh
end type ainvparms
type(ainvparms) :: parms
! other variables
integer(psb_ipk_) :: info, i
character(len=20) :: name, ch_err
character(len=40) :: fname
info = psb_success_
call psb_init(ctxt)
call psb_info(ctxt, iam, np)
#if defined(OPENACC)
call psb_oacc_init(ctxt)
#endif
nth = 1
if (iam < 0) then
! This should not happen, but just in case
call psb_exit(ctxt)
stop
endif
if (psb_errstatus_fatal()) goto 9999
name = 'pde3d90_oacc'
call psb_set_errverbosity(itwo)
! Hello world
if (iam == psb_root_) then
write(*,*) 'Welcome to PSBLAS version: ', psb_version_string_
write(*,*) 'This is the ', trim(name), ' sample program'
end if
! get parameters
call get_parms(ctxt, kmethd, ptype, afmt, agfmt, idim, istopc,&
& itmax, itrace, irst, ipart, parms)
! allocate and fill in the coefficient matrix, rhs and initial guess
call psb_barrier(ctxt)
t1 = psb_wtime()
call psb_gen_pde3d(ctxt, idim, a, bv, xxv, desc_a, afmt, info, partition = ipart)
call psb_barrier(ctxt)
t2 = psb_wtime() - t1
if (info /= psb_success_) then
info = psb_err_from_subroutine_
ch_err = 'psb_gen_pde3d'
call psb_errpush(info, name, a_err = ch_err)
goto 9999
end if
if (iam == psb_root_) write(psb_out_unit, '("Overall matrix creation time : ", es12.5)') t2
if (iam == psb_root_) write(psb_out_unit, '(" ")')
#ifdef OPENACC
! Convert matrix to GPU format
call a%cscnv(agpu, info, mold = acsrg)
if ((info /= 0) .or. (psb_get_errstatus() /= 0)) then
write(0,*) 'From cscnv ', info
call psb_error()
stop
end if
call desc_a%cnv(mold = imold)
call psb_geasb(bg, desc_a, info, scratch = .true., mold = vmold)
call psb_geasb(xg, desc_a, info, scratch = .true., mold = vmold)
#endif
! prepare the preconditioner.
if (iam == psb_root_) write(psb_out_unit, '("Setting preconditioner to : ", a)') ptype
call prec%init(ctxt, ptype, info)
! Set the options for the BJAC preconditioner
if (psb_toupper(ptype) == "BJAC") then
call prec%set('sub_solve', parms%alg, info)
select case (psb_toupper(parms%alg))
case ("ILU")
call prec%set('sub_fillin', parms%fill, info)
call prec%set('ilu_alg', parms%ilu_alg, info)
case ("ILUT")
call prec%set('sub_fillin', parms%fill, info)
call prec%set('sub_iluthrs', parms%thresh, info)
call prec%set('ilut_scale', parms%ilut_scale, info)
case ("AINV")
call prec%set('inv_thresh', parms%inv_thresh, info)
call prec%set('inv_fillin', parms%inv_fill, info)
call prec%set('ilut_scale', parms%ilut_scale, info)
call prec%set('ainv_alg', parms%orth_alg, info)
case ("INVK")
call prec%set('sub_fillin', parms%fill, info)
call prec%set('inv_fillin', parms%inv_fill, info)
call prec%set('ilut_scale', parms%ilut_scale, info)
case ("INVT")
call prec%set('sub_fillin', parms%fill, info)
call prec%set('inv_fillin', parms%inv_fill, info)
call prec%set('sub_iluthrs', parms%thresh, info)
call prec%set('inv_thresh', parms%inv_thresh, info)
call prec%set('ilut_scale', parms%ilut_scale, info)
case default
! Do nothing, use default setting in the init routine
end select
else
! nothing to set for NONE or DIAG preconditioner
end if
call psb_barrier(ctxt)
t1 = psb_wtime()
call prec%build(a, desc_a, info)
if (info /= psb_success_) then
info = psb_err_from_subroutine_
ch_err = 'psb_precbld'
call psb_errpush(info, name, a_err = ch_err)
goto 9999
end if
tprec = psb_wtime() - t1
call psb_amx(ctxt, tprec)
if (iam == psb_root_) write(psb_out_unit, '("Preconditioner time : ", es12.5)') tprec
if (iam == psb_root_) write(psb_out_unit, '(" ")')
call prec%descr(info)
! iterative method parameters
if (iam == psb_root_) write(psb_out_unit, '("Calling iterative method ", a)') kmethd
call psb_barrier(ctxt)
t1 = psb_wtime()
eps = 1.d-6
#ifdef OPENACC
call psb_krylov(kmethd, agpu, prec, bv, xxv, eps, desc_a, info, &
itmax = itmax, iter = iter, err = err, itrace = itrace, istop = istopc, irst = irst)
#else
call psb_krylov(kmethd, a, prec, bv, xxv, eps, desc_a, info, &
itmax = itmax, iter = iter, err = err, itrace = itrace, istop = istopc, irst = irst)
#endif
if (info /= psb_success_) then
info = psb_err_from_subroutine_
ch_err = 'solver routine'
call psb_errpush(info, name, a_err = ch_err)
goto 9999
end if
call psb_barrier(ctxt)
t2 = psb_wtime() - t1
call psb_amx(ctxt, t2)
amatsize = a%sizeof()
descsize = desc_a%sizeof()
precsize = prec%sizeof()
system_size = desc_a%get_global_rows()
call psb_sum(ctxt, amatsize)
call psb_sum(ctxt, descsize)
call psb_sum(ctxt, precsize)
if (iam == psb_root_) then
write(psb_out_unit, '(" ")')
write(psb_out_unit, '("Number of processes : ", i12)') np
write(psb_out_unit, '("Number of threads : ", i12)') nth
write(psb_out_unit, '("Total number of tasks : ", i12)') nth * np
write(psb_out_unit, '("Linear system size : ", i12)') system_size
write(psb_out_unit, '("Time to solve system : ", es12.5)') t2
write(psb_out_unit, '("Time per iteration : ", es12.5)') t2 / iter
write(psb_out_unit, '("Number of iterations : ", i12)') iter
write(psb_out_unit, '("Convergence indicator on exit : ", es12.5)') err
write(psb_out_unit, '("Info on exit : ", i12)') info
write(psb_out_unit, '("Total memory occupation for A: ", i12)') amatsize
write(psb_out_unit, '("Total memory occupation for PREC: ", i12)') precsize
write(psb_out_unit, '("Total memory occupation for DESC_A: ", i12)') descsize
write(psb_out_unit, '("Storage format for A: ", a)') a%get_fmt()
write(psb_out_unit, '("Storage format for DESC_A: ", a)') desc_a%get_fmt()
end if
! cleanup storage and exit
call psb_gefree(bv, desc_a, info)
call psb_gefree(xxv, desc_a, info)
call psb_spfree(a, desc_a, info)
call prec%free(info)
call psb_cdfree(desc_a, info)
if (info /= psb_success_) then
info = psb_err_from_subroutine_
ch_err = 'free routine'
call psb_errpush(info, name, a_err = ch_err)
goto 9999
end if
#ifdef OPENACC
call psb_oacc_exit()
#endif
call psb_exit(ctxt)
stop
9999 call psb_error(ctxt)
stop
contains
! get iteration parameters from standard input
subroutine get_parms(ctxt, kmethd, ptype, afmt, agfmt, idim, istopc, itmax, itrace, irst, ipart, parms)
type(psb_ctxt_type) :: ctxt
character(len = *) :: kmethd, ptype, afmt, agfmt
integer(psb_ipk_) :: idim, istopc, itmax, itrace, irst, ipart
integer(psb_ipk_) :: np, iam
integer(psb_ipk_) :: ip, inp_unit
character(len = 1024) :: filename
type(ainvparms) :: parms
call psb_info(ctxt, iam, np)
if (iam == 0) then
if (command_argument_count() > 0) then
call get_command_argument(1, filename)
inp_unit = 30
open(inp_unit, file = filename, action = 'read', iostat = info)
if (info /= 0) then
write(psb_err_unit, *) 'Could not open file ', filename, ' for input'
call psb_abort(ctxt)
stop
else
write(psb_err_unit, *) 'Opened file ', trim(filename), ' for input'
end if
else
inp_unit = psb_inp_unit
end if
read(inp_unit, *) ip
if (ip >= 3) then
read(inp_unit, *) kmethd
read(inp_unit, *) ptype
read(inp_unit, *) afmt
read(inp_unit, *) agfmt
read(inp_unit, *) idim
if (ip >= 4) then
read(inp_unit, *) ipart
else
ipart = 3
endif
if (ip >= 5) then
read(inp_unit, *) istopc
else
istopc = 1
endif
if (ip >= 6) then
read(inp_unit, *) itmax
else
itmax = 500
endif
if (ip >= 7) then
read(inp_unit, *) itrace
else
itrace = -1
endif
if (ip >= 8) then
read(inp_unit, *) irst
else
irst = 1
endif
if (ip >= 9) then
read(inp_unit, *) parms%alg
read(inp_unit, *) parms%ilu_alg
read(inp_unit, *) parms%ilut_scale
read(inp_unit, *) parms%fill
read(inp_unit, *) parms%inv_fill
read(inp_unit, *) parms%thresh
read(inp_unit, *) parms%inv_thresh
read(inp_unit, *) parms%orth_alg
else
parms%alg = 'ILU' ! Block Solver ILU, ILUT, INVK, AINVT, AORTH
parms%ilu_alg = 'NONE' ! If ILU : MILU or NONE otherwise ignored
parms%ilut_scale = 'NONE' ! If ILUT: NONE, MAXVAL, DIAG, ARWSUM, ACLSUM, ARCSUM
parms%fill = 0 ! Level of fill for forward factorization
parms%inv_fill = 1 ! Level of fill for inverse factorization (only INVK)
parms%thresh = 1E-1_psb_dpk_ ! Threshold for forward factorization
parms%inv_thresh = 1E-1_psb_dpk_ ! Threshold for inverse factorization
parms%orth_alg = 'LLK' ! What orthogonalization algorithm?
endif
write(psb_out_unit, '("Solving matrix : ell1")')
write(psb_out_unit, &
'("Grid dimensions : ", i4, " x ", i4, " x ", i4)') &
idim, idim, idim
write(psb_out_unit, '("Number of processors : ", i0)') np
select case (ipart)
case (1)
write(psb_out_unit, '("Data distribution : BLOCK")')
case (3)
write(psb_out_unit, '("Data distribution : 3D")')
case default
ipart = 3
write(psb_out_unit, '("Unknown data distrbution, defaulting to 3D")')
end select
write(psb_out_unit, '("Preconditioner : ", a)') ptype
if (psb_toupper(ptype) == "BJAC") then
write(psb_out_unit, '("Block subsolver : ", a)') parms%alg
select case (psb_toupper(parms%alg))
case ('ILU')
write(psb_out_unit, '("Fill in : ", i0)') parms%fill
write(psb_out_unit, '("MILU : ", a)') parms%ilu_alg
case ('ILUT')
write(psb_out_unit, '("Fill in : ", i0)') parms%fill
write(psb_out_unit, '("Threshold : ", es12.5)') parms%thresh
write(psb_out_unit, '("Scaling : ", a)') parms%ilut_scale
case ('INVK')
write(psb_out_unit, '("Fill in : ", i0)') parms%fill
write(psb_out_unit, '("Invese Fill in : ", i0)') parms%inv_fill
write(psb_out_unit, '("Scaling : ", a)') parms%ilut_scale
case ('INVT')
write(psb_out_unit, '("Fill in : ", i0)') parms%fill
write(psb_out_unit, '("Threshold : ", es12.5)') parms%thresh
write(psb_out_unit, '("Invese Fill in : ", i0)') parms%inv_fill
write(psb_out_unit, '("Inverse Threshold : ", es12.5)') parms%inv_thresh
write(psb_out_unit, '("Scaling : ", a)') parms%ilut_scale
case ('AINV', 'AORTH')
write(psb_out_unit, '("Inverse Threshold : ", es12.5)') parms%inv_thresh
write(psb_out_unit, '("Invese Fill in : ", i0)') parms%inv_fill
write(psb_out_unit, '("Orthogonalization : ", a)') parms%orth_alg
write(psb_out_unit, '("Scaling : ", a)') parms%ilut_scale
case default
write(psb_out_unit, '("Unknown diagonal solver")')
end select
end if
write(psb_out_unit, '("Iterative method : ", a)') kmethd
write(psb_out_unit, '(" ")')
else
! wrong number of parameter, print an error message and exit
call pr_usage(izero)
call psb_abort(ctxt)
stop 1
endif
if (inp_unit /= psb_inp_unit) then
close(inp_unit)
end if
end if
! broadcast parameters to all processors
call psb_bcast(ctxt, kmethd)
call psb_bcast(ctxt, afmt)
call psb_bcast(ctxt, agfmt)
call psb_bcast(ctxt, ptype)
call psb_bcast(ctxt, idim)
call psb_bcast(ctxt, ipart)
call psb_bcast(ctxt, istopc)
call psb_bcast(ctxt, itmax)
call psb_bcast(ctxt, itrace)
call psb_bcast(ctxt, irst)
call psb_bcast(ctxt, parms%alg)
call psb_bcast(ctxt, parms%fill)
call psb_bcast(ctxt, parms%inv_fill)
call psb_bcast(ctxt, parms%thresh)
call psb_bcast(ctxt, parms%inv_thresh)
call psb_bcast(ctxt, parms%orth_alg)
call psb_bcast(ctxt, parms%ilut_scale)
return
end subroutine get_parms
! print an error message
subroutine pr_usage(iout)
integer(psb_ipk_) :: iout
write(iout, *) 'incorrect parameter(s) found'
write(iout, *) ' usage: pde3d90 methd prec dim &'
write(iout, *) '[istop itmax itrace]'
write(iout, *) ' where:'
write(iout, *) ' methd: cgstab cgs rgmres bicgstabl'
write(iout, *) ' prec : bjac diag none'
write(iout, *) ' dim number of points along each axis'
write(iout, *) ' the size of the resulting linear '
write(iout, *) ' system is dim**3'
write(iout, *) ' ipart data partition 1 3 '
write(iout, *) ' istop stopping criterion 1, 2 '
write(iout, *) ' itmax maximum number of iterations [500] '
write(iout, *) ' itrace <=0 (no tracing, default) or '
write(iout, *) ' >= 1 do tracing every itrace'
write(iout, *) ' iterations '
end subroutine pr_usage
end program psb_d_oacc_pde3d