mirror of https://github.com/hearot/notes
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
100 lines
4.5 KiB
TeX
100 lines
4.5 KiB
TeX
2 years ago
|
\documentclass[11pt]{article}
|
||
|
\usepackage{personal_commands}
|
||
|
\usepackage[italian]{babel}
|
||
|
|
||
|
\title{\textbf{Note del corso di Geometria 1}}
|
||
|
\author{Gabriel Antonio Videtta}
|
||
|
\date{10 maggio 2023}
|
||
|
|
||
|
\begin{document}
|
||
|
|
||
|
\maketitle
|
||
|
|
||
|
\begin{center}
|
||
|
\Large \textbf{Classificazione delle coniche}
|
||
|
\end{center}
|
||
|
|
||
|
\wip
|
||
|
|
||
|
\begin{note}
|
||
|
Si assume che, nel corso del documento, valga che $\Char \KK \neq 2$.
|
||
|
\end{note}
|
||
|
|
||
|
\begin{definition} [quadriche] Si dice \textbf{quadrica} un qualsiasi luogo di zeri
|
||
|
di un polinomio $p \in \KK[x_1, \ldots, x_n]$ con $\deg p = 2$.
|
||
|
\end{definition}
|
||
|
|
||
|
\begin{definition} [coniche] Si dice \textbf{conica} una quadrica relativa ad un polinomio
|
||
|
in due variabili.
|
||
|
\end{definition}
|
||
|
|
||
|
\begin{remark}\nl
|
||
|
\li Una quadrica è invariante per la relazione $\sim$ su $\KK[x_1, \ldots, x_n]$, dove
|
||
|
$p_1 \sim p_2 \defiff \exists \alpha \in \KK^* \mid p_1 = \alpha p_2$. Infatti
|
||
|
il luogo di zeri di un polinomio non varia se esso viene moltiplicato per una costante non nulla di $\KK$. \\
|
||
|
\li Una quadrica può essere vuota (come nel caso della conica relativa a $x^2 + y^2 + 1$ in $\RR$). \\
|
||
|
\li Si identifica con la notazione $p(\x)$ con $\x \in \KK^n$, la valutazione del polinomio $p$ nelle coordinate
|
||
|
di $\x$. Per esempio, se $\x = (1, 2)$ e $p(x, y) = x^2 + y^2$, con $p(\x)$ si identifica il valore
|
||
|
$p(1, 2) = 1^2 + 2^2 = 5$.
|
||
|
\end{remark}
|
||
|
|
||
|
\begin{remark} [riscrittura di $p$ mediante matrici]
|
||
|
Sia $p \in \KK[x_1, \ldots, x_n]$ di grado due. Allora $p$ si può sempre scrivere come $p_2 + p_1 + p_0$,
|
||
|
dove $p_i$ è un polinomio omogeneo contenente soltanto monomi di grado $i$. \\
|
||
|
|
||
|
In particolare, $p_2(x_1, \ldots, x_n)$ può essere sempre riscritto come $\sum_{i=1}^n \sum_{j=1}^n a_{ij}$
|
||
|
con $a_{ij} \in \KK$ con $a_{ij} = a_{ji}$.
|
||
|
È infatti sufficiente "sdoppiare" il coefficiente $c_{ij}$
|
||
|
di $x_i x_j$ in due metà, in modo tale che $c_{ij} x_i x_j = \frac{c_{ij}}{2} x_i x_j + \frac{c_{ij}}{2} x_i x_j = \frac{c_{ij}}{2} x_i x_j + \frac{c_{ij}}{2} x_j x_i$. Inoltre, anche $p_1(x_1, \ldots, x_n)$ può essere riscritto come $\sum_{i=1}^n b_{ij}$. \\
|
||
|
|
||
|
Si possono allora considerare la matrice $A \in M(n, \KK)$ ed il vettore $\vec b \in \KK^n$, definiti in modo tale che:
|
||
|
|
||
|
\[ A = (a_{ij})_{i,j=1\mbox{--}n}, \qquad \vec b = (b_i)_{i=1\mbox{--}n} \in \KK^n. \]
|
||
|
|
||
|
\vskip 0.05in
|
||
|
|
||
|
Infatti, $A$ e $\vec b$ soddisfano la seguente identità:
|
||
|
|
||
|
\[ p(\x) = \x^\top A \x + \vec b^\top \x + c, \]
|
||
|
|
||
|
\vskip 0.05in
|
||
|
|
||
|
che, riscritta tramite l'identificazione di $\AnK$ come l'iperpiano $H_{n+1} \in \Aa_{n+1}(\KK)$,
|
||
|
diventa:
|
||
|
|
||
|
\[ p(\x) = {\hat \x}^\top \hat A \hat \x, \quad \dove \hat A = \Matrix{A & \rvline & \nicefrac{\vec b}{2} \, \\[1pt] \hline & \rvline & \\[-9pt] \nicefrac{{\vec b}^\top}{2} & \rvline & c }. \]
|
||
|
|
||
|
\vskip 0.05in
|
||
|
|
||
|
Si osserva che $\hat A$ è una matrice simmetrica di taglia $n+1$ a elementi in $\KK$, e in quanto
|
||
|
tale essa induce un prodotto scalare su $\KK^{n+1}$. Pertanto la quadrica relativa $p$ è esattamente
|
||
|
l'intersezione tra $H_{n+1}$ e $\CI(\hat A)$, identificando $\KK^{n+1}$ come $H_{n+1}$, ossia
|
||
|
la quadrica è esattamente $\iota\inv(H_{n+1} \cap \CI(\hat A))$.
|
||
|
\end{remark}
|
||
|
|
||
|
\begin{definition}[matrice associata ad una quadrica]
|
||
|
Si definisce la costruzione appena fatta di $\hat A$ come la \textbf{matrice associata alla quadrica relativa a $p$}, e si indica con $\MM(p)$. In particolare, $A$ è detta la matrice che rappresenta la \textit{parte quadratica}, e si indica con $\AA(p)$, mentre $\nicefrac{\vec b}2$ rappresenta la \textit{parte lineare}, indicata con $\Ll(p)$,
|
||
|
e $c = c(p)$ è detto \textit{termine noto}.
|
||
|
\end{definition}
|
||
|
|
||
|
\begin{definition}[azione di $A(\Aa_n(\KK))$ su $\KKxn$]
|
||
|
Sia $f \in A(\Aa_n(\KK))$. Allora $A(\Aa_n(\KK))$ agisce su $\KKxn$ in modo tale che
|
||
|
$p' = p \circ f$ è un polinomio per cui $p'(\x) = p(f(\x))$.
|
||
|
\end{definition}
|
||
|
|
||
|
\begin{proposition} [formula del cambiamento della matrice associata su azione di $A(\Aa_n(\KK))$]
|
||
|
Sia $f \in A(\Aa_n(\KK))$ e sia $p \in \KK[x_1, \ldots, x_n]$ di grado due. Allora vale
|
||
|
la seguente identità:
|
||
|
|
||
|
\begin{multline*}
|
||
|
\MM(p \circ f) = {\hat M}^\top \MM(p) \hat M = \Matrix{M^\top \AA(p) \vec t M & \rvline & M^\top(\AA(p) \vec t + \Ll(p)) \, \\[1pt] \hline & \rvline & \\[-9pt] \, \left(M^\top(\AA(p) \vec t + \Ll(p))\right)^\top & \rvline & p(\vec t)}, \\[0.1in]
|
||
|
\con \hat M = \Matrix{ M & \rvline & \vec t \, \\ \hline 0 & \rvline & 1 \, },
|
||
|
\end{multline*}
|
||
|
|
||
|
\vskip 0.05in
|
||
|
|
||
|
dove $f(\x) = M \x + \vec t$ $\forall \x \in \KK^n$ con $M \in \GL(n, \KK)$ e $\vec t \in \KK^n$.
|
||
|
\end{proposition}
|
||
|
|
||
|
\end{document}
|