Nel corso del documento, per $V$ si intenderà uno spazio vettoriale di dimensione
finita $n$ e per $\varphi$ un suo prodotto, hermitiano o scalare
dipendentemente dal contesto.
\end{note}
\begin{definition} (prodotto hermitiano) Sia $\KK=\CC$. Una mappa $\varphi : V \times V \to\CC$ si dice \textbf{prodotto hermitiano} se:
\begin{enumerate}[(i)]
\item$\varphi$ è $\CC$-lineare nel secondo argomento, ossia se $\varphi(\v, \U+\w)=\varphi(\v, \U)+\varphi(\v, \w)$ e
$\varphi(\v, a \w)= a \,\varphi(\v, \w)$,
\item$\varphi(\U, \w)=\conj{\varphi(\w, \U)}$.
\end{enumerate}
\end{definition}
\begin{definition} (prodotto hermitiano canonico in $\CC^n$) Si definisce
\textbf{prodotto hermitiano canonico} di $\CC^n$ il prodotto $\varphi : \CC^n \times\CC^n \to\CC$ tale per cui, detti $\v=(z_1\cdots z_n)^\top$ e $\w=(w_1\cdots w_n)^\top$, $\varphi(\v, \w)=\sum_{i=1}^n \conj{z_i} w_i$.
$\varphi$ è additiva anche nel primo argomento. \\
\li$\varphi(a \v, \w)=\conj{\varphi(\w, a \v)}=\conj{a}\conj{\varphi(\w, \v)}=\conj{a}\,\varphi(\v, \w)$. \\
\li$\varphi(\v, \v)=\conj{\varphi(\v, \v)}$, e quindi $\varphi(\v, \v)\in\RR$. \\
\li Sia $\v=\sum_{i=1}^n x_i \vv i$ e sia $\w=\sum_{i=1}^n y_i \vv i$, allora $\varphi(\v, \w)=\sum_{i =1}^n \sum_{j=1}^n \conj{x_i} y_i \varphi(\vv i, \vv j)$. \\
\li$\varphi(\v, \w)=0\iff\varphi(\w, \v)=0$.
\end{remark}
\begin{proposition}
Data la forma quadratica $q : V \to\RR$ del prodotto hermitiano $\varphi$ tale che $q(\v)=\varphi(\v, \v)\in\RR$, tale
forma quadratica individua univocamente il prodotto hermitiano $\varphi$.
Siano $\basis=\{\vv1, \ldots, \vv n \}$ e $\basis' =\{\ww1, \ldots, \ww n \}$. Allora $\varphi(\ww i, \ww j)=[\ww i]_\basis^* M_\basis(\varphi)[\ww j]_\basis=\left( M_\basis^{\basis'}(\Idv)^i \right)^* M_\basis(\varphi) M_\basis^{\basis'}(\Idv)^j =
\left(M_\basis^{\basis'}(\Idv)\right)^*_i M_\basis(\varphi) M_\basis^{\basis'}(\Idv)^j$, da cui si ricava l'identità
desiderata.
\end{proof}
\begin{definition} (radicale di un prodotto hermitiano)
Analogamente al caso del prodotto scalare, si definisce il \textbf{radicale} del prodotto $\varphi$ come il seguente sottospazio:
\[ V^\perp=\{\v\in V \mid\varphi(\v, \w)=0\,\forall\w\in V \}. \]
\end{definition}
\begin{proposition}
Sia $\basis$ una base di $V$ e $\varphi$ un prodotto hermitiano. Allora $V^\perp=[\cdot]_\basis\inv(\Ker M_\basis(\varphi))$\footnote{Stavolta non è sufficiente considerare la mappa $f : V \to V^*$ tale che $f(\v)=\left[\w\mapsto\varphi(\v, \w)\right]$, dal momento che $f$ non è lineare, bensì antilineare, ossia $f(a \v)=\conj a f(\v)$.}.
\end{proposition}
\begin{proof}
Sia $\basis=\{\vv1, \ldots, \vv n \}$ e sia $\v\in V^\perp$.
Siano $a_1$, ..., $a_n \in\KK$ tali che $\v= a_1\vv1+\ldots+ a_n \vv n$. Allora, poiché $\v\in V$, $0=\varphi(\vv i, \v)=
= a_1 \varphi(\vv i, \vv 1) + \ldots + a_n \varphi(\vv i, \vv n) = M_i [\v]_\basis$, da cui si ricava che $[\v]_\basis\in\Ker M_\basis(\varphi)$, e quindi che $V^\perp\subseteq [\cdot]_\basis\inv (\Ker M_\basis(\varphi))$. \\
Sia ora $\v\in V$ tale che $[\v]_\basis\in\Ker M_\basis(\varphi)$.
Allora, per ogni $\w\in V$, $\varphi(\w, \v)=[\w]_\basis^* M_\basis(\varphi)[\v]_\basis=[\w]_\basis^*0=0$, da cui si
conclude che $\v\in V^\perp$, e quindi che $V^\perp\supseteq[\cdot]_\basis\inv(\Ker M_\basis(\varphi))$, da cui
di vettori. Infatti, $\Span_\CC(\basis)=\Span_\RR(\basis\cup i\basis)$. Ciononostante, $\dim V_\RR=2\dim V$\footnote{Si sarebbe potuto ottenere lo stesso risultato utilizzando il teorema delle torri algebriche: $[V_\RR : \RR]=[V: \CC][\CC: \RR]=2[V : \CC]$.}, se $\dim V \in\NN$.
\begin{theorem} (di rappresentazione di Riesz per il prodotto scalare)
Sia $V$ uno spazio vettoriale e sia $\varphi$ un suo prodotto scalare
non degenere. Allora per ogni $f \in V^*$ esiste un unico $\v\in V$ tale che
$f(\w)=\varphi(\v, \w)$$\forall\w\in V$.
\end{theorem}
\begin{proof}
Si consideri l'applicazione $a_\varphi$. Poiché $\varphi$ non è degenere, $\Ker a_\varphi= V^\perp=\zerovecset$, da cui si deduce che $a_\varphi$ è un isomorfismo. Quindi $\forall f \in V^*$ esiste
un unico $\v\in V$ tale per cui $a_\varphi(\v)= f$, e dunque tale per cui $\varphi(\v, \w)= a_\varphi(\v)(\w)= f(\w)$$\forall\w\in V$.
\end{proof}
\begin{proof}[Dimostrazione costruttiva]
Sia $\basis=\{\vv1, \ldots, \vv n \}$ una base ortogonale di $V$ per $\varphi$. Allora $\basis^*$ è una base di $V^*$. In
particolare $f = f(\vv1)\vec{v_1^*}+\ldots+ f(\vv n)\vec{v_n^*}$. Sia $\v=\frac{f(\vv1)}{\varphi(\vv1, \vv1)}\vv1+\ldots+\frac{f(\vv n)}{\varphi(\vv n, \vv n)}$. Detto $\w= a_1\vv1+\ldots+ a_n \vv n$,
si deduce che $\varphi(\v, \w)= a_1 f(\vv1)+\ldots+ a_n f(\vv n)= f(\w)$. Se esistesse $\v' \in V$ con
la stessa proprietà di $\v$, $\varphi(\v, \w)=\varphi(\v', \w)\implies\varphi(\v-\v', \w)$$\forall\w\in V$. Si deduce dunque che $\v-\v' \in V^\perp$, contenente solo $\vec0$ dacché $\varphi$ è non degenere;
e quindi si conclude che $\v=\v'$, ossia che esiste solo un vettore con la stessa proprietà di $\v$.
\end{proof}
\begin{theorem} (di rappresentazione di Riesz per il prodotto hermitiano)
Sia $V$ uno spazio vettoriale su $\CC$ e sia $\varphi$ un suo prodotto hermitiano non
degenere. Allora per ogni $f \in V^*$ esiste un unico $\v\in V$ tale che
$f(\w)=\varphi(\v, \w)$$\forall\w\in V$.
\end{theorem}
\begin{proof}
Sia $\basis=\{\vv1, \ldots, \vv n \}$ una base ortogonale di $V$ per $\varphi$. Allora $\basis^*$ è una base di $V^*$. In
particolare $f = f(\vv1)\vec{v_1^*}+\ldots+ f(\vv n)\vec{v_n^*}$. Sia $\v=\frac{\conj{f(\vv1)}}{\varphi(\vv1, \vv1)}\vv1+\ldots+\frac{\conj{f(\vv n)}}{\varphi(\vv n, \vv n)}$. Detto $\w= a_1\vv1+\ldots+ a_n \vv n$,
si deduce che $\varphi(\v, \w)= a_1 f(\vv1)+\ldots+ a_n f(\vv n)= f(\w)$. Se esistesse $\v' \in V$ con
la stessa proprietà di $\v$, $\varphi(\v, \w)=\varphi(\v', \w)\implies\varphi(\v-\v', \w)$$\forall\w\in V$. Si deduce dunque che $\v-\v' \in V^\perp$, contenente solo $\vec0$ dacché $\varphi$ è non degenere;
e quindi si conclude che $\v=\v'$, ossia che esiste solo un vettore con la stessa proprietà di $\v$.
\end{proof}
\begin{proposition}
Sia $V$ uno spazio vettoriale con prodotto scalare $\varphi$ non degenere.
Sia $f \in\End(V)$. Allora esiste un unico endomorfismo
nell'enunciato, e $f^\top : V^*\to V^*$ che invece è tale che $f^top(g)= g \circ f$.}, tale che:
\[ a_\varphi\circ g = f^\top\circ a_\varphi, \]
\vskip 0.05in
ossia che:
\[\varphi(\v, f(\w))=\varphi(g(\v), \w)\,\forall\v, \w\in V. \]
\end{proposition}
\begin{proof}
Si consideri $(f^\top\circ a_\varphi)(\v)\in V^*$. Per il teorema di rappresentazione di Riesz per
il prodotto scalare, esiste un unico $\v'$ tale che $(f^\top\circ a_\varphi)(\v)(\w)=\varphi(\v', \w)\implies\varphi(\v, f(\w))=\varphi(\v', \w)$$\forall\w\in V$. Si costruisce allora una mappa
Infine si dimostra che $f_\varphi^\top$ è unico. Sia infatti $g$ un endomorfismo di $V$ che condivide la stessa
proprietà di $f_\varphi^\top$. Allora $\varphi(f_\varphi^\top(\v), \w)=\varphi(\v, f(\w))=\varphi(g(\v), \w)$$\forall\v$, $\w\in V$, da cui si deduce che $\varphi(f_\varphi^\top(\v)- '(\v), \w)=0$$\forall\v$, $\w\in V$, ossia che
$f_\varphi^\top(\v)- g(\v)\in V^\perp$$\forall\v\in V$. Tuttavia $\varphi$ è non degenere, e quindi $V^\perp=\zerovecset$, da cui si deduce che deve valere l'identità $f_\varphi^\top(\v)= g(\v)$$\forall\v\in V$, ossia
Sia $V$ uno spazio vettoriale su $\CC$ e sia $\varphi$ un suo prodotto hermitiano. Allora esiste un'unica
mappa\footnote{Si osservi che $f^*$ non è un'applicazione lineare, benché sia invece \textit{antilineare}.}$f^* : V \to V$, detta \textbf{aggiunto di}$f$, tale che $\varphi(\v, f(\w))=\varphi(f^*(\v), \w)$$\forall\v$, $\w\in V$.
\end{proposition}
\begin{proof}
Sia $\v\in V$. Si consideri il funzionale $\sigma$ tale che $\sigma(\w)=\varphi(\v, f(\w))$. Per il
teorema di rappresentazione di Riesz per il prodotto scalare esiste un unico $\v' \in V$ tale per cui
$\varphi(\v, f(\w))=\sigma(\w)=\varphi(\v', \w)$. Si costruisce allora una mappa $f^*$ che associa
$\v$ a tale $\v'$. \\
Si dimostra infine che la mappa $f^*$ è unica. Sia infatti $\mu : V \to V$ che condivide la stessa
proprietà di $f^*$. Allora $\varphi(f^*(\v), \w)=\varphi(\v, f(\w))=\varphi(\mu(\v), \w)$$\forall\v$, $\w\in V$, da cui si deduce che $\varphi(f^*(\v)-\mu(\v), \w)=0$$\forall\v$, $\w\in V$, ossia che
$f^*(\v)-\mu(\v)\in V^\perp$$\forall\v\in V$. Tuttavia $\varphi$ è non degenere, e quindi $V^\perp=\zerovecset$, da cui si deduce che deve valere l'identità $f^*(\v)=\mu(\v)$$\forall\v\in V$, ossia
\li$A =(a)\in U_1\iff A^* A = I_1\iff\abs{a}^2=1\iff a = e^{i\theta}$, $\theta\in[0, 2\pi)$, ossia il numero complesso $a$ appartiene alla circonferenza di raggio unitario.
\li$A =\Matrix{a & b \\ c & d}\in SU_2\iff A A^*=\Matrix{\abs{a}^2+\abs{b}^2& a\conj c + b \conj d \\\conj a c +\conj b d &\abs{c}^2+\abs{d}^2}= I_2$, $\det(A)=1$, ossia se il seguente
sistema di equazioni è soddisfatto:
\[\system{\abs{a}^2+\abs{b}^2=\abs{c}^2+\abs{d}^2=1, \\ a\conj c + b \conj d =0, \\ ad-bc=1,}\]
le cui soluzioni riassumono il gruppo $SU_2$ nel seguente modo:
\[ SU_2=\left\{\Matrix{x &-y \\\conj y &\conj x}\in M(2, \CC)\;\middle\vert\;\abs{x}^2+\abs{y}^2=1\right\}. \]
Sia $(V, \varphi)$ uno spazio euclideo reale e sia $\basis$ una base ortonormale di $V$. Allora $f \in\End(V)$ è simmetrico $\iff$$M_\basis(f)= M_\basis(f)^\top$$\iff$$M_\basis(f)$ è simmetrica.
[\v]_\basis^\top M_\basis(f)^\top M_\basis(\varphi) M_\basis(f) [\w]_\basis = [\v]_\basis^\top M_\basis(f)^\top M_\basis(f) [\w]_\basis$. Allora, come visto nel corollario precedente, si ricava che $M_\basis(f)^\top M_\basis(f) = I_n$. Dal momento che gli inversi sinistri sono anche inversi destri, $M_\basis(f)^\top M_\basis(f) = M_\basis(f) M_\basis(f)^\top = I_n$. \\
Sia $(V, \varphi)$ uno spazio euclideo complesso e sia $\basis$ una base ortonormale di $V$. Allora $f \in\End(V)$ è hermitiano $\iff$$M_\basis(f)= M_\basis(f)^*$$\defiff$$M_\basis(f)$ è hermitiana.
Sia $(V, \varphi)$ uno spazio euclideo complesso e sia $\basis$ una base ortonormale di $V$. Allora $f \in\End(V)$ è unitario $\iff$$M_\basis(f) M_\basis(f)^*= M_\basis(f)^* M_\basis(f)= I_n$$\defiff$$M_\basis(f)$ è unitaria.
\end{proposition}
\begin{proof}
Si osserva che $M_\basis(\varphi)= I_n$. Sia $\basis=\{\vv1, \ldots, \vv n\}$. Se $f$ è unitario, allora
[\v]_\basis^* M_\basis(f)^* M_\basis(\varphi) M_\basis(f) [\w]_\basis = [\v]_\basis^* M_\basis(f)^* M_\basis(f) [\w]_\basis$. Allora, come visto nel corollario precedente, si ricava che $M_\basis(f)^* M_\basis(f) = I_n$. Dal momento che gli inversi sinistri sono anche inversi destri, $M_\basis(f)^* M_\basis(f) = M_\basis(f) M_\basis(f)^* = I_n$. \\
Se $\basis$ è una base ortonormale di $(V, \varphi)$, ricordando che $M_\basis(f^\top)= M_\basis(f)^\top$ e che $M_\basis(f^*)= M_\basis(f)^*$, sono equivalenti allora i seguenti fatti: \\
\li$f \circ f^\top= f^\top\circ f =\Idv$$\iff$$M_\basis(f)$ è ortogonale $\iff$$f$ è ortogonale, \\
\li$f \circ f^*= f^*\circ f =\Idv$$\iff$$M_\basis(f)$ è unitaria $\iff$$f$ è unitario (se $V$ è uno spazio vettoriale su $\CC$).
Sia $\basis$ la base canonica di $V$. Allora $M_\basis(f_A)= A$, e quindi, per una proposizione
precedente, $f_A$ è un operatore ortogonale. Viceversa si deduce che se $f_A$ è un operatore ortogonale,
$A \in O_n$. Dunque è sufficiente dimostrare che $A \in O_n \iff$ le colonne e le righe di $A$ formano una
base ortonormale di $V$. \\
\rightproof Se $A \in O_n$, in particolare $A \in\GL(n, \RR)$, e quindi $A$ è invertibile. Allora le
sue colonne e le sue righe formano già una base di $V$, essendo $n$ vettori di $V$ linearmente indipendenti.
Inoltre, poiché $A \in O_n$, $\varphi(\e i, \e j)=\varphi(A \e i, A \e j)$, e quindi le colonne di $A$ si mantengono a due a due ortogonali tra di loro, mentre $\varphi(A \e i, A \e i)=\varphi(\e i, \e i)=1$.
Pertanto le colonne di $A$ formano una base ortonormale di $V$. \\
Si osserva che anche $A^\top\in O_n$. Allora le righe di $A$, che non sono altro che
le colonne di $A^\top$, formano anch'esse una base ortonormale di $V$. \\
\leftproof Nel moltiplicare $A^\top$ con $A$ altro non si sta facendo che calcolare il prodotto
scalare $\varphi$ tra ogni riga di $A^\top$ e ogni colonna di $A$ , ossia $(A^* A)_{ij}=\varphi((A^\top)_i, A^j)=\varphi(A^i, A^j)=\delta_{ij}$.
Quindi $A^\top A = A A^\top= I_n$, da cui si deduce che $A \in O_n$.
Sia $\basis$ la base canonica di $V$. Allora $M_\basis(f_A)= A$, e quindi, per una proposizione
precedente, $f_A$ è un operatore unitario. Viceversa si deduce che se $f_A$ è un operatore unitario,
$A \in U_n$. Dunque è sufficiente dimostrare che $A \in U_n \iff$ le colonne e le righe di $A$ formano una
base ortonormale di $V$. \\
\rightproof Se $A \in U_n$, in particolare $A \in\GL(n, \RR)$, e quindi $A$ è invertibile. Allora le
sue colonne e le sue righe formano già una base di $V$, essendo $n$ vettori di $V$ linearmente indipendenti.
Inoltre, poiché $A \in U_n$, $\varphi(\e i, \e j)=\varphi(A \e i, A \e j)$, e quindi le colonne di $A$ si mantengono a due a due ortogonali tra di loro, mentre $\varphi(A \e i, A \e i)=\varphi(\e i, \e i)=1$.
Pertanto le colonne di $A$ formano una base ortonormale di $V$. \\
Si osserva che anche $A^\top\in U_n$. Allora le righe di $A$, che non sono altro che
le colonne di $A^\top$, formano anch'esse una base ortonormale di $V$. \\
\leftproof Nel moltiplicare $A^*$ con $A$ altro non si sta facendo che calcolare il prodotto
hermitiano $\varphi$ tra ogni riga coniugata di $A^*$ e ogni colonna di $A$, ossia $(A^* A)_{ij}=\varphi((A^\top)_i, A^j)=\varphi(A^i, A^j)=\delta_{ij}$.
Quindi $A^* A = A A^*= I_n$, da cui si deduce che $A \in U_n$.
Sia $(V, \varphi)$ uno spazio euclideo reale. Allora valgono i seguenti tre risultati:
\begin{enumerate}[(i)]
\item$(V_\CC, \varphi_\CC)$ è uno spazio euclideo complesso.
\item Se $f \in\End(V)$ è simmetrico, allora $f_\CC\in\End(V)$ è hermitiano.
\item Se $f \in\End(V)$ è ortogonale, allora $f_\CC\in\End(V)$ è unitario.
\end{enumerate}
\end{proposition}
\begin{proof}
Dacché $\varphi$ è il prodotto scalare standard dello spazio euclideo reale $V$, esiste una base ortnormale di $V$. Sia allora $\basis$ una base ortonormale di $V$. Si dimostrano i tre risultati separatamente.
\begin{itemize}
\item È sufficiente dimostrare che $\varphi_\CC$ altro non è che il prodotto hermitiano standard.
Come si è già osservato precedentemente, $M_\basis(\varphi_\CC)= M_\basis(\varphi)$, e quindi,
dacché $M_\basis(\varphi)= I_n$, essendo $\basis$ ortonormale, vale anche che $M_\basis(\varphi_\CC)= I_n$,
ossia $\varphi_\CC$ è proprio il prodotto hermitiano standard.
\item Poiché $f$ è simmetrico, $M_\basis(f)= M_\basis(f)^\top$, e quindi anche
$M_\basis(f_\CC)= M_\basis(f_\CC)^\top$. Dal momento che $M_\basis(f)\in M(n, \RR)$,
Quindi $M_\basis(f_\CC)= M_\basis(f_\CC)^*$, ossia $M_\basis(f_\CC)$ è hermitiana,
e pertanto anche $f_\CC$ è hermitiano.
\item Poiché $f$ è ortogonale, $M_\basis(f) M_\basis(f)^\top= I_n$, e quindi
anche $M_\basis(f_\CC) M_\basis(f_\CC)^\top= I_n$. Allora, come prima, si deduce
che $M_\basis(f_\CC)^\top= M_\basis(f_\CC)^*$, essendo $M_\basis(f_\CC)= M_\basis(f)\in M(n, \RR)$,
da cui
si ricava che $M_\basis(f_\CC) M_\basis(f_\CC)^*= M_\basis(f_\CC) M_\basis(f_\CC)^\top= I_n$, ossia che $f_\CC$ è unitario. \\\qedhere
\end{itemize}
\end{proof}
\begin{exercise}
Sia $(V, \varphi)$ uno spazio euclideo reale. Allora valgono i seguenti risultati:
\begin{itemize}
\item Se $f$, $g \in\End(V)$ commutano, allora anche $f_\CC$, $g_\CC\in\End(V_\CC)$ commutano.
\item Se $f \in\End(V)$, $(f^\top)_\CC=(f_\CC)^*$.
\item Se $f \in\End(V)$, $f$ diagonalizzabile $\iff$$f^\top$ diagonalizzabile.
\end{itemize}
\end{exercise}
\begin{solution}
Dacché $\varphi$ è il prodotto scalare standard dello spazio euclideo reale $V$, esiste una base ortonormale $\basis=\{\vv1, \ldots, \vv n\}$ di $V$. Si dimostrano allora separatamente i tre risultati.
\begin{itemize}
\item Si osserva che $M_\basis(f_\CC) M_\basis(g_\CC)= M_\basis(f) M_\basis(g)=
M_\basis(g) M_\basis(f) = M_\basis(g_\CC) M_\basis(f_\CC)$, e quindi
che $f_\CC\circ g_\CC= g_\CC\circ f_\CC$.
\item Si osserva che $M_\basis(f)\in M(n, \RR)\implies M_\basis(f)^\top= M_\basis(f)^*$, e quindi che $M_\basis((f^\top)_\CC)= M_\basis(f^\top)= M_\basis(f)^\top= M_\basis(f)^*= M_\basis(f_\CC)^*= M_\basis((f_\CC)^*)$. Allora
$(f^\top)_\CC=(f_\CC)^*$.
\item Poiché $\basis$ è ortonormale, $M_\basis(f^\top)= M_\basis(f)^\top$. Allora, se
$f$ è diagonalizzabile, anche $M_\basis(f)$ lo è, e quindi $\exists P \in\GL(n, \KK)$,
$D \in M(n, \KK)$ diagonale tale che $M_\basis(f)= P D P\inv$. Allora $M_\basis(f^\top)=
M_\basis(f)^\top = (P^\top)\inv D^\top P^\top$ è simile ad una matrice diagonale, e
pertanto $M_\basis(f^\top)$ è diagonalizzabile. Allora anche $f^\top$ è diagonalizzabile.
Vale anche il viceversa considerando l'identità $f =(f^\top)^\top$ e l'implicazione
Sia $(V, \varphi)$ un qualunque spazio euclideo. Si definisce \textbf{distanza} la mappa
$d : V \times V \to\RR^+$ tale che $d(\v, \w)=\norm{\v-\w}$.
\end{definition}
\begin{remark}\nl
\li Si osserva che in effetti $\varphi(\v, \v)\in\RR^+$$\forall\v\in V$. Infatti, sia
per il caso reale che per il caso complesso, $\varphi$ è definito positivo. \\
\li Vale che $\norm{\v}=0\iff\v=\vec0$. Infatti, se $\v=\vec0$, chiaramente
$\varphi(\v, \v)=0\implies\norm{\v}=0$; se invece $\norm{\v}=0$,
$\varphi(\v, \v)=0$, e quindi $\v=\vec0$, dacché $V^\perp=\zerovecset$, essendo
$\varphi$ definito positivo. \\
\li Inoltre, vale chiaramente che $\norm{\alpha\v}=\abs{\alpha}\norm{\v}$.
\end{remark}
\begin{proposition} (disuguaglianza di Cauchy-Schwarz)
Vale che $\norm{\v}\norm{\w}\geq\abs{\varphi(\v, \w)}$, $\forall\v$, $\w\in V$, dove
l'uguaglianza è raggiunta soltanto se $\v$ e $\w$ sono linearmente dipendenti.
\end{proposition}
\begin{proof}
Si consideri innanzitutto il caso $\KK=\RR$, e quindi il caso in cui $\varphi$ è
il prodotto scalare standard. Siano $\v$, $\w\in V$.
Si consideri la disuguaglianza $\norm{\v+ t\w}^2\geq0$, valida
per ogni elemento di $V$. Allora $\norm{\v+ t \w}^2=\norm{\v}^2+2\varphi(\v, \w) t +\norm{\w}^2 t^2\geq0$. L'ultima disuguaglianza è possibile se e solo se $\frac{\Delta}{4}\leq0$, e quindi se e solo
se $\varphi(\v, \w)^2-\norm{\v}^2\norm{\w}^2\leq0\iff\norm{\v}\norm{\w}\geq\varphi(\v, \w)$.
Vale in particolare l'equivalenza se e solo se $\norm{\v+ t\w}=0$, ossia se $\v+ t\w=\vec0$, da cui
la tesi. \\
Si consideri ora il caso $\KK=\CC$, e dunque il caso in cui $\varphi$ è il prodotto hermitiano
standard. Siano $\v$, $\w\in V$, e siano $\alpha$, $\beta\in\CC$. Si consideri allora
la disuguaglianza $\norm{\alpha\v+\beta\w}^2\geq0$, valida per ogni elemento di $V$. Allora
dove si è utilizzata la disuguaglianza di Cauchy-Schwarz. Da quest'ultima disuguaglianza si ricava, prendendo la radice quadrata, la disuguaglianza
desiderata. \\
Se invece $\varphi$ è il prodotto hermitiano standard, $\norm{\v+\w}^2=\norm{\v}^2+2\,\Re(\varphi(\v, \w))+\norm{\w}^2\leq\norm{\v}^2+2\abs{\varphi(\v, \w)}+\norm{\w}^2$. Allora, riapplicando
la disuguaglianza di Cauchy-Schwarz, si ottiene che:
\[\norm{\v+\w}^2\leq(\norm{\v}+\norm{\w})^2, \]
da cui, come prima, si ottiene la disuguaglianza desiderata.
\end{proof}
\begin{remark}
Utilizzando il concetto di norma euclidea, si possono ricavare due teoremi fondamentali della geometria,
e già noti dalla geometria euclidea. \\
\li Se $\v\perp\w$, allora $\norm{\v+\w}^2=\norm{\v}^2+\overbrace{(\varphi(\v, \w)+\varphi(\w, \v))}^{=\,0}+\norm{\w}^2=\norm{\v}^2+\norm{\w}^2$ (teorema di Pitagora), \\
\li Se $\norm{\v}=\norm{\w}$ e $\varphi$ è un prodotto scalare, allora $\varphi(\v+\w, \v-\w)=\norm{\v}^2-\varphi(\v, \w)+\varphi(\w, \v)-\norm{\w}^2=\norm{\v}^2-\norm{\w}^2=0$, e quindi
$\v+\w\perp\v-\w$ (le diagonali di un rombo sono ortogonali tra loro).
\end{remark}
\begin{remark}
Sia $\basis=\{\vv1, \ldots, \vv n \}$ è una base ortogonale di $V$ per $\varphi$. \\
\li Se $\v= a_1\vv1+\ldots+ a_n \vv n$, con $a_1$, ..., $a_n \in\KK$, si osserva
che $\varphi(\v, \vv i)= a_i \varphi(\vv i, \vv i)$. Quindi $\v=\sum_{i=1}^n \frac{\varphi(\v, \vv i)}{\varphi(\vv i, \vv i)}\,\vv i$. In particolare, $\frac{\varphi(\v, \vv i)}{\varphi(\vv i, \vv i)}$ è
Sia $(V, \varphi)$ uno spazio euclideo. Allora valgono i seguenti risultati:
\begin{enumerate}[(i)]
\item Siano $U$, $W \subseteq V$ sono sottospazi di $V$, allora $U \perp W$, ossia\footnote{È sufficiente che valga $U \subseteq W^\perp$ affinché valga anche $W \subseteq U^\perp$. Infatti $U \subseteq W^\perp\implies W = W^\dperp\subseteq U^\perp$. Si osserva che in generale vale che $W \subseteq W^\dperp$, dove vale l'uguaglianza nel caso di un prodotto $\varphi$ non degenere, com'è nel caso di uno spazio euclideo,
\item Sia $V = W_1\oplus\cdots\oplus W_n$. Allora $\v=\sum_{i=1}^n \pr_{W_i}(\v)$$\iff$$W_i \perp W_j$$\forall i \neq j$, $1\leq i, j \leq n$.
\end{enumerate}
\end{proposition}
\begin{proof}
Si dimostrano i due risultati separatamente.
\begin{enumerate}[(i)]
\item Sia $\v\in V$. Allora $\pr_W(\v)\in W = W^\dperp\subseteq U^\perp$. Pertanto
$\pr_U(\pr_W(\v))=\vec0$. Analogamente $\pr_W(\pr_U(\v))=\vec0$, da cui la tesi.
\item Sia vero che $\v=\sum_{i=1}^n \pr_{W_i}(\v)$$\forall\v\in V$. Sia $\w\in W_j$. Allora $\w=\sum_{i=1}^n \pr_{W_i}(\w)=\w+\sum_{\substack{i=1\\ i \neq j}}\pr_{W_i}(\w)\implies\pr_{W_i}(\w)=\vec0$$\forall i \neq j$. Quindi $\w\in W_i^\perp$$\forall i \neq j$, e si conclude che $W_i \subseteq W_j^\perp
\implies W_i \perp W_j$. Se invece $W_i \perp W_j$$\forall i \neq j$, sia $\basis_i = \left\{\w_i^{(1)}, \ldots, \w_i^{(k_i)}\right\}$ una base ortogonale di $W_i$. Allora $\basis = \cup_{i=1}^n \basis_i$ è anch'essa
una base ortogonale di $V$, essendo $\varphi\left(\w_i^{(t_i)}, \w_j^{(t_j)}\right)=0$ per ipotesi.
Si definisce l'applicazione $\rho_W : V \to V$, detta \textbf{inversione ortogonale}, in modo tale che, detto $\v=\w+\w' \in V$ con $\w\in W$, $\w\in W^\perp$, $\rho_W(\v)=\w-\w'$. Se $\dim W =\dim V -1$,
si dice che $\rho_W$ è una \textbf{riflessione}.
\end{definition}
\begin{remark}\nl
\li Si osserva che $\rho_W$ è un'applicazione lineare. \\
\li Vale l'identità $\rho_W^2=\Idv$, da cui si ricava che $\varphi_{\rho_W}(\lambda)\mid(\lambda-1)(\lambda+1)$. In particolare, se $W^\perp\neq\zerovecset$, vale proprio
che $\Sp(\rho_W)=\{\pm1\}$, dove $V_1= W$ e $V_{-1}= W^\perp$. \\
\li$\rho_W$ è ortogonale (o unitaria, se $V$ è uno spazio euclideo complesso). Infatti se $\vv1=\ww1+\ww1'$ e $\vv2=\ww2+\ww2 '$, con $\ww1$, $\ww2\in W$ e $\ww1'$, $\ww2' \in W$, $\varphi(\rho_W(\vv1), \rho_W(\vv2))=\varphi(\ww1-\ww1', \ww2-\ww2')=\varphi(\ww1, \ww2)\underbrace{-\varphi(\ww1', \ww2)-\varphi(\ww1, \ww2')}_{=\,0}+\varphi(\ww1', \ww2')=\varphi(\ww1-\ww1', \ww2-\ww2')$. \\
Quindi $\varphi(\rho_W(\vv1), \rho_W(\vv2))=\varphi(\ww1, \ww2)+\varphi(\ww1', \ww2)+\varphi(\ww1, \ww2')+\varphi(\ww1', \ww2')=\varphi(\vv1, \vv2)$.