From 624aedb9715425a27c31e8e7f531b2b9d0131901 Mon Sep 17 00:00:00 2001 From: Gabriel Antonio Videtta Date: Wed, 29 Nov 2023 15:25:24 +0100 Subject: [PATCH] feat(algebra1): aggiunge gli appunti sulle estensioni di campo --- .../main.pdf | Bin .../main.tex | 0 .../2. Azione di coniugio e p-gruppi/main.pdf | Bin .../2. Azione di coniugio e p-gruppi/main.tex | 0 .../main.pdf | Bin .../main.tex | 0 .../main.pdf | Bin .../main.tex | 0 .../2. Il prodotto semidiretto/main.pdf | Bin .../2. Il prodotto semidiretto/main.tex | 0 .../3. Gruppi liberi e presentazioni/main.pdf | Bin .../3. Gruppi liberi e presentazioni/main.tex | 0 .../1. Il gruppo degli automorfismi/main.pdf | Bin .../1. Il gruppo degli automorfismi/main.tex | 0 .../2. Il gruppo delle permutazioni/main.pdf | Bin .../2. Il gruppo delle permutazioni/main.tex | 0 .../main.pdf | Bin .../main.tex | 0 .../4. Commutatore e gruppo derivato/main.pdf | Bin .../4. Commutatore e gruppo derivato/main.tex | 0 .../5. Il gruppo dei quaternioni/main.pdf | Bin .../5. Il gruppo dei quaternioni/main.tex | 0 .../1. Il teorema di Cauchy/main.pdf | Bin .../1. Il teorema di Cauchy/main.tex | 0 .../2. I teoremi di isomorfismo/main.pdf | Bin .../2. I teoremi di isomorfismo/main.tex | 0 .../main.pdf | Bin .../main.tex | 0 .../main.pdf | Bin .../main.tex | 0 .../5. I teoremi di Sylow/main.pdf | Bin .../5. I teoremi di Sylow/main.tex | 0 .../main.pdf | Bin 0 -> 186991 bytes .../main.tex | 309 ++++++++++++++++++ 34 files changed, 309 insertions(+) rename Secondo anno/Algebra 1/{Teoria dei gruppi => 1. Teoria dei gruppi}/Azioni di gruppo e p-gruppi/1. Azione di un gruppo su un insieme/main.pdf (100%) rename Secondo anno/Algebra 1/{Teoria dei gruppi => 1. Teoria dei gruppi}/Azioni di gruppo e p-gruppi/1. Azione di un gruppo su un insieme/main.tex (100%) rename Secondo anno/Algebra 1/{Teoria dei gruppi => 1. Teoria dei gruppi}/Azioni di gruppo e p-gruppi/2. Azione di coniugio e p-gruppi/main.pdf (100%) rename Secondo anno/Algebra 1/{Teoria dei gruppi => 1. Teoria dei gruppi}/Azioni di gruppo e p-gruppi/2. Azione di coniugio e p-gruppi/main.tex (100%) rename Secondo anno/Algebra 1/{Teoria dei gruppi => 1. Teoria dei gruppi}/Azioni di gruppo e p-gruppi/3. Normalizzatore e teorema di Cayley/main.pdf (100%) rename Secondo anno/Algebra 1/{Teoria dei gruppi => 1. Teoria dei gruppi}/Azioni di gruppo e p-gruppi/3. Normalizzatore e teorema di Cayley/main.tex (100%) rename Secondo anno/Algebra 1/{Teoria dei gruppi => 1. Teoria dei gruppi}/Costruzioni di gruppo (prodotti di sottogruppi, semidiretti e presentazioni)/1. Prodotto di sottogruppi e ordini di gruppi abeliani/main.pdf (100%) rename Secondo anno/Algebra 1/{Teoria dei gruppi => 1. Teoria dei gruppi}/Costruzioni di gruppo (prodotti di sottogruppi, semidiretti e presentazioni)/1. Prodotto di sottogruppi e ordini di gruppi abeliani/main.tex (100%) rename Secondo anno/Algebra 1/{Teoria dei gruppi => 1. Teoria dei gruppi}/Costruzioni di gruppo (prodotti di sottogruppi, semidiretti e presentazioni)/2. Il prodotto semidiretto/main.pdf (100%) rename Secondo anno/Algebra 1/{Teoria dei gruppi => 1. Teoria dei gruppi}/Costruzioni di gruppo (prodotti di sottogruppi, semidiretti e presentazioni)/2. Il prodotto semidiretto/main.tex (100%) rename Secondo anno/Algebra 1/{Teoria dei gruppi => 1. Teoria dei gruppi}/Costruzioni di gruppo (prodotti di sottogruppi, semidiretti e presentazioni)/3. Gruppi liberi e presentazioni/main.pdf (100%) rename Secondo anno/Algebra 1/{Teoria dei gruppi => 1. Teoria dei gruppi}/Costruzioni di gruppo (prodotti di sottogruppi, semidiretti e presentazioni)/3. Gruppi liberi e presentazioni/main.tex (100%) rename Secondo anno/Algebra 1/{Teoria dei gruppi => 1. Teoria dei gruppi}/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/1. Il gruppo degli automorfismi/main.pdf (100%) rename Secondo anno/Algebra 1/{Teoria dei gruppi => 1. Teoria dei gruppi}/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/1. Il gruppo degli automorfismi/main.tex (100%) rename Secondo anno/Algebra 1/{Teoria dei gruppi => 1. Teoria dei gruppi}/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/2. Il gruppo delle permutazioni/main.pdf (100%) rename Secondo anno/Algebra 1/{Teoria dei gruppi => 1. Teoria dei gruppi}/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/2. Il gruppo delle permutazioni/main.tex (100%) rename Secondo anno/Algebra 1/{Teoria dei gruppi => 1. Teoria dei gruppi}/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/3. Il gruppo diedrale e i suoi sottogruppi/main.pdf (100%) rename Secondo anno/Algebra 1/{Teoria dei gruppi => 1. Teoria dei gruppi}/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/3. Il gruppo diedrale e i suoi sottogruppi/main.tex (100%) rename Secondo anno/Algebra 1/{Teoria dei gruppi => 1. Teoria dei gruppi}/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/4. Commutatore e gruppo derivato/main.pdf (100%) rename Secondo anno/Algebra 1/{Teoria dei gruppi => 1. Teoria dei gruppi}/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/4. Commutatore e gruppo derivato/main.tex (100%) rename Secondo anno/Algebra 1/{Teoria dei gruppi => 1. Teoria dei gruppi}/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/5. Il gruppo dei quaternioni/main.pdf (100%) rename Secondo anno/Algebra 1/{Teoria dei gruppi => 1. Teoria dei gruppi}/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/5. Il gruppo dei quaternioni/main.tex (100%) rename Secondo anno/Algebra 1/{Teoria dei gruppi => 1. Teoria dei gruppi}/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/1. Il teorema di Cauchy/main.pdf (100%) rename Secondo anno/Algebra 1/{Teoria dei gruppi => 1. Teoria dei gruppi}/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/1. Il teorema di Cauchy/main.tex (100%) rename Secondo anno/Algebra 1/{Teoria dei gruppi => 1. Teoria dei gruppi}/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/2. I teoremi di isomorfismo/main.pdf (100%) rename Secondo anno/Algebra 1/{Teoria dei gruppi => 1. Teoria dei gruppi}/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/2. I teoremi di isomorfismo/main.tex (100%) rename Secondo anno/Algebra 1/{Teoria dei gruppi => 1. Teoria dei gruppi}/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/3. Il teorema di corrispondenza e catene di sottogruppi normali/main.pdf (100%) rename Secondo anno/Algebra 1/{Teoria dei gruppi => 1. Teoria dei gruppi}/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/3. Il teorema di corrispondenza e catene di sottogruppi normali/main.tex (100%) rename Secondo anno/Algebra 1/{Teoria dei gruppi => 1. Teoria dei gruppi}/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/4. Il teorema di struttura per gruppi abeliani finiti e decomposizione di U(Zn)/main.pdf (100%) rename Secondo anno/Algebra 1/{Teoria dei gruppi => 1. Teoria dei gruppi}/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/4. Il teorema di struttura per gruppi abeliani finiti e decomposizione di U(Zn)/main.tex (100%) rename Secondo anno/Algebra 1/{Teoria dei gruppi => 1. Teoria dei gruppi}/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/5. I teoremi di Sylow/main.pdf (100%) rename Secondo anno/Algebra 1/{Teoria dei gruppi => 1. Teoria dei gruppi}/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/5. I teoremi di Sylow/main.tex (100%) create mode 100644 Secondo anno/Algebra 1/3. Teoria dei campi/1. Estensioni di campo ed elementi algebrici e trascendenti/main.pdf create mode 100644 Secondo anno/Algebra 1/3. Teoria dei campi/1. Estensioni di campo ed elementi algebrici e trascendenti/main.tex diff --git a/Secondo anno/Algebra 1/Teoria dei gruppi/Azioni di gruppo e p-gruppi/1. Azione di un gruppo su un insieme/main.pdf b/Secondo anno/Algebra 1/1. Teoria dei gruppi/Azioni di gruppo e p-gruppi/1. Azione di un gruppo su un insieme/main.pdf similarity index 100% rename from Secondo anno/Algebra 1/Teoria dei gruppi/Azioni di gruppo e p-gruppi/1. Azione di un gruppo su un insieme/main.pdf rename to Secondo anno/Algebra 1/1. Teoria dei gruppi/Azioni di gruppo e p-gruppi/1. Azione di un gruppo su un insieme/main.pdf diff --git a/Secondo anno/Algebra 1/Teoria dei gruppi/Azioni di gruppo e p-gruppi/1. Azione di un gruppo su un insieme/main.tex b/Secondo anno/Algebra 1/1. Teoria dei gruppi/Azioni di gruppo e p-gruppi/1. Azione di un gruppo su un insieme/main.tex similarity index 100% rename from Secondo anno/Algebra 1/Teoria dei gruppi/Azioni di gruppo e p-gruppi/1. Azione di un gruppo su un insieme/main.tex rename to Secondo anno/Algebra 1/1. Teoria dei gruppi/Azioni di gruppo e p-gruppi/1. Azione di un gruppo su un insieme/main.tex diff --git a/Secondo anno/Algebra 1/Teoria dei gruppi/Azioni di gruppo e p-gruppi/2. Azione di coniugio e p-gruppi/main.pdf b/Secondo anno/Algebra 1/1. Teoria dei gruppi/Azioni di gruppo e p-gruppi/2. Azione di coniugio e p-gruppi/main.pdf similarity index 100% rename from Secondo anno/Algebra 1/Teoria dei gruppi/Azioni di gruppo e p-gruppi/2. Azione di coniugio e p-gruppi/main.pdf rename to Secondo anno/Algebra 1/1. Teoria dei gruppi/Azioni di gruppo e p-gruppi/2. Azione di coniugio e p-gruppi/main.pdf diff --git a/Secondo anno/Algebra 1/Teoria dei gruppi/Azioni di gruppo e p-gruppi/2. Azione di coniugio e p-gruppi/main.tex b/Secondo anno/Algebra 1/1. Teoria dei gruppi/Azioni di gruppo e p-gruppi/2. Azione di coniugio e p-gruppi/main.tex similarity index 100% rename from Secondo anno/Algebra 1/Teoria dei gruppi/Azioni di gruppo e p-gruppi/2. Azione di coniugio e p-gruppi/main.tex rename to Secondo anno/Algebra 1/1. Teoria dei gruppi/Azioni di gruppo e p-gruppi/2. Azione di coniugio e p-gruppi/main.tex diff --git a/Secondo anno/Algebra 1/Teoria dei gruppi/Azioni di gruppo e p-gruppi/3. Normalizzatore e teorema di Cayley/main.pdf b/Secondo anno/Algebra 1/1. Teoria dei gruppi/Azioni di gruppo e p-gruppi/3. Normalizzatore e teorema di Cayley/main.pdf similarity index 100% rename from Secondo anno/Algebra 1/Teoria dei gruppi/Azioni di gruppo e p-gruppi/3. Normalizzatore e teorema di Cayley/main.pdf rename to Secondo anno/Algebra 1/1. Teoria dei gruppi/Azioni di gruppo e p-gruppi/3. Normalizzatore e teorema di Cayley/main.pdf diff --git a/Secondo anno/Algebra 1/Teoria dei gruppi/Azioni di gruppo e p-gruppi/3. Normalizzatore e teorema di Cayley/main.tex b/Secondo anno/Algebra 1/1. Teoria dei gruppi/Azioni di gruppo e p-gruppi/3. Normalizzatore e teorema di Cayley/main.tex similarity index 100% rename from Secondo anno/Algebra 1/Teoria dei gruppi/Azioni di gruppo e p-gruppi/3. Normalizzatore e teorema di Cayley/main.tex rename to Secondo anno/Algebra 1/1. Teoria dei gruppi/Azioni di gruppo e p-gruppi/3. Normalizzatore e teorema di Cayley/main.tex diff --git a/Secondo anno/Algebra 1/Teoria dei gruppi/Costruzioni di gruppo (prodotti di sottogruppi, semidiretti e presentazioni)/1. Prodotto di sottogruppi e ordini di gruppi abeliani/main.pdf b/Secondo anno/Algebra 1/1. Teoria dei gruppi/Costruzioni di gruppo (prodotti di sottogruppi, semidiretti e presentazioni)/1. Prodotto di sottogruppi e ordini di gruppi abeliani/main.pdf similarity index 100% rename from Secondo anno/Algebra 1/Teoria dei gruppi/Costruzioni di gruppo (prodotti di sottogruppi, semidiretti e presentazioni)/1. Prodotto di sottogruppi e ordini di gruppi abeliani/main.pdf rename to Secondo anno/Algebra 1/1. Teoria dei gruppi/Costruzioni di gruppo (prodotti di sottogruppi, semidiretti e presentazioni)/1. Prodotto di sottogruppi e ordini di gruppi abeliani/main.pdf diff --git a/Secondo anno/Algebra 1/Teoria dei gruppi/Costruzioni di gruppo (prodotti di sottogruppi, semidiretti e presentazioni)/1. Prodotto di sottogruppi e ordini di gruppi abeliani/main.tex b/Secondo anno/Algebra 1/1. Teoria dei gruppi/Costruzioni di gruppo (prodotti di sottogruppi, semidiretti e presentazioni)/1. Prodotto di sottogruppi e ordini di gruppi abeliani/main.tex similarity index 100% rename from Secondo anno/Algebra 1/Teoria dei gruppi/Costruzioni di gruppo (prodotti di sottogruppi, semidiretti e presentazioni)/1. Prodotto di sottogruppi e ordini di gruppi abeliani/main.tex rename to Secondo anno/Algebra 1/1. Teoria dei gruppi/Costruzioni di gruppo (prodotti di sottogruppi, semidiretti e presentazioni)/1. Prodotto di sottogruppi e ordini di gruppi abeliani/main.tex diff --git a/Secondo anno/Algebra 1/Teoria dei gruppi/Costruzioni di gruppo (prodotti di sottogruppi, semidiretti e presentazioni)/2. Il prodotto semidiretto/main.pdf b/Secondo anno/Algebra 1/1. Teoria dei gruppi/Costruzioni di gruppo (prodotti di sottogruppi, semidiretti e presentazioni)/2. Il prodotto semidiretto/main.pdf similarity index 100% rename from Secondo anno/Algebra 1/Teoria dei gruppi/Costruzioni di gruppo (prodotti di sottogruppi, semidiretti e presentazioni)/2. Il prodotto semidiretto/main.pdf rename to Secondo anno/Algebra 1/1. Teoria dei gruppi/Costruzioni di gruppo (prodotti di sottogruppi, semidiretti e presentazioni)/2. Il prodotto semidiretto/main.pdf diff --git a/Secondo anno/Algebra 1/Teoria dei gruppi/Costruzioni di gruppo (prodotti di sottogruppi, semidiretti e presentazioni)/2. Il prodotto semidiretto/main.tex b/Secondo anno/Algebra 1/1. Teoria dei gruppi/Costruzioni di gruppo (prodotti di sottogruppi, semidiretti e presentazioni)/2. Il prodotto semidiretto/main.tex similarity index 100% rename from Secondo anno/Algebra 1/Teoria dei gruppi/Costruzioni di gruppo (prodotti di sottogruppi, semidiretti e presentazioni)/2. Il prodotto semidiretto/main.tex rename to Secondo anno/Algebra 1/1. Teoria dei gruppi/Costruzioni di gruppo (prodotti di sottogruppi, semidiretti e presentazioni)/2. Il prodotto semidiretto/main.tex diff --git a/Secondo anno/Algebra 1/Teoria dei gruppi/Costruzioni di gruppo (prodotti di sottogruppi, semidiretti e presentazioni)/3. Gruppi liberi e presentazioni/main.pdf b/Secondo anno/Algebra 1/1. Teoria dei gruppi/Costruzioni di gruppo (prodotti di sottogruppi, semidiretti e presentazioni)/3. Gruppi liberi e presentazioni/main.pdf similarity index 100% rename from Secondo anno/Algebra 1/Teoria dei gruppi/Costruzioni di gruppo (prodotti di sottogruppi, semidiretti e presentazioni)/3. Gruppi liberi e presentazioni/main.pdf rename to Secondo anno/Algebra 1/1. Teoria dei gruppi/Costruzioni di gruppo (prodotti di sottogruppi, semidiretti e presentazioni)/3. Gruppi liberi e presentazioni/main.pdf diff --git a/Secondo anno/Algebra 1/Teoria dei gruppi/Costruzioni di gruppo (prodotti di sottogruppi, semidiretti e presentazioni)/3. Gruppi liberi e presentazioni/main.tex b/Secondo anno/Algebra 1/1. Teoria dei gruppi/Costruzioni di gruppo (prodotti di sottogruppi, semidiretti e presentazioni)/3. Gruppi liberi e presentazioni/main.tex similarity index 100% rename from Secondo anno/Algebra 1/Teoria dei gruppi/Costruzioni di gruppo (prodotti di sottogruppi, semidiretti e presentazioni)/3. Gruppi liberi e presentazioni/main.tex rename to Secondo anno/Algebra 1/1. Teoria dei gruppi/Costruzioni di gruppo (prodotti di sottogruppi, semidiretti e presentazioni)/3. Gruppi liberi e presentazioni/main.tex diff --git a/Secondo anno/Algebra 1/Teoria dei gruppi/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/1. Il gruppo degli automorfismi/main.pdf b/Secondo anno/Algebra 1/1. Teoria dei gruppi/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/1. Il gruppo degli automorfismi/main.pdf similarity index 100% rename from Secondo anno/Algebra 1/Teoria dei gruppi/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/1. Il gruppo degli automorfismi/main.pdf rename to Secondo anno/Algebra 1/1. Teoria dei gruppi/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/1. Il gruppo degli automorfismi/main.pdf diff --git a/Secondo anno/Algebra 1/Teoria dei gruppi/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/1. Il gruppo degli automorfismi/main.tex b/Secondo anno/Algebra 1/1. Teoria dei gruppi/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/1. Il gruppo degli automorfismi/main.tex similarity index 100% rename from Secondo anno/Algebra 1/Teoria dei gruppi/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/1. Il gruppo degli automorfismi/main.tex rename to Secondo anno/Algebra 1/1. Teoria dei gruppi/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/1. Il gruppo degli automorfismi/main.tex diff --git a/Secondo anno/Algebra 1/Teoria dei gruppi/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/2. Il gruppo delle permutazioni/main.pdf b/Secondo anno/Algebra 1/1. Teoria dei gruppi/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/2. Il gruppo delle permutazioni/main.pdf similarity index 100% rename from Secondo anno/Algebra 1/Teoria dei gruppi/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/2. Il gruppo delle permutazioni/main.pdf rename to Secondo anno/Algebra 1/1. Teoria dei gruppi/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/2. Il gruppo delle permutazioni/main.pdf diff --git a/Secondo anno/Algebra 1/Teoria dei gruppi/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/2. Il gruppo delle permutazioni/main.tex b/Secondo anno/Algebra 1/1. Teoria dei gruppi/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/2. Il gruppo delle permutazioni/main.tex similarity index 100% rename from Secondo anno/Algebra 1/Teoria dei gruppi/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/2. Il gruppo delle permutazioni/main.tex rename to Secondo anno/Algebra 1/1. Teoria dei gruppi/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/2. Il gruppo delle permutazioni/main.tex diff --git a/Secondo anno/Algebra 1/Teoria dei gruppi/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/3. Il gruppo diedrale e i suoi sottogruppi/main.pdf b/Secondo anno/Algebra 1/1. Teoria dei gruppi/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/3. Il gruppo diedrale e i suoi sottogruppi/main.pdf similarity index 100% rename from Secondo anno/Algebra 1/Teoria dei gruppi/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/3. Il gruppo diedrale e i suoi sottogruppi/main.pdf rename to Secondo anno/Algebra 1/1. Teoria dei gruppi/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/3. Il gruppo diedrale e i suoi sottogruppi/main.pdf diff --git a/Secondo anno/Algebra 1/Teoria dei gruppi/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/3. Il gruppo diedrale e i suoi sottogruppi/main.tex b/Secondo anno/Algebra 1/1. Teoria dei gruppi/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/3. Il gruppo diedrale e i suoi sottogruppi/main.tex similarity index 100% rename from Secondo anno/Algebra 1/Teoria dei gruppi/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/3. Il gruppo diedrale e i suoi sottogruppi/main.tex rename to Secondo anno/Algebra 1/1. Teoria dei gruppi/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/3. Il gruppo diedrale e i suoi sottogruppi/main.tex diff --git a/Secondo anno/Algebra 1/Teoria dei gruppi/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/4. Commutatore e gruppo derivato/main.pdf b/Secondo anno/Algebra 1/1. Teoria dei gruppi/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/4. Commutatore e gruppo derivato/main.pdf similarity index 100% rename from Secondo anno/Algebra 1/Teoria dei gruppi/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/4. Commutatore e gruppo derivato/main.pdf rename to Secondo anno/Algebra 1/1. Teoria dei gruppi/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/4. Commutatore e gruppo derivato/main.pdf diff --git a/Secondo anno/Algebra 1/Teoria dei gruppi/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/4. Commutatore e gruppo derivato/main.tex b/Secondo anno/Algebra 1/1. Teoria dei gruppi/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/4. Commutatore e gruppo derivato/main.tex similarity index 100% rename from Secondo anno/Algebra 1/Teoria dei gruppi/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/4. Commutatore e gruppo derivato/main.tex rename to Secondo anno/Algebra 1/1. Teoria dei gruppi/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/4. Commutatore e gruppo derivato/main.tex diff --git a/Secondo anno/Algebra 1/Teoria dei gruppi/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/5. Il gruppo dei quaternioni/main.pdf b/Secondo anno/Algebra 1/1. Teoria dei gruppi/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/5. Il gruppo dei quaternioni/main.pdf similarity index 100% rename from Secondo anno/Algebra 1/Teoria dei gruppi/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/5. Il gruppo dei quaternioni/main.pdf rename to Secondo anno/Algebra 1/1. Teoria dei gruppi/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/5. Il gruppo dei quaternioni/main.pdf diff --git a/Secondo anno/Algebra 1/Teoria dei gruppi/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/5. Il gruppo dei quaternioni/main.tex b/Secondo anno/Algebra 1/1. Teoria dei gruppi/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/5. Il gruppo dei quaternioni/main.tex similarity index 100% rename from Secondo anno/Algebra 1/Teoria dei gruppi/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/5. Il gruppo dei quaternioni/main.tex rename to Secondo anno/Algebra 1/1. Teoria dei gruppi/Gruppi classici (Aut(G), Sn, Dn, G_ab, Q8)/5. Il gruppo dei quaternioni/main.tex diff --git a/Secondo anno/Algebra 1/Teoria dei gruppi/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/1. Il teorema di Cauchy/main.pdf b/Secondo anno/Algebra 1/1. Teoria dei gruppi/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/1. Il teorema di Cauchy/main.pdf similarity index 100% rename from Secondo anno/Algebra 1/Teoria dei gruppi/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/1. Il teorema di Cauchy/main.pdf rename to Secondo anno/Algebra 1/1. Teoria dei gruppi/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/1. Il teorema di Cauchy/main.pdf diff --git a/Secondo anno/Algebra 1/Teoria dei gruppi/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/1. Il teorema di Cauchy/main.tex b/Secondo anno/Algebra 1/1. Teoria dei gruppi/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/1. Il teorema di Cauchy/main.tex similarity index 100% rename from Secondo anno/Algebra 1/Teoria dei gruppi/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/1. Il teorema di Cauchy/main.tex rename to Secondo anno/Algebra 1/1. Teoria dei gruppi/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/1. Il teorema di Cauchy/main.tex diff --git a/Secondo anno/Algebra 1/Teoria dei gruppi/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/2. I teoremi di isomorfismo/main.pdf b/Secondo anno/Algebra 1/1. Teoria dei gruppi/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/2. I teoremi di isomorfismo/main.pdf similarity index 100% rename from Secondo anno/Algebra 1/Teoria dei gruppi/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/2. I teoremi di isomorfismo/main.pdf rename to Secondo anno/Algebra 1/1. Teoria dei gruppi/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/2. I teoremi di isomorfismo/main.pdf diff --git a/Secondo anno/Algebra 1/Teoria dei gruppi/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/2. I teoremi di isomorfismo/main.tex b/Secondo anno/Algebra 1/1. Teoria dei gruppi/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/2. I teoremi di isomorfismo/main.tex similarity index 100% rename from Secondo anno/Algebra 1/Teoria dei gruppi/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/2. I teoremi di isomorfismo/main.tex rename to Secondo anno/Algebra 1/1. Teoria dei gruppi/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/2. I teoremi di isomorfismo/main.tex diff --git a/Secondo anno/Algebra 1/Teoria dei gruppi/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/3. Il teorema di corrispondenza e catene di sottogruppi normali/main.pdf b/Secondo anno/Algebra 1/1. Teoria dei gruppi/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/3. Il teorema di corrispondenza e catene di sottogruppi normali/main.pdf similarity index 100% rename from Secondo anno/Algebra 1/Teoria dei gruppi/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/3. Il teorema di corrispondenza e catene di sottogruppi normali/main.pdf rename to Secondo anno/Algebra 1/1. Teoria dei gruppi/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/3. Il teorema di corrispondenza e catene di sottogruppi normali/main.pdf diff --git a/Secondo anno/Algebra 1/Teoria dei gruppi/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/3. Il teorema di corrispondenza e catene di sottogruppi normali/main.tex b/Secondo anno/Algebra 1/1. Teoria dei gruppi/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/3. Il teorema di corrispondenza e catene di sottogruppi normali/main.tex similarity index 100% rename from Secondo anno/Algebra 1/Teoria dei gruppi/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/3. Il teorema di corrispondenza e catene di sottogruppi normali/main.tex rename to Secondo anno/Algebra 1/1. Teoria dei gruppi/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/3. Il teorema di corrispondenza e catene di sottogruppi normali/main.tex diff --git a/Secondo anno/Algebra 1/Teoria dei gruppi/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/4. Il teorema di struttura per gruppi abeliani finiti e decomposizione di U(Zn)/main.pdf b/Secondo anno/Algebra 1/1. Teoria dei gruppi/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/4. Il teorema di struttura per gruppi abeliani finiti e decomposizione di U(Zn)/main.pdf similarity index 100% rename from Secondo anno/Algebra 1/Teoria dei gruppi/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/4. Il teorema di struttura per gruppi abeliani finiti e decomposizione di U(Zn)/main.pdf rename to Secondo anno/Algebra 1/1. Teoria dei gruppi/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/4. Il teorema di struttura per gruppi abeliani finiti e decomposizione di U(Zn)/main.pdf diff --git a/Secondo anno/Algebra 1/Teoria dei gruppi/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/4. Il teorema di struttura per gruppi abeliani finiti e decomposizione di U(Zn)/main.tex b/Secondo anno/Algebra 1/1. Teoria dei gruppi/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/4. Il teorema di struttura per gruppi abeliani finiti e decomposizione di U(Zn)/main.tex similarity index 100% rename from Secondo anno/Algebra 1/Teoria dei gruppi/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/4. Il teorema di struttura per gruppi abeliani finiti e decomposizione di U(Zn)/main.tex rename to Secondo anno/Algebra 1/1. Teoria dei gruppi/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/4. Il teorema di struttura per gruppi abeliani finiti e decomposizione di U(Zn)/main.tex diff --git a/Secondo anno/Algebra 1/Teoria dei gruppi/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/5. I teoremi di Sylow/main.pdf b/Secondo anno/Algebra 1/1. Teoria dei gruppi/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/5. I teoremi di Sylow/main.pdf similarity index 100% rename from Secondo anno/Algebra 1/Teoria dei gruppi/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/5. I teoremi di Sylow/main.pdf rename to Secondo anno/Algebra 1/1. Teoria dei gruppi/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/5. I teoremi di Sylow/main.pdf diff --git a/Secondo anno/Algebra 1/Teoria dei gruppi/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/5. I teoremi di Sylow/main.tex b/Secondo anno/Algebra 1/1. Teoria dei gruppi/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/5. I teoremi di Sylow/main.tex similarity index 100% rename from Secondo anno/Algebra 1/Teoria dei gruppi/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/5. I teoremi di Sylow/main.tex rename to Secondo anno/Algebra 1/1. Teoria dei gruppi/Teoremi fondamentali (Cauchy, isomorfismo, corrispondenza, struttura e Sylow)/5. I teoremi di Sylow/main.tex diff --git a/Secondo anno/Algebra 1/3. Teoria dei campi/1. Estensioni di campo ed elementi algebrici e trascendenti/main.pdf b/Secondo anno/Algebra 1/3. Teoria dei campi/1. Estensioni di campo ed elementi algebrici e trascendenti/main.pdf new file mode 100644 index 0000000000000000000000000000000000000000..d6e2e712865af6f1acd55717157f0666e6e77440 GIT binary patch literal 186991 zcma&NQ?M{Fv!=Uj+qP}nwr$(CZQHhO+qUs7YyLTN_SN21Gr350QkA=|^!udqk}8OZ z(K6DpLXj@4jBY?NG7vBj*c(|v@$f*=%b41kyI2q~v2k(|{C@+AUd+8 zI)i{~ou%_9MPVuujcGBHNa*^+ExkwH|02BVQg%Dz8djZZx3gTX{qz@*IIGRCZ|mcu zs_s>lIpaFMou4!*QE0(r7%J(!lU!r%ZFQHG&CLwkLiLx?#k9XRYq!Jq2sP#@#A>Jl zB~7s|a>BC-5mXWL#ROL$Q+hwmJ-5>8@7UFOR)s6zV@>{h{HDr~BECWzY*Ui(5#$9H zv|B5%hbRj4>CYxS3CGrW)CqeY@)W6l=hL5^RF1~O%iUtU5RhF>>LKX-?g3V-_Pe^N zZn#40svAL%ZpPc!SbyOyJf_jQutOPdZ5Nwg*~F5g4u6UehCg+f!zRbB!EoEn_xjxJ zw~b9O1Qt~U;uO?#H`7ob*6cb3O!rYFS;&0OsAS*=Es`Jy-H-F7daWuj($QP@xhegX z%W2$uOqpI|6}EI;;kx{~x(c4@%}hn@>|aE=L_bbJO@rHcY8UUodm4+Is;++OuJ85P zGXwon-;LVmlk`vbA%l)`_flk%IrVWuLuU>st|YxIzsow3%goRDq4M^RURQp122~4@ zj;xwc&))D!SP&b$*Wb%l<;e0tDUAh#Tn#Y@7XNr$A?BndADt&=vC_aextL!hk|2k{ zGUqCt7^og)3f6j0WKv)v1s~m|;XIM~9Hs;A+HQA~r569T`d4_})3NSpnv(fvn2vo^ zOxgX=beZip0NIkNuYTN{-Usj6thPp`$qL@(N{(=^_3_=dA%xx~hGwQnoOp99J-_gv&}ZBk1dn_8#pjTask}o5 z1~$!#Qg|Y-MV!3+de{qJ73mN|2Q|r*2A`xm)fk8w$!GJ1Z$v18y5_sl!I!1p9@X>E zW-Bx0cfJv)&WKadumk&_;ESO8S`9p0Y3P}m={%#7yMwlS*~^b=bG>h0wd4B^cSa%; zKgseBoX9qa_r(p(gdn~_6f)?&fAFX5;P?Z(>gEU$G`W=5R3i3vKUi*qgT&Akm+0Ms z!+7DtbGB-s(xRpLcvRAZ@wyq!_qrLw3J;h({wjj@%J+OYv2d~g3L5C!&Aw%v^!3*w=+X5IabRJo|ewGhpsn!J0Bo>@A_qR z@DEchX?~Z2W1e)$~l)y#Fu>VLi}tqQ8ZV1lo$7?_!{UuLWI!_1M`k;~RM3v_X)B9TD3YiYy!v z+b2w=3Wh*AqlQi2P&{D*Op;jo#qGQLAb+&PA^UYRp(x0$Cb_L4+O0M)A8Q;vQ$9!LkXi}VuJnMSo!ai)I zkQz@fQO?Vg=y*_4kC1vz__@s4l2<86wj|A4ZQF#{s)m{@ce~{dUkcp0<4OfNK`56` z;SQ)I&AM(Z+unh=GnGq6I~Qs$x{`!YeYtIfRB;abGPJ#BRGuG^Oqp=GYc?qi87&3t z$rJ=N2y7EEceK%a-E<*qwas3iyN)O1Hz~|+1YcJdZ&=B5vy3?(e8o)rCHwYPhgEH7 zm;K8X=2zbeny(C`f@S7X5>{X3QxU;M7iBwC?l&C5ji*oW5{UqISgf{IgG?w`n=&LP zB77nv7A>3yKZjM44f_sZDIHS!A)Icqp0n6-M2up|-?=0#bCPtbO}nJdnu+u&yPosB zg(-b*oel#O)^OHHW%#@Ls(MD;)m{9U$#8}-clbBqr$OmOtar zU<@8eyschQQOb*rQ;3!;`$$%k9@N73FwXf%3cRB6_XmPNe{Gu-<7zEWtPs6{;Au*f zMgxI%MU)1jz#S91Du}mvfN~@Rv=c&8v;q|^#*O_034#Bx<{oDTCz%i(@>JW+V{49} zW^}U*B#3vzGWL=-XP<5Q+a8-)=b=Hr;cTpmV^a>G!1R-6rY)AN=w0z4Lz%7lJ8VvI zHHQk16MbH3tjQE-HXf9KycKh`4DB&o7k%0Dvt7X9hgYL81H;;=AJBp(soxe{j6+>y zXguvyJh2#MP8Y)cwD=xX<~BYvCv}Z3Nz-rVTLYI`vBD7tif;Y(cNJYP`XfUQt$HZ@ zkH*%x>7)S#q#B5iHr|!;<;sK6*ca_oKJpkoT3&g)I7-C;Q23ISD4$&sgXRSbEZgJr z$Qq&t44r?c@BL}0OF2yen;6u}&p_YoiOrbJfnm9s7S*@Z+i`>cOZ(Y5g)(lM5WAv9xt z_+g>HtFx0G*z>)Iw3`>O#gAbGhW+iN`tK_S8(s^;{0^S6=lAEgOjN1=vio)x*DCP# zJloeYD_ftt+5T^c>5KHk>^C_yTbmqT?}jS)?}t2X-0OJATbRWej~{(3-316_Zwf9C2I`I)XwDpSEc`n{;1(tgC-i;Et1MP=tI3{!)pwqXs^8}0X*5=|Go%?ACb*c1u{vtK z6(ig**ZlJllLl$^UH50zmpOYDhEBDS8YnxFLb6hQpUhs6ow8(?WMQcx-}NgJG6yG_ z3yEWL`Q{TxBZCZ1B-`!cN-&0YnOGE%FlxDa3l-Uh` z3ooO2$z*FFdEA6}L#2_UPPv{*&_OWXRK239Q!`KdH)D@66X95GA~1(f!a%+Bu>w+L zH^mFpNxAj@0l4>vOxb6d4W964tb1CEY5_`7&83`QE%B!6=PoljKQ@_@3Ao8*bTjf1 zb7ggg1`F_D+meRvB5N%)h*T5Uh7$9(8YfGY%+aRXT90LNj%d?qP*C1Ier5h(8}5ay zUG>0$C#5i8w(Xwp>T{5n(Yy6X$!+s7-Zi5%he$ZHYx~o4k>Pl2@MZZpYqyR!g~?vh z+Cd`1QIB!cId}Ow}MKh4alPYF1o`RKsCL zOE?0WvrTPldy})Vl^qy+6zp)G399WNr)zrlt~-;X>(cy5H7z!%b_vrg5WOfq0;0S@#C*uQRw>p`ly=ngoN*&kcG`~4q0awNx(QCtL+(Tw5| ze_TWy1=(3dMD&GaI}V*j0wcs6zg#^_cZqrw0~vp!UZDG&Rj{hELFg+o5U$13z>q)h zID6Q;&VIB#3c*Fr!!QvZ;_xuiv@teTo1-fqQh>QH$IA9{*>C5bs&Bk3!{)PUvbx3J=dgRdq{r7>`@&Hr4^E(V_ftYT4Pc*C zrME#^Hk%XVTThlCi4{!1^U# zf316>ak$rhSefxEUX?GV0@FE-h`2K6Hql*JLEGJyulImN<@Oh4DoqgL=_OX7{iY2= zTP`5W(7@fh?xsH~l#e`uU*wT%C-n4AJ6}XFK@TjfG((IPKw|-EJfN3J59KjT^#XhW=)X?!Pr? zm?S8op81Re0MX`;8{!P`yBqRkcecbgQv$$dt95c=C(U0|6hn{=F?UXALVi^wA*5VM z00SahvbFUj2wS^@n0XtC4Qq^6`I1icBy%lb=S3i1sNx^A89Eoji@H&Kc{?+3qDOyd!Q1OJ@7KJ0rJ*R#KB0+OGb2{ zI$@jrcG&~A9`Afm-?M>2K%48j*qD>1slZJ^sCeAPX$;-(hXrpv4GEs%%J@NLF0B;9 zQe7QOD#?z}E5>FTFbRdAK|N=qPKgfZyE=n#E7r?41X)h*3xTk?aHnl-^WsQ{PfWgv zFFan^%srY`XAv~@Qala_G@!G1h(rcI1ax5%WBM&Nv5kzg>}597Q_}4+7dB%865Lqa zPaRGWiOfnIiM~^JQAT{g-VgGiy;mw(w*$U^RF@e^A1fX?6H#}Nq7*&;0sxx0g9xjL zn+=^aO$s6U1biLnpheeC7&y-RUxz%q{&QH6*7|QvGqlP3ePGXyty`ZDL@WH)9;WPH>&)0G4e+gS2oSJC| zDd`_J)vixqpRhcT62L*Qm2+~TW;paCH3U@dYm|8hQlMO`cX1yjkt-rxp6uaKl@gsP zQ8LVGe9Bp@RvA(#M@jcsi}!2b`wTiTeX`j6k}G1Dx;7DK9eBLw3Q64 z@9m`7?`V^mFzpTzZw+nG0gTRW_KnwW;HDWG944l0Fe} zlS>~p2!wW6M-ipT@h#J&=S+wF>^7!z-$b96YqpA!z{7sVd~U2irvgL3Z6_4F(`h~e zhna2cO;?##)(H_{CzVf1tQQ=885a&NS|1FabCH9RVO|(RaPhf#bW#u;x5J-8_qc63)uI%%mIVRgWKm^OD z8Nm+`4L1DQ!{9c=M(EWBshP6f>0w0!X>XSB@5Bpm9u>V@;`3gSZbXDmC@~-81kZ3W z-LuM&@zHAu7FFTVK^1@vP@|~2{UDAJH1x|@Gr$tpuoJaZo^!y-= zAu}iq$_<@m#}M0uUVz?lA#59F2Mfh4lmmXQE;~(^^HvLpx6F$a?M2D~Vr+&Jbmd4X ztMf`IeT5oV8h)!X6YXk<97f;lZWllevEP>QQlR3(6^9< zKz_w```S%nv+#Q)+UytiI_X5gi3QKzo6|ZwLp~8f+A`Bhm%@ei0Yt_AYO)ndM%XNL zia{UVoiYgXK9;0&wCPbf$F182rz{Zal`ZF46^S4eMOh8=KwWB&as(Q2SbwkY{S;J+ z4g{AvwB58qBT$%JCu-H~?`YS%YilUoUmGyX(d|Wl-xc1UfHnl#!P$z?F&N(7En&J)B);xRvumm4*?pti4UG+kL%}4hax5YaK8k5ZJBHRJc=i?t0UdPeB|D$ zZ)6Ej4W}NoKQl9B+6OP7knxWwy9jukdo8M@z4kFF70~=xsS;-+d-N~Mp>*z9=GGWF z`6?O37~9smZwti4St*RqT~_0i-ADUqW-kxo1PU-(0{V8(W7jM%3L-i&!PO!vl5{^X zEMcsjANLCWrOvBn`j?xgaKzpS()0pe29iBihQoGv?4$)28!SFUE-+N;5a4O22j*<# zkIt({gDxb_tDW0b-2W38*Ui*Q_LE%05T@z_N=+OEBaE@dZw;Mi`wwtf5}W6LU@?yW zfyG!k+5cZzY*k0{KP-mYH(!51Yhnsvtbg(}NJ)=MAE~+|n+H5wNS=E{l!&vPs-OP` z;KIHDvT-sqAyq}fx;gUn&3D zLOhl+x&1ZSeJTI7`?aalaCx`zUA}3n-rU{3@B0ett|=}~W6n@>|HQ27;>uCi2EOk{ zR}$tfW0!qw#I`;q*AEd4kqkFPL9Di6f})lcJ*YF&S{wFEvj$(S|2pfm=sv$bQ9%^; z+{Qo1hD$cwX(P3eZH73h2J97cgY~08l8G#4x_#pKl}^RA;0a_8(`d(JJ^)uKT>e$Y z(N3V1>2`1*?W`Oy{W_g1U09}Hx8CjR$f`83a`bJ5p_ue$bL2zDnt!C!!KaBU?}5~( zmPSNsIHuQ{mgAaMW_zw9aa1t|A3}-#>9cC%7JlqkcHweZ>KXEvV__@?5}-V!LG&$y zQi>g-?JoRC1d;2WnMN zf;GTPpov)KET(Rv5JmkSc2-E?1;U>*zyTuQ=x0UbG$d%7+ZT7|*kUgoEC5}_x4Si{ z(xC$!cpb0pb9HIx&T|KMuQ*q%s~9AKa6SzaeVOhD$>B^$1C=8hm<_$PNXnxNbOBj1 zV9xpjOX>{z?>2kX3v~|{Z#spe!SO~48{7h)$jrv5vO7{gHEeN&!WUG>eS$WdZU{OWC5U4KlF2Y~ zdSe$%`tG(nbC2JSpGQo)A1t8LnS6W5Xd8?8uN5ZXMC3`{Lh5X1gQ)^BL~)AiZdWv7 zz#T|Z`*yhf)L3zwqyr%;b`cuCvboi_eb)rMNAnJjd5x;L0frxi&^bxLuzu6W;rRRW zb~YTl1m|@xG6+^inQ>7L!H#@-cD9?Ft22DRFI#~q;C0`38unXsc#`~jGCO-c7?Gxj zJq5{pw385~5a(@b3qc~JMIH-~&1GtJbsEFHrWH^f@Y@9bfFC}5^|u|<;ekjV#Ep7S zay`DJMT>Lyu1!-I5eutjono|mp;r0y zYG*G*B#Rk3=`%>?REb7ZoNmj3x}1Mj>ojm*EqwLN_xMyh>k>;mfoExn2M_NpdZ8}= zNJOaD+;&#P`qcJ2pnd6Ik86mxDRj>ZPb$-?1bdp&0ZCOu&${R+DgkTmQ46*mA683a z?_?GH@+QH2l`{gE$CfN>{;USj-Q(t_!w=oAQXsDX{%;otUiNl}us}~)YRq>mKtV5a zp6P>gLTu6?GXZ99j!hB?WX`L71r&khh)1zx5{FVgl&r z63xYR;2E#yH@>;Dq)n7Y0&r)snB>i=r%M4Hhf3e-XtzdwDPc>40R!k{6}LlIyt07z ze`qK1KtF~pAYrz%oo<*~{K`_)hV@G|=7b)lOwBYDM6-VTJN$In`dO}DW8BuDe%zuR zO2tasld6l80NH-974Cs$IyKp>e3ver_Hos`pDpibDBJw~c5nt@@zrL~Wl~J*UMf3M z^~arGx4z}u2Q0hwaSgA=j8h@BA{OqE@dCQ}mIB@P?=Jlv_GuRNxYZorSUol$N=voM zmvPqK>MI5tmb0jC7sQ|5z(YZj-5Cwt3~Gvx1GVmU7B^u;=QWZ>lpr)s*Tcrmz4lsw zgBf6$S)rfrM9?qc)`GgH`7ozJuz|VD5rzSL4rG<2L6?vc$bj-Un%b`HXyFGFQ__wW zZ=8^9z{rx7dwtxc8v|uvXL8PR9W3)i9k@`;Lba*1UmylbFxVr(9~uVrojp4id#W~m z{9q5#szxOtX;nGpj$MmjzC0~8QlTBN2#?!x1y($uVcyBsJWT-KA>F`a^ao!dBnlToD_GAOssh17y$WfEC!+ zOaWb~xLKkal6lyXmXtFE*IqdY!xqTH76`$r03{ggr-|sZ&;9CPx&({8*`H-ObW8_Q z@g;wO0Ln5M$Hob?LS#k-&0(WX-1*}4|HHb2oBz=GOG&Gg-}3B|jI9oJTf zjG?IKlcCQe;b{m@4sSOljLNuX{Ai5J1!?4n$1kn;l3sJcu~DE|x*Gp^wR4Ezph2f) zIb;ur58m{3Rck*3A|4ok%5^T%qXY>)7P+#7=`@l(h-yuwekeMYQl`C@6sK@cPkkw< zl#b%s)@4)(xEP%@Z`wkt8Vy(t=0GnIoLDv*jYQH+_4@OHkO|j`go0TSZ%T(+sZTB| zm8a8Ko;4|tX1h=~cz@3Ldx%&IUQSruuVs7-aFj=(;@&+}n@2Ig-D-XP3Sflni$I%u z1G1%kNFVOWip(33)lTI@>nx{a^u75IR-Ent3SWz}z^q6}G+xzR-#(C%4Sd+6rmOCe z9JP&Pg@%uH4>|bgdz3l?6=B?v*j}F|#k#C>s0qufq6hxy6DEZplW&(flQg2wm_A5k ztzLt`r$TiA{?C=$I25{?3z0`D8na!<0arUjajOVXLEa1Ss^P z;Ea_<9F>+Dn20qWI$aG^_NjDYsqiTZnnl7@Il)3Ir6PR-{6(vH-Rhkd9imFadPEd> zrNm8!*HizW##3dSbREB*BZV{$Rz1IEQ*dfH(*X>5EnogD<_JsuL*ejnOZ@!sw8
yZ=U`;pg!DWnfvT%Wg) z6ZBxeEwqCnym0gLwoIiZg^lwvT6T1(XaN*KV1n};siRWf>g^0<#k1tkhZGT=64E1) zlu;8Ud#W+!8d_Nm1dg4Ylut|Q3JG1lqsYOCq*(1-y<)pA5}7TX6Z!eKn6PoxEvcLf zQ9SD#rKM7fAssA}^&awV?*#%o#vyMWnGX-$+M{xk^Z?mu63;txLt-3me9>KyvRGBT z-?(n1)PO~5#~i6r8SiQM*(4SI=CN0_C?f0wCF2+w-OOe(IhkyvuE&!|W)mUs`P#>c zG@7MNln+3}%ZCu52YMWDzrsYt{Bn6~ee<~{2cndI&)k&Wf9=p=7;qc850#EI)X4 zhS@A#Me%pH(#*~Ll^S%BaiG(gM^8*jT+Uu9(6M12d3v6Mhx(hg3i>Ku*4Jv^q;qii z>aa17O0!j{QKKfz9*k4SY&F~V9x8DT;9~m&ie5*0b~Ze6!NYbW`SVylzEbi&`8(IQ zW%pbxY0PjGYYoOX)x{LVH_BgGetLFIIkC+9a&SyE$MN;AI-ufl2-==CM2qa(bO6ST z#=Fxq2j>{aUdo`T=Bcr5J5rg?3P+2gjoSx)}X;8my(pe{84@!5-d~z zSvK{3O&>)kVLd1Vg{@~>VGFYSrCoFgd4Tb_a zY|YZMQ7It_P)xhqaDl zhr-d7X`UZ&P=GU{(X1m?BH%o9rl2IhoSe-fa2})#=RgiXW1k?8!g)#}@}n9>p!EwL zU~09-di_x*cL`SGM0t|5m$wNsh8x!%Mk8_J5TqM?Q?v+3v>?QwGiFL>Xn#%Cco#_w zf=q1yKsr~!NN!izu5e#uioj}}CV*&hD^Ys{*bm~q12LqO;Ov+d=ukcg#x5tL6$Ok^ zrd_y6z%`}5=27D-DMinfj=|W}a(6taP-VZ_>Cbhy>$<-;&!QH)LY_s+A1vZ<3?D`? ztZ`z*4*GQr8JK$SkniaSpqn?X%L#Inh*9IakQ|05+31mh`pI5kHD^wp=<(2eIBNgX z6XaMqHJR&{reHXlBt`L1??p<&Nvuq@sZAM07(vbtCr~RRga|o5MF826h10juTkIrg zd3}@7d9Vw8Ew?zDO`m$?&&)Nd0M(T2tZ~u?FKLfwuW~nc`M8onPrsGmxLC@Cy}G|2 zNu}L8hKw9-(^czUI<{)pw?$Clp=;5qKOPt`xqpiOUGP>Y+;&n+8;+a(*SZ;Q9%Aq< zD#YL?`&rrx)1_PE4j(Ox{+mKI(SR+@mdDZXmoIVRZZ?!Sy=Z_Z5B@^A@KqZk(97YdRWP@Uxro;EfU-ePYit#CZ`_7B+~N0o-$1xI=s zz>}GUg%cjYdOWygjv>0jxZcP;ykt{OhU+wSS6Q~b84_dJOjov~xR*6qII1rkonv!# z{l4tZKC7pp#UPfW(C_(D#gHU*4N-{4FphSsKK6ZkH*ey`eT5d8zO-)IS~tDF->t(< zKdbM+Dr(5F$dnpBZI^A`A^d(&7ls)GAy&IWzXmcP7AToGP`irqD7rQ4A8pQfO=+X$AT8Q9;>E@f8MFs zqcb?w3{O;5vaMQ>%v8dQ1DKu~Hkz0Mvv=D*4<&!$-`hDj4%7y53%4|cvZYZ_M{Uo} zrUSh{Iv-{_2}e4pq5jc1aD2Bar^g{df9YAt<{WUOB6^_y!QR`mPs*4D>I=ZqMY@vt zJAWE2qBZw8a*oIHno9T7xMi1 zO;2Gbgm3C)q0B}`k$5np?3U8`gQQt9Ck&u4hvz~t56sMMaA}d=mTVqU&RRH z8qTE#NlI2QJ!=t0m|Z>AWIo+J7e<}@r{V#X2Z(6NS}B287kbH+$`OT1QL<~Ca~=+e zbL{rogcqM*;EHF2Y7;IMOa%=Gb_`NQikRm}RAx{cbW<><73HcS1py0+HqzPcnVr!y zJ{TmGKc@!>4AbBua1idG0A-9-Duo6yPUVhVVol7|m>%@E4votD;zZi8XiOg3=p?b~ zRDYEz4|N<7W$wfsb{Rr8gxN8D+bVap`}uM@+~oZcmqIdT0fk{y8po&!HVkIcvUkhI zu)1*^Ol^a8g2EZfA`Ci=ggWkn=KI4;&3I zgPOl@4rKEYoGvfUJ->>!8G#L=dHJEfE;%vYIHR3a^L7J&P{2R=0-Y@HyNLV%PADs#p}XUz8$#2VkUIRk}8P1zO46;JF z28o?227pN2I41;A3CGv~K46!q)EB6_ls0KZ)9<^hmLI1nI%o#qb4pSBET_IxfzZqv z#nXEVp_ku?%u3O}L{rYU%l%AL4(awzT#`2x^F+b5BKjyqPx-K%27!X%F`hgWamd29 z4s`vo1wj>K0=|Kbj#g*E{4H5AKoHOCLxR+6$U(9wsD?b#AgM)Ry<>(X)HkJk#IY{e ziyd*xuh()=C~?W+6zME=R|!edc@<4D7D4X!6P8RW0L>qRERbfK2=c+(zsn<4E4hu&H?{{nhy z_jw~vsu=adrpmj!tX;mIEp_)nm?-CI3b5C{D=0lq#$p2VBdj-xt)6q~{OyA4AQWNA zV_?&WqJ968Q7FA%t@kYqk!y&qK!1W%6ynczc6%`jni%R*fz%BgDB%iv1-YUCRSPTp z5FlJci``XhNvIxyR+*=Pzy-xtzy14w>7dkZVP{ES^rovl;GWs*60)3l=IBHrAk$h& z5(go17w{LZXb2I_iED)3DX27nq^lY^3}B+zBZDtVOfVWPujTbX-+&SJ`!bx2Z9)@0eH4>^(IEQWO$BDd$M){wphb*Zh-+h5ECPGN z&KdEv1AH9iK9x~bp<@^KC=KtAJEVd2kAne0BfbEyHLdIyJAKe;6|#M7hz2 z1kk3O^t{{wZ97>^T_xlWt_g1sy+;G@ohQ%LbCV3{*PMg0^AS28JUL`1k+0@LOwC(g zPLT-%&a7d_bbi8NE+u^DTIRqM0wkbH(&xpb@S;w5;Sp%SB>*bF90M$pA<;JZd9o+V z@)HkAs}_`G8q;iK#1Z2#=}rMDJ$W3Mr{DJnjauV((oSNjE|y;?BxU0gB2`ass|6_u z^|~u#zFEc~gW9;ZWoBrAXoD5i&GURt7A&Iy#a@ws$6573j6&ZcXLxjzsZf=sh%f?c zfERNxbq&n012#d{xD`^3sZ)R(dSo0|U%@lciT)qacGo0C|6xpwUX1e;zmk&-iqqCl zLURsK%xYsT8qc;c7ad>N1O<{|jBO#z~m#9wFk(eQm? zJFoQ7An7vaPI|HKvqtLveF@%YjTL6iZASZe_JyN8UwcGI_kgwP#;Rm>lqgCRR@RDk!#8z->Q{y zMzFMFbU8^7J;r!lFdLsBAPsL2o{@bq5tw?smPeeldiBO#+HKjJ8#`xQP^0VSW#FmM zl6OrH*dWhus_vL3e;0$P2mO*tU z8Ka0~U{0=%h*PGI0>-1c%c5YMc z`4d&=vHOc2-fOO|eC6LE1Yz8=Iu!cC9$l7z0<$f%jYGq5P&ClY3AzOq!scWjo#s5x zYE5n!*5n37aBe2xXPL9yo@K%!0GJnz^&}+Ax}P?#Sm0thOTR6@!jOy7?d;wj>;5%B z%|oSChnBDv1_77X?HNm!fgz8BS1ZL9X(=q}gp+{dz7cwKtdQ*w-w&r}3Fm0hh4sq~ zpr~@S9>^e?8mT2|tmVheqx-@TLow-1&vBikmRCJ7EvIt2GVwk$_}sZ-s2fCp*T#Bp zS;cIlE&->Td~~5E6GO0F*(s!Zwk_BlY(VEc8+hXm9#z{XJ*D8##my>723-QuD?)y} z9=@=_^vW&PIf~4ayE5<_IH%}#=!Y7Y_|<8sfBH}-|4y8OXZ@8jm5>9FmO~b94qD7j zumj74gxO!+_RNiZDWR`t0-2Y@#p5?&_#qWw2zL5K>y?!kGp*8NX3j%L>> zUbQ?dc(xXy9pP9E1>+J+QRxs{f4+Mc1(Co^T6B=;-_lMsTk5h@wUd-{p(dHAvA|UG<=#D} z&{X}zxR|%bW{m#$Fn3(fKptje9c1iLIZ;Q?crN6ib8R9@+zeGcfw|h*uGVxkYqxBl zxux>HDYYd*%@sp*%be)N_MF|+NAIiaRdK0ZSAEn{lmA0s_XUCJ`xPCCBBrihEG#VqX{O$0%rF2|I5(3Y;a zN^`2XGcj#eMSW8WBij!qI5IdltQsSyExGwN;X7pbC$Dl_s7NZNeFsmxxOPw~AsN~RK7jpJMa7ax`GS1+_7?RBNXzQFQ zpjfwy&|xdq9tg=7+n5-UrTubZ%1G3r()y$GQRCm5lfvu3cE;G8Xq7E``f@;i^p)l^iCsxu!}Ii6)HjX=KRUHB9yoz zHKhKzo|IrXz%V#}zR-ei?S3jypxVDne4zTjNJF^^$ibXqVV*Wscs;y+nY~|7euXTe z|DJ+uZ2yfP83`EK8JYge5yeEn$-&C@U#tJn=6{6*j0~L2|Hmu!f6vs|7El$GD=a!0 z2qN0pm4(>_+@+;mP6lB(V7T4fC0rsxiC~xX5En^l;)0~5+0ov&P4E2YKkMCYv)WA0 zy}0wAi^|p34bs6lGz3oZ3}|k2@NxzLEm5ibXzYQ>$>G7t$yho0dfRKD&~NcLxq9e8 z?rpB2kUvvG*zf=yJX0ouba7!+aSVY)RH%a^K!-$>^fFfd;qZm2*+lv#(_SQB>&za}^egHCQGl2Aj1b}V)I{-;=h@CYg5a5ac9UB6; zcuZPBg@Cl;QreNx=YAoE$gPeJ4oKj@ySqCa0&sIU@s3swX6%98wNbDFNXM{&T>^uF z`!v8R0`Lj_TE~KA;1*k(+&>iyPOZ+4-~)t#VgM^^$Usj1u8yGr1dannZUJdQ%z`tJ zz#q$+?{YxwgZe{&4vvmrxVQATdx5qF{v5%yv^Y39f{b$787u=+=um)_lN3%J9-R#U z0*v=|LWrxI_X~I@;7uVxw0JQ86gZ#>Nh<(>c--IB{ASXfwaL-U;Z3y9Zt;VAhIr$& z(7;k$TpR)hbn}1vFOwTXglX~4Zy>*|I^G$@+%sSN6H{nlZJ)bf8>^5Nz|Fq5P>Km3 z(`Skyzwt9zM?eS1CnqQe=s*H`zyx?{Yy|qXMk5s-C>QYyDck+LWZH7l03D=f{8z&d-j39UUGa z06;!D0Q-M&#c)kO)o^qEKBxw2aR7z<)4n;&{!(sV(ZDkPxDd<-{l=ACd`##-2A|;< zV>v!KY4Q3xfAcPX!>51or~Sp>`jNl=sFR&Sh5i?rzbx;67lLqY3iJImc$wE%PadFD zaq;Z{U;4_t6Zz%Trx2ij^>Txt|2&|R7_2Y$jayvPnqL9}R&8}@Y=29p^PO_{!@*iZ z1y^u$ZT^1=KdCW_0mg!j-L;|Cnot-62^}|?o*l=q{ScZsgKW&!2=E)63DsE ziBmg1-U0S>;?E(%JiZ5w01|-DE}kxcJZ$FB4Nf7%|9Tbu1OXJz+ArWq9wJo!1cl;D zKCvO4fC8@ki3tG#5dOh?{cC;)=l#_DjrDT}1^I(^0t`s-CtwG#F#V#Zg$JUkuqy7V9^74K{`X3_i()^=-s^cS2z=Qwb_|Dv4P&^*p zeJFnOume9^C+Xbp`9VXKUl{i>U+g)^-ot48#ig=?kIi8<2IKlUNQ15js}Y?zIh_=un@4-&|IKc(EABs^Us@a zXuY|2;8Y_Z>aKe|82Q5XLoD~3)tGgsPPTSubV}SxLP*dj%)JSc;P#a_711Nk`y+VA zC_{Tb4aJN(wy5^w0KI25Wp}!WG`RSB_~dT}=oGrq%^aBM=9P_tbgXZ{)u~H@!RcC5 zima|!DDNLs^lEAG;-f!yvd z^4usKk#FbJWt5`JtrDtWZmA)9q_RB^ z#i&KZYs=D8%^tpO%f?rqmT{el)FH~YKOJ9Vg5TmQYM(Ss&6(9Q5;rmnD*-bb!unEe z-_KafM0!bMWK=2jb(T-|*CR%H+_c5|6rNLVzw_*RsNKlm-ZqwyL^H7bHYLOPx_BoN zc_b~bmK3C3cVbCu-@z2j5OOODtWo~_$?|`$T+L{Y(ADd=&L6Klaw2DR{vCpzN+}OI zsDlNjd_;*TYLa;YL3c6-xKlT3b$i0jX=RXVKiY+QD8j=uP~iB|M&k(&SMLLZ1fa&@ z45}dv{2F3U^R>P+&pJwS#!KAPrZY6}$se2Kl(vCZz3_e((bL6Wjhd*s91#;l5ri_r zG11#9ftI^!tAiTt147chEe4tY=G{w1gCYin*Ry_P#yCa^X^r1M)WHsD-2?|NNbj(-FM+7oK1 zjVJU{w{$ZZYuhVQu2l3xJrnj<63)wSy%arIs@t@uMKcuSd{HItz^9B54rn3v1S5YN zSyngSQeb71m zt-F-pDe5OEg6&wqX?P5+B{{MU-N}86hkj;#Lg4i(aomZ%^G>vF2M1oXM8_-kw|Y(K z_Hv>=nvYr~e5|MmnH^v9Rr@TQKuOP0k0_qEFW)I)FXh`8Jd(F4Kza!zxGZX-NWLi4 zOJ3(C8AV4o^*&Uy(qIX$BGf;4$F(1g{fIJ*0Gwjt^{6+KIQA$(c^SSOIl=ZowUy5l;k34NO#fj@4zgr^x z@Bk&HsZ4cE*KUDQN-e!YWHthN@^o`{EENuTN+ml_%kG|g4!h@<{95x1&DG6M6+LPX zVCsSt4Gj)h2ePta5175alI&&h+Qu-h7nKR|bnOMiqr_lb+|>J;`V4`k0Rpu`pdc5Y zS+76cHtB09N4rq`Cv{O)%(v~(-2~o8W{$QEgrQt@%=Y5dnrp1&KFtv6`~dn?iaBJ3 zxfHW?E>Yk9xmD@2_gp2tPu{Vi<^I;!dDxix3I|=qIzZvR_RuM@K+<1Q^z9H~Po6z_ z9f!Yid0GO!)cF}S^IOBxfMrq^*sPOtZjhu3)x=?LX92mz=$W&k6*`*COF4HXU7zSH z+_W;M*!h|!=lGn>$qi3wOSdag@U7}3(1~e7dRC4Ug|CodYo0!h*d*vS@_sOffsSr` zJ-m^J9dr~UWk0OEXR$l>9^qB}$Av{Lm+d$=f!~yUnhK1z0%bcQ@6^XJmgBcMOFQSc z7}`)l;Z!nVbrZlRCR!)qH7w8cZ!!;s-))UhAp%Sl71@A}dDV8s59Hl$`2LPI(wLH} zP3iJ1n>DC7jzG5~ift6>^q7V-z0JIIW!_6`P!v}KQ8}dqw43T;`(JVFBfIw;l9|wB z-QLD)MAn0plx>ZI$EHhx@l`0BO~;mVt=r9v+1b0`;s6OQjt$Tlp;e5V{cCM z)vK>=>a4Qr8L$+$1;`$ytIwbSU&n?e?=M;#%|#`c$FZ*uj{ZUNwb`7^N2D-WOim8D zy&<<~Bwc9A!OxpHrY!&)-e1)A21{QqL?oq}`WqA1%WC$??dw(aBuC$??d zwr$(CZQHiKB=_%Ix4XKk??XSX=l!x*%`wL+*wMBpVTESHtTQ6tCQ|+^{cA3*dj?@O zTdwF);5S4*eyp%+73=ot_L_)VkdyqxZb9k6!Vn%q9DF&^ z95AAVrzhx3k8R3DSKM6>XArjEt*W5vTOa;JB~a!fTySuw8abd=s=P*^`_kC|6K{lR z%H?wKh1fnPt5D5bXIwHG)1-~n-T_u8jl3n>TQK*6HtvfHj!!l-w25 z(+;;2n>rt*+T&d$JiZwCqJ%c`dM~(fIV^39tw9>_fNwy$f#haA49hB=(-qu8^s+Q^ zJWVs+p2G=K;!UQBk`8=ExBlHLQ|zddEzKGf&qi@}D_{?KU=+>9^;*YrtxQnjj4c?Q zlV$Y|RF{aU7zYvZ-%3M8!PH2S^imL~h0M?3)8srra;H@uBiT8W-jR+0aaD-Nh$a!4 zHJM{FZ8B%+iCm9dPwKXDP+M4vr$=^Foz7n^w5sg3gLnP?ydkIG^(rlKMCDdOZy{V# z`E;pzJ;N012hpQ?Unuwdpw9is)%t?+kbQHHK@lsEyohe0YZ9k!pm1~yk~!HvR%{>T zA`XU$R+WJbuSLagCWo)C;aEXKJ65M>FX+TpigW{ha(?3&xpFn%0spUuwjF||>IFni zRRb>>TO{*KK&xSa7T5!@`=%DLom~cf{0FR)W;hgY!;SUgPhsnte#LR5GTbqP!B#i| zATe8jf5REcd=koMdLeh@Io52_Oj4jw3ohmj1E0U;!rS4&9=+^Qf34-InG?b(*E)`0 z7d}FRn*w?7Ph6(cTptg*=jk*TXVey8*B4fDIMITY}-%!LHo^D!8djn7$Nvm?s z@9sdAaGrJXz( z);)>~8=N_oR^x@{KROR0pfNf8(p9}Ik2%nQ5rD!*WoOSd)_=I+-Le<08fmrWayWNl z0@RU+WV$snue(kbK1fC1yTt@If#5QQk|9!7^PhJPH_RZapxTgOJKD!Af2pd+oEDj8 zfAvd@QL@of^s6iu=QH~T_*10__x&&o4B>`C&DeKk?sfq;3{Yw=#}8?CsbXw)HZ< zmJne=Y-AlvfE+k<+?n?3mRQ$G-O`Q9u=3Dr;RbN1wv7SPUz@4AXm}cyzKMW%t>$fA z`JT4#h5cTZ6Dco^pw+rl{EmeH_u-?B% z_?ex}I7N zCMB^N(w^GeD#R)?)`&T9IIRR+>;=aYeS>EzlIO0g)`NC=(_ zjS`=XiA{zhG^8T{M1b-Kq-%NFhd zEQ_1za&GCju(TRj0-Fw<3>k zpD?dQw8bD<=CG)WSGn_l+_?M{GT#Ru+7l>WwUC|oZ4EYJfFKyhP}87ayuRny-SEB3 zm+u5|N{z6uIpIzi?uEe(EqdJkB7aiWVvg#m3iTGQs3?Z+P_?Q~umwt3&A8wW10+8Q>q)NJ}5E~W2r$a z7y0CNLRB#rVgYgofdaVD+(ERqTeu|%>}LIB_|sQ=pI$s>CLH6H3c`5mTW>iiA6SgZ z(P|v(wZxXJVR;}1zZ${)swdDwoy)Hz&y}Sv+b#ecn{MQxYhVa`)Ja%P;3=kP8gGZu z+|kWuO_LsM*e=B_ws>`@Qe?zOUDmv2)|#Fnt}S=}y4sDZexn+6Iy~k`<|FD~ZUyQ~ z*!n6^0TbQIP-Kigzj3v}7-Vvm3%dA1`Wq6p6i7wVXzp!;?4)DPw!264zXb2ejs1(^uC>{Ua zb9F%*_@tlER+J4OjtWLYpjh$oRZ@Np>s9>6;ER*+xE(1lIXHLIkYlWoY$~Kgu~>+r zTnDj-t7zG_Pb>1qmAoj3fPSvdl>>56GCGI+J z)XLYYuQMHb{A3ZWT-O7f*unZikNaOY;E`3k4_wO(cO0L5G%%oP5UEpmE+qV~(L4uw zbD|asA|KV_5cTF7(eOC}eo0spIsXm*CehYiVbM30D6Tp<+9P|ND zg%OR7VDRM2{7gFkimGYW`!G*FQ^G-O6ZEq|`fQ~4f>WrI+g=-XmmXrFvoj>4#>YM_ znXzrj-^~}N{E}B}T^S;iHGzy?mKXW5Phr&$AfIVeYuCwL#W<*E(I;w;k{EhTsNd{?SpRh@ z8=btp<*nJAX~s84AGYJHo|)5=e3-h+--ElBE>YZt_kTe+yn>oF%z82LL8{!l4GXmu zdA|QQ(|aaZfKB!ea4T<(9U%&ca4c+jU~n&Gv4u;xOXE z@du3+Z%6LGWF+2|Gclz^hU$VFKE(9xgA9W(l!HU^`^EnHQBoB&1@!xIMU~YGNHI+*&|DtXuH=!v7GD52c7Y2fUW zxXEewO7gFvFJSOgM-Rd!C$(=dv(a@4;xOOJc8<^$hZRs(vh)|XMS)nBmU?HO_~yzx zp=8!wT`ZL&MdMA#nXB0A+Wl;InS z7`~|yjFnMkWEoO=9hET?bMw!q`0_(A^ovg&gZ)<(|HG2d8_hX+yf}5^A_iCxRfo{j zj0w+4`<$x!V!<RHDX!auwDUf%L8A3bJIe zpdrc$fgv&J+A0}~gEGMoV0PePy{8QHJduZ8xzw59aax4%B81B0|?7Si#@!qdZlI)K`}_c?}j z^{bP?$)ZIlzmz#9_b*D?bi$eTGp_97XH(C5Pk>@kHvVsNFe}e=k~;P4Y@br-keXQ& zdT{vr(C&5#RUXqgb1EPnenlq^7exG35dE|r|GdRDG@D%#x`ea>w}f;CqY-(vhu_sF zoPg_%RMhH9 zIy3X3Ggq1pL#s>o1!yOsx_O*U>cey=e|Gfb+G*qK=5lOgi`o zH~r;MO_;c~+Gp}})Cmw=o1Xfv$De>qTQ+Ekj~^s}U4~r=yH>7`Dahx1Bsx2c6Tg9H zf|ZSDmY05JKi4F}j)N$eU-Ix8Hkc&-3zv6Ne(r&HJ=Aq0ChCc=vPLO?|KGG6~;P8p^FOU#k3*D6Q7jxq*d(7G)neE&8AaTS21cJlw>kk z%fwhnPlj)Eswyk8H*S5S@RMof^i!%tVEA)zH;>@k%gCoduOcO>+i!G$LwP&eHhL?0 z@lkmOmR>^J+4}xk^|{`%7K~CcnpHj|5?-S%iQUF(ww`^5p&aQ4AKqx$4tsLIx^?JP zoP2fm32Rb8wF;(sWh(==e6B}fqdqH_y9rG!S=b+Kjh56*ooDD-x?O_S1w})c8<0@& z##hBlW^KxF_ahv7vm$JKeAQBxSA_) zp6$MxbAPjnsX!KXON|7bcmvtt{&tCroqDB46I9mYX@~ZWhu6ioN8#3$SU`lfdfqmb z7CJIrY{VSa_~PQA7r{JlEI}YIMe2ET@vfFy+7KI@dsSj!TUedz7pm@~avCg|4O(BR z4KwB3TS=fpoJaL%3NK1~OS(D?l8cLWMXHg844fz0uCx7yqTbC+Xe2fjF+ui?acs%% z-(YFGgXo@+2KO$hphKnqOv;ios1KwUmosT+p9~~=)f}syS zSCzy+L=6;qUfVZ#i98CTcpu^S#+QMmW^MtcnB3Z94br}J>e1;~SuS-^8FTh$>>_5T zAw>|kxyLoZaUv|9jgECqVtTu6YXDOpqE{W~8@Dq6#p~zq<#d%^j80ez4P)(Wr(2Np z>?oXK3%D0G5n8>ofzU@?1Zyr(0R6_gZ3%*MU^q*d#w@49Z3vslH~SJwEppBpQn5=Y zPxX_Gx=5{N8L|8>Ly98TtRE9H_ zN1sn7PVgYO$eSY#mas z);a@m!)_6!?GXW$3(OK_>(Kk9a%Tw$rkb4WS5Uj1QY>(11r1a6rHF5)A<60czr8!5 zQx`sYIq=U(H(;-rF{{0XM&8WE_$o^ghgRo3tDnWlal$VrgV!@6qg~p>SkrO~PqX9x z^iJm~WDsi#?f!hSP+|)AC}IzFj!I0CnP=MnLOjnTBwPol3%eB1CbR!AOf2+`sbxLM zk#E(H=444?-jhM|k$PFda>iGNP^&kb7N>uQdm!y5H*B?^<@OhrpM^JT8d4-(9Pbkn zXJ@Qp4eJmuV}=t=q4HV9HVLt}+K(R>ai3^?xN59k!L3Us#sStiRv(z9zQC{JOqNyk zU)(BK%7h{G#uJ956HvYs$QSxp2)J~ZyjRZCHQC6bUnimu+*iUL9w6itPP?}-qOO!m z;Vu6haOmYRTI7D|sZ!8YM!L*ru!&ygG-W$-MO@jI&XjmpD0xv>Pdo*pJI;lHejfz% z;f`#wphgwdCSVRBDSSVIIwHc~nY-7@Vfx+0;C%m3El<=HyYH%q?0IxZjsX;xgHrflKyF^CwPtHaEGsFtYk>AYLY?`qTxZ^@F>T^rjHn1Lb?ODd}aNwxU*vZCj+wIjWkoVM)$IfL35N=pCo3} zm*BeA%kD0%Nr^tkzDPt&)Av5}IRTBTt+StbA+B%K5Y$ex_GXKQK}usZH^$1DcPjQI z43&gEGt%{@3Dr0_ujX1rg>nWqRO%!!E0G;9rO3weoj;H=1(MrCwHyoZ(QgPOc8kM0 zw}FOFZhyFDcfnJfjW^*5*=$Mcz3*?@={ylqdc>Puz!08`OP|Ulx;EHJQvhL?7qKja zguHc+E?{+B8WW7Nv0S>~hJ~;@W-QOmT4FL%+;D~H6|+CjX6xGFC{Dm;1|+;1K4yC# ze(hu>-mV@dfIH(g`G%$q>{m@vP}#@x9iAV)uw8Z_>Q@xQJLr?Y@|DuL*d}%YQ&+JU zjQssj(?TBI^6T-uJt^3NW$glPKx`@0_-2(>P4DuWo(PVp+%l;yoZQ4J+iUc zgZ;v$dau~XNn0#Hgq}tZ?MjSvTH8Rkd8itS`U7hc)J}e4x|64-jB_MMy|7b{R)_JQ z7tGEIrrQw@+edM;Yt7d0&Au}Q%Ms2Di?sPAPfGz@Qsg;?8-y(CfVbx(Klhw2&({o1 za9j21hc|vh?hS*c(deuon?o62^q?tZu@qLe#YPX8uL6~uSfF_YW2-4~QC`h5(_!NW z_YB;jI#!=M47w(2CV#i6wD_deMB%%^%2pySSKJ9sj@?~*DGbB)C#}2MUlQIFj+ zfroA5c5@3ca|ELO!C931rz#{-Yg$@EWUjZCxhVy!=HNlgN_YiyIC0BN8n3+hVR;Gf zmz!u)(eEt|DAcP}cWd8sCOP z$MX!278gG_o$`JnJV{9zsX$Ap_+1y7Tk})x%khEsm*_oVDYh{)$9yjtDCi&R{fiAj z0k-!|d6A=bZa(}}sxWolZ(uoh2MqC>n6(D-G~=if%@&kLyL1E10w`WDVt?-w1`{Iz za`)OQD(KU;5mjEvi*EYlS7_%-Hx|e$vjE9ectbe;*Da}(km%rGoYUl;{TiBUv6Ikf zqkb6Pi1_E_4_XJq;LXKzD}d0x$7^D(5B3Cv6FOM}d^G)fhDz@)(`!6oM_CTHzRX^} zc`A8u!})A`X8Q)7zmQ*tR0PqgNu8yj6Xp9o=n`d~)+ktCQjd_jnkIuikw|(5AH&1g zOkm4h_((-)d&psOoe=SZrtwe`g+evI(-Zg7Z+4{id+4l-wu@zf4hXjGfs^t+H|9m_ zQiOq7oCZPe92h8x%*@MucMkuI#)%Vz3eskVJ5w*=kFlL(+!XrRs##4FLpxBVvHUaX zAXrJ6oMlWxF!P!ew{rE!`VLIQdNCk*m+F3D%^! zf*tNb%6BLU=e%8VoReQ`%`yrb66QrYK2?AutL`02gwpBwQe%te7K^u{osW?s46YQ@ zI*j*ht1#UaENg0lSC8oazno)_0&K+QE&MknbqsvzCXIa;iaDXxiWCk(Muv}nbP`Px zkb(o_!rpAXHNH7sksKo)#<J4zldU-aOs z7AGJ&&JB+Li7RtdacYz=@>IJ2$xWLHn-+Y}Hqi)Rerl)FcVH1)7+gOQb++awaK2%3 z7*?~pc{KZ|IDbNF>fs|v#o3qii-Z;JYe}ie6L{7!fr0M=XiV{n5kWeXTlhuVBn^*; zJ8SC<`#b}Ex9wGiBQ0pi^4$}8RQ2z~ASBypmM>DLe-~5sI7?y{pg>M!*@t{z|&fA}%ZB_l4DK~amaARXm z^(=;D6t90ly)l}?k0mK~{@`4%0EOS3FzQF8%pm*kGr5h*RS#~^%P6;PwLl)JL%H-X zCV#B%sSPXx+Li)>(Vx@xFSdTusN>i=DC#C@CCX4X=d6#n2zB7*)d2Uqrkc8;O@kdw zUtC$1!yCGx%sDAwUo5^ABapk?Hr#;X3=m>*Mk<}!RG5fMc;mV=6|$3T5(7hAu_ z2D_8NII$(yR?ZN)9^Qs!Eh><;nR;sI46kNTM%|skK_g+es3B1mYZ$kAax3tjen}-& z2GkGT*JC-!nje9VK;6%mh{BIGZA^!E*o3%Khgt_Cez6bZ*JJZ6w(TRv!+wprC_={W zgR8w75CD2FQA%bJ9+A1QM~BB?X5Ji*=5gF2R;HeTE3p`7Fm*Oy^VCTE@Mbb=Ih^^- z#apZOxl|3QoJ7>d`i|gA=i22!oE3>{(JG(Tv9_uLk_V;3>wbn~x+37L#E;1c*Z%@znF-mrnE%)GzZ0|UoE-lj-2Hz+%sPXqs@`m} z?-1e<*8?ZS7IcXeccmC$>W5=thT?W=iApD+f?lX~f`WnpOOcTkgMpz|*ge1Sopqo6 zu6_2hS>0^R`RKXvy}8)XyNaL)p-BY)QAGikfC>y2H3nwmgOiDeBqSy#CnYA99vm@& z7U>ZAZB4Sz5J}i&1l4{OK(v&k#0+Vu2vWk##|MGmesF*gGz5}VMkghsAqEML3?B!; zi4vLsyVNsGBh90L+!F39+9A`k1)BjOpI!$JE`NNX?FZb05Mp6b1?(O8M?#=N1^FNN z<71wHy!5LE`|kjwfP#XHfdNRs;<{m=PpD{Uug}gXKwt0Cg$Z-eJiveiFekwnLp?hnJlIV~Bxol=h0?G5L%!MR zA3%ZngQ4-p;16_v<_Hvzc&>NxBl;^18uSYfEV z)NengCs^Ob0fK_?3O2Mo0FT*!w>sco8i@onD*JB6ZwHBd8u5t!7~1ihsr0UnJJB2G&XhmENI`iT z2YLhd8UjLDjKGTdofqquD=A3Wj|46R46kU0nSH#s!DL##q-Qq$lfdZLFAgdqfJpdw z^;XBh13QF^WdG*xH{@5Rv97H?_a2M>o0sr=qWV|t{g1hjl7pb4s<<*JP=rkQA7$l2 z!FvG|tUv=l?2kBon|2hC_>U^RX|eB}raJ=Udw>!o!~LB0CnT&(0nl7uhAj;-5y$|q z;ICQlFZ{>v0zf_WH|64YC!sX1>&s4HPVYa*Ai}GE2LwP!zx*m_a9j`}0O=2)uK<0% zuel1sCHTV~(58+9Haac@c6o0Ox28Fe@ZyZLqofcpeVeg4eAy31z$+(ul_fCZ%PZ5uV9Ha#_2Pn@ak3l>$E zyRt6Glh{aLZkb-T9<KTM5>aD~d@#j&-!2b#y?#g24>*|t&?nwi-*i;tBmT2<-Kv@~)Y zjW>-|@G@AZ?~`1|4I-zC>FbR3d6Ei@wP2X5=N**|c5yOR`98X%EYjZ>WIPa}Srw)bdkW4|&=4BetLd6-` z7#%bGdUu1MduQG5$;KD41jhkJ1F@Zhfj*all(zUCmgx&-IPtsWojNCHQy~BmBk?6$ zE6diK;oA(uMX5jPzSDPC%!}ZrOqCkzD0ntphknq={q)mEzSc=xS7#{GQt7ij4Zh^f z73-#P{}d!ipl@kA{Mx=Hqqs{)U_&3jChhc+P>0zNksBwFyH!ocZ~DmyrB(UxS+t(7 zdtx+Rqbj|P;yMgumoJfFVk%(tC9x*99YxbYr-)?MjTnX-M%_~Q$|-Ta~I;!*xW%CqaiEiSQAFxwAd z+CLngv#s-V1O?Oe4v0xpB17cAz&!L^VO-$?p&ag$_WN?QHRm;FF0s`ay7=)=WV3&5 zpwm82XL?;`P|9C3^s}Y@;LGgdYNFzJ-#l#*Izt81%~JJqXlfUKR=bVOt`VwT*b^;e ze(C_~`O98?**IEjrn~p%HT9Ye*lN$d?b6 z!wA+X`5^i5dZA~beHco96Wa6;U8c3X+k{23&ThRkb7xw}^b3zpVk=ZKvqGD#So#DTs<^{(Pr2xAs;GS0)+t-1{Ih8o zCB0}qDbJJxb~Xpcm=`p&5vC}1nxyibdcK?yO|YCYx8CcO5@0G9yeo_GuxE$ifk!~y z_t>*s`%z=3`_c?i@bdPZ7)aEZjor!;0uSSaQDxN@&9LzIy0C!YY>T7A?KvTlR>b8E zFA-)t@=lD|*PXvty7{k{RNmbDH{f%865g%N5f{bW-&U*|O3op_tSKJb_3rq;t0y#c z_kk8^(6xVF?FYldT{5UWYue+t9Xxx21fOT6OkXk&u?S57xs<-DWy;hRU<_WTzSIlv zv?6g-CEHh9_f$5KNWg2H- ztmT6+nZDxp2yG54-dz#}()^p$BSSLSPUtrZWh5Vz-`iDfbLWTtqdr2Z1)1*~@jYw1 z#{C!?KW$#%3Ooyw37xivZ%a87MEZh?aR^f;(JFi;JyGqWsv_5Q(S^2@cki(^U zltaDr6mpdSgNp>~^{z>+t-v>rWfCz_UEE|m&W?%(#Kq0vGj+4sFBUR7dz$yLXN}<9 zpU-Smbm2oerA$FNH>C>dGiZ<)6!^xJ|^tKkzR#^k)^kh&Rl9hR6!( zdY@V@?~#Yye{Cf|XI-W!04sN+tyWd?AqtlQ=2g>&^*btoy`^(wzrG zu5{+Hb2L9U>nEGKRj3Yg(Whol&vt0xtGw6H=u&{ondvJysH6dZr$hCff`Ds6TcAUZ{Txg|G+NS;F0Q*<`THRTQ?mvd@ZV*EsU# zp9251dLx*IUKT?rXYIwSEL;s%$7wAVwKG>Vs#maU#(AR8?%rAMN_1bka~w63s8H@2gV#uPQH;5W)Nk(ec37 z|G36#>&-^>@_dJ05h8?)d<-ajpIGfBcd@T96NrNyF;!hGdwlhmyKxgawzX8J*pw`A zF^pwOp_dMp&bT2r3<}Bx_p;hg7}L&zllvM%ha=i2U|pHzeK_AQ&AuTLK?4W7>9PES zlauI9Os0?=r*{k~qI-K*goB}eh3TtbY3qb8TpRg^V4ffMcfo66oPPXWS9!~Lsvo9I z1&2gJxeBw?B{RuB#8Fk`L8g&$w$_G+E$0r8XHzWB zQc_p0ptJ;-R$id?Y<)gyH9b0avW-~(n$@Z#FqCTa zTCnT?ywx8rps#9>6K1uj&kU#Hny4z35`G~M$ymfqW3%-<80ElyC&Wfrr%{h)L) zTRz%K*vEdD%nFQNH$G(pk69m`D5lO>ruyV2NmxNuyVM6hAdY?Jj{0D73v+Ee^tPlh zBEQ%+upoaTCF54%)8cCK;=Ah9Ecos!u5}IXFgHsrRF@3=c0=(V5fbR!)QKSADN72O zIvINR0Lf0Zc-5(1X&A4E#~spQ))Ir~d}ZGp_s%`#hUUFz2PmEnUv<~v;sg|#O1(g>-dYvsQpm{yUyE=e$Q`)(Y5{{g zDp>JcVCeXW(f##BeDlIyb2FRk(u)nXIIw5Vo0aXYySlI`-Tlwdt8YdoHuFYmf{kV2 z3{|g%Inx&>{7R6P$7#gCb2(A(+83sGX2ntsfz4xAyw9sCZ?AzIRk^Ng^D@>2UP8*F z1di2(*?#yNUP=+k-}0TySBMStP&5u-JXeB==?X?!ASZXXx0kCVeY00+OFGLqMF?H+ zvh7)g0FJrfJ~3nF@BnE zC5x>9Q+SShxA^>(@vE4kYFnJXUBNjVt}VMe6$cc6pws^(Q)bF|>NURjWwC zcSFH_$WC<9egajI$$QEnnmGYB$GA~e4LVlpP;X`luaUaz>DJbt`P|t(DG+Y`z(FW$ zMNfbrXqCl7^%}|?ny1#JiBz`Hemk|ZcKJ&Bb(oj)kW?kvcqnH$e_z7RY8Y>Bl$1KbZeAp2i_@^}sB@THi&lHT9?e)N`>v%cKk5M38GKd21a6g{ zB4t{6aY{r+g=Ylhgf(G5#ZkI@abNYo>zFHW%INZAJKXaX2i!`0J7UPCvxs7H!+6dt zWPJuO)*GrFgxy7*P8FS6?q#!l!K)?Rm2yVX zd3<8vcMRj>Hthx0>~fQj!>%tz5XOIPB+uA7aY`-rMPY`r30J|xv6#VBvj>LmftF}u z+%I=(G@cZ>pfSbcqLfqCH&pGv-&Rmy`- zHU3)2V9P{*ve=6KEO$R%=h1#}QW4rDwD%^hcsCYpJj$~O@O~Mz%h z2fN{y#Zv`vhc9Z7S`rmB%D-Np3N!kVCfZd^67#V#oPi2hH*8K9Tt(F6h-cJs7%1i? z*5VZQa*pJ8x<4YbmuKMS?dLHKlHd_Q{^KffioX7$x{;8iP4@ckCyG9jqDzBc&`B3{ z&XbM%H}A%i%9FQdk2ws(r&Rk5<%6)i*rYdB8b%Qt-(A_sUoir{6Rn4F3Z(Hc$kn%q z%s|x?bn(1yh}&zq9D%F$a=b5#m`Sy=4nhO3Hgd<~YS?Ebf$jxsh6kgBu=&N}bCOpQ z;ZAvJLKk(``R~md#-w0uU8zcio`X<_5;s|1t9Z}2Y}JpwF#c1g4sMeB*Sk2`QU2}*)pE=UjT2yaN7bYRL@CJX2 z-oKYxGhOq~WtNtv59qJsockg5o{d7>heiFazhChfjkX*J zjz(J`%3B{w4XsGe`aX=_iBTH#3UrdDmPf5MwV8KjH#4Yh>EDt>zq31_!FWe<&_3?H zo6Qo4ZS-$uI=XeDw$(1%v2#%ph?U(RSIFWvPVXA9(Q>utk3et-c=9I?@gd&Spf1xH z@O<#9Az01Y_c0A8O4de(zPQo|fSqqRs#LOLX?wj2h{0oVxdubZk8(cM&D@*I9L{CP zD4M&Msii@-uZ@P*0beIFB9x+?p&-*%4eaX1nCE|T<3=85={Gzod6m;x2?Doq3hN!- zzx9p5{~p;=U3Rioy2Ojz^>ttY>_K-6B?qptcHDXqS$GMpG;0BGCTw&i7oiFynlIlr_<8ZZSYGe~&?U^- zA3%l&&4jp5bQ4Mmy4Q)c&amF^%<67;h$Ss|ga+=pR}_TFTMl_k9WnXD+!v0rDz3F& z1aE=>;ngtl6+jpBd+2~?sJYa>5vLbIMUPolQw0I1w3Y59vyV`~wgHX(mX~97dlBc7 zbO&(<7p6KXFr8CvCxeF*r&XhBE+3IeorjBuB9V?QSKB_Hyu;b%xefTvm4#J zl8fzy^Hrn_+DBRBzVFhm;-Y)GJDO*@%IjfeA8=K@c;rt(r@w0%!Pj~;nOHG5x6OAa zuLk+sCcFHN*1{C!fIB7Jyw1x_>a(|+!Fxf*qWp!nQitPGP&TIhj(bAHP+7d z128?1V>IYc>mY;otdEao`{r0hJhWbVGk&;_GJo2G8f0C))#=`z%?b<#295KG9|(9G zL8|{VPviJMuWQ%LNxvRJF zU&nmq)`?OI?eBR=Obwh6@+u;Przto&zJGakHYy8@e?&w|Ktu#sM4~d#g9D%q*lOnzqlZzApE&L zc%$dW0;D;VVgox!5U%zw4JcY(MoSylf`_uFO z3n%F#M5BePYHEbxL41pMfZ={u!lE=MHxocr2RfpaS@@S=clqDu?#cY*N_oo~g!($456xc;Lu z_&AC+i06lpV;cl_01&)uETO`iAI%RA5fjUw=mBwfAdz?~%)n=bXAGwCV+FvXA5T4u zVAw^7?=(>9US6NNCj%@?Yp6!&kI|1r6qcAkWOzl?($C+=J!vE)D-3@gJ{lJP+>jio z{^{XC;C*jR_a8T0F~avc-t?b`l)!Y2K6gOI-IUNbg;`mjq~Ob1u;QN|p7ib)7#AU+ zO272lso`1U=f@Gi@AR91_Rp{R56|TP2-mU_f{RK{2s|qV;C=)=^U>B9Ul^h=F1fk8 zqXV*ErWgf()>QvIpIuJ|L=VKO{Z^$o0`*1*F%Cb6EIvtn<>5U&r6 zUn^_^sMNps>{In2B^NgF0bh|G4~B-H1Upm7Seo71B(DtH02Q!iKP;{=0qhT)Al=Z* zz9+;mOii5MTz+&{c%b=N`18o;MF7SyyuFz(mWomQ6u~t(BeP&No~||!1Dh9!Z1qjN zFGpq&UOy#3>lxzE7=%$85TxtO{7VQARCFy6j?z#0#&PH?)Ze!N^MDnQ%5M6bSPz5= zCj|csx!wW%-<`&=l|I>YU2EANunwT;)Zah`cr`zfR17VeF+ZF4M2=&@R-cxYpS4ElV1q{dFce+ucRXM#s!`CYq;g$75Eh)s8RGna;K*D=apHG~O&qk~6? zQ+TgiM|b#@-N@v1(Wff3cs1pQf-hn?mnyb-c|*6}@!A5XG^Iz=o2C75lZywn^{6 zcYM1(@_7$Xh?7W}Crm!H<{E~2q#e+@%CX)Tyes$2H?6)oVfPhHJPxdr-Ik{q4c9B| zb3rp{WE!w!03F&@Kw3)K8mY}*!A!5*cfQs>s-nFk;pi^+)Qs4qQ7odpyjn-qpU|(WX4%-vZ5Z`f2)NTN2%sruSlic zrP8T$%i#6x+TkE}knRGW6``rfBIu9`brMXhq+6(G&SF}|wE6pkN_zxSJZ;g91aDSC zFAG0Nn|lu5zBumR8+%xTU7qekm;Z;cbBfi4iJJ7;wr$(CZQHi(vu)e9ZQHhOzS}zU zC6hmyi~nLSJL$e%=~}6Js(MPvxG#p&WSn~Kmnuw^*rB}fYDyQ_AZ~BD6++^p?H$kM z-Zw5K0oau-Lz}u^EyILqM8x^&qbnr^5>YNO9emXze;mS~@o{*R44T*r*RfzvQNk`bWUfb+iIf>!i zA{sPaQ3s=OUTw)05ivF-Ix*ffFUfRBi$nn?qEfWaR>h+i;Vx1AZkRPa{)RQEtG%83*@G~IPff6pZ&gEPEig1~ina4)AUHHWL5np4jd_fy3?{Wddkdew z%|laJcC`=TNxO7PLrnP->);fo?o8skplg+a1`AX-smV`s9F%ImJRww7hw(%^ zm)$zYIAvLgbYKm7^Ixo_QZ_9;t%|QB5lGE^j5P&!C^{CL2yZQA#cV4Hg|pJ8Ftw<0 zH~h>&`~ivYUgqXer4}CD&x)X|lD*bM@HLWn>)4%*sm5Q8)Jf8Tyq1L#4DskpPQpo! z4wDY?WP3w^`pT9G&Sry@3o&iz%a$gdM_}0*lRd{B`BgQ~2LZtp_Bv$=L2>Q+F*_Em zC2lG~{j41aBg~Dwvc@`Qg?Eb|20|^q!9Q+v1c^ud9f&@I(FgS_(z)!yXU-l3ZDhEc z8F7idjO2}I0%@G+Sm;iQYA5?4Q6=QW|MNh`#%6ajxv1NQ4Jg=D1h1_G2tLhvMX_@m)SmTe3=wl4WcbSM=xsb zYA!v(QSBb(*nrei7&B%iJawF2VVpGI;8y43(y(P^|JOU4p~9i9jeO8;K}gdhF~OZX z8aO&JDM7x0bFq#=#gf_Dx;d!s&abBPgJ1IU%Kf@mz0ksxZHP4aKw3!DU%Kj?J;!+3oq0_9L9SDSOhX=G>fW z&PLGn(7HocC)o!mJP-lrC}%k}cEft=G|1XUJi>e9dX z&W{4EyOBnmzoN=iXnUn;&kZOMYoHQn#h3NPcG>5RRMW}(7|WVzdk=$r0)lL`^3rE% z&}xHZ;9MIi!2+vDiSYIu=l*-=6Vg(dQWYK|6N+kK1xw7GRum88vP$11f!D2Wv6nP? z&CHJ~EM=KfY)&>S3npD6b3jYD!Q@xYWnR-@6wGXC5gZUXHVR?Cmayx*`spjr&SSam zZ{13g`*JYk^!oD`{T6lmb7;e^qltbQC8O}6x+jYR4Hj2*#N4L&2~#8g!Cpa2?$6AZ z#8leQ@&j$q#-J)m0{9lqV4#AvLq}9`xxQK@qWfdslKPfiAc^?xuCkPntE{2Q>X&{@ zKd8ekC>)cA82?$&Enzi|(}?BXOY_3KThzv6$4p=kdHSi{B!&X%VWIKbJ|TbV9cjD# zCvH&;<#~T>HJ7ApzZIh`32^1#edV`qVhpIoi&aVV3!H^@|5^<9wt}UBy10Ya5fHE zl@=vMpsStQ%t&8TGbbhxn)~GYondd{+wXpQ-~=3-$WDa)1YPG4%2T(3=-=v@I^V(q zc9kdP)eA?53qVr&3H2`0yr z^*jhCQlSf04u|e-4m_NHGvA#Ed9zG>$V|h$nX%N-1jyIWh2_Ub@6Ow+b)5-|U3@6m zyWIR|j$acx>fBk(moO=UYIainUUkDRnkchwH*#Ed`%E;`rOsN&cI8pqhjo!3^C@@o zV#>=0fhK;8-20{u20ElM$M1sek)%$AkZ)ceH+groaaW6#dGaX$kIUD2O0`;VB)6fE z6?_~WkjMsk2r`b99~@=?vNLv2e9HDi1E>(l)rrN9)~?SeP^**qfxP`FJ}oLC5d}@a zFu$4L)0;=f(aA@C$IQM*T@H#(02}~Abq!lk#_vq>U!#ORmea3G{#}j|p@uWM);)M` zFLg)c+ww>jO&0wa+Z(=u?4$qrs1^U{0wdpN#KNt`UldnHTd*NSWz*Tg`(^dV)k+Kh{4`1cmWbjgp#JqPO0S;E)(kFSe zrRI;dwwyS+01~cyO$4GTgoG5XiZ_FyJc-n-{=ZM~8?!QWQEF6={jGeRK$gyuCQ^4e zlg=b`nVtsgJWWGxtpg^rt9H}v>xAZHls1o;&yhFv{+^79k{)kHY!+Xo50b+q#fCVA z-aP%p0@ z$FWVmdhlVJ6tw*s_@GQQv<~+A)BbaGeMxTWgadAOmXNZ&t&15GuQiw5 zofmdLEUaER(RPARjg!5AvQ1fB8E#sz?4m`f)8Le8actbSO_L5*I8dlpK}|7+J=y{{ z;T6}3cmc@rW;?xgS_b-&yUbUH0Yoz#yGRTH}6J`(> zgoL=ou$}zo$_pAm$sK#&=zQ>ly9$@X=;-hr{TAu*rW!vTpYS)F&bTqU7hJ2jc1YX+ zE?aHhnDxi~uxwLm|EoDBCCiuBERb}>#3x+jNWC~t3OB0?9A&+dII(BvFF)wvk6j(5 zx)ELzs0yINorR#sYxyp8WM{U~CcS=OUKbJ7;kmfyR1kg+S;pYsQwED?2M@J3<8c>I zS0f(so3+6|@*no`M6}?JxvFpn*PB0O(tl-=weWnJuSf0)7z=xb(>tCGMEpw*<}ekML!&0$mX7uJ&w%#c zdD60k#u1<-;bc7S){R9Ma+nh};8p&E^z2%%3YdEl6Yr1)do;?4<3L+48~rLFXX?V~ z;At?*>aQ2rK%)KoK()+0=^hYSM48l7@&irB`wm5iow@M*ciM8$H-W3Ried2p(p@`6 zhNDm!j!-K>Q)&HDX)hzvP~%&@|Hjr}s@(8R?Ql_X75VkF z4`K)pXaT?aA$Bz+-OmDRoCzr<2usI;LOtx%j0cb-EB7NUaD6Fm!}MQXgGpIlE>Vzz z;Km|-*bDA+b3XheCAF0K>%+_wjVuD};Q&FtylU!)`0j4M5E|8P4axj81emTX;eK^% z?qe>e@0T~!y;s2L9XZkIgk1%6{vj_fgWW0-*-bhLL^jv0M-u-XEeh7sq?SqP(<@e& zU7Z9naO0j?_$sKe=xvMZA8YByPx$~?+{%|e?)(9xJ(&-1pO>E0V>LrQ+uN#li@re% zETe$vvG|j(0XcSBJvGdK|EHW@X~hr?{Y@+AViNOVR*!_@RCZl5OTH6a9hTfQ#!|&i z=0;ap)L=ZCIzAIg@l5+*=}Z8WJv`f!Zz$NQ@30G0@3In|mr|Al*RHg}%ygM+0sCtj zN~0M{u)fmUnN_Pz&6dB%>u?L^{pX1oG-t(BqvyIk_7%ntTxY-^u1cwEGF4}8OybtUrLKe>!H|*G<#<* zM|i&b*`m$wJc`rxbHJ$@Yb1(<;DJqF67^zfsRy zV6<0Q!IP3>f(vlXnXe#q6xM;n`ssUmOv=)=*X`@RmI3;6o@;&v8`EkLTm0Xyp%TjA z$?&kp4{0NPYxN-QQXtIcmB!#M48!|gOpFnv>_Cx@KrUb9^sgAU#aogd+>f!a!2@fa zlJh(D!9^OY<->Z72e+riC=H3khEjz5ZI!+k8Ej<6Nx7w-i+EqIGD&kA{}lK`#Rt`E zoXLL(v_hFnHE824XXTxQ(HHzg^>Kmttew4s^A=i#4<_5D5mFJTyYh8Qe2T5sbFwsw z;oddn6YI6kEuU}4HbOFt1e~OPqgEKX$YuQYX!$ehS5rgg7t!l31=Z|p$q|G6mzMVL z&#ZpA<>nJ{_7P53yD`4W-eL8Eb|=+JQ;VD&<#~Cmy|< zsFN9RYp)ylt>>k7+A%-yMs^Z07;xa=T;H5m_(}#;SyiWAlVw5?Utyi&MLV>ZZ4 z3W?})#Wb5sCmj?PT?TFXUNt+h3!p1-DP{nSzi9-3SRMh2o5*Rih0@uRBgA9nFMJoA zZZ3zdCOScq4DmbYkOL(Tf3Nv%jJSZNe0nN~RW9ckN{zZXJX?%RGP9?e zdsGl*yw${)(_5Txp)s^t>m*}@KIN?-wj`i1Jd{Le4vjwIC|~L3e!V!n6_d>u)xm58 znsQ;1R7@kHkaD8#Y_y-t!K9P{Mj?2wKu`7XxSN;Gu32SJxtsvC)F&D!cyrkF~ zGm>!j=)uWFZ@ijMLxMwcXSe6ojB7KpQ|~rs_F3}!(OD0Ma;ZD3sb^u!<>{ort`k{) zl%)8z`FSgDa4@wu>HNo=yPuw4M%77PI_*~Fh@aI|=(`(}PP)5lkroa+ARdhx_viE2OFm2S*X`&7y3o-y z_Zz=}6_$+dy3V9UO_ict-=FHHN}Qth_HpYf<;IdiXY_(Q>9_tSVUYJ!n7 z{}xJ$fs1LTFaW2T_;Cu7hPS?`df>w_@$>VJw`!zx*Wd+ zs)zsyH4Uj)#C04$;V8eQb6o4%wD$WTvtMNsO4E74Z{UABR$^Mo^<$hc?tFS)+y3>XNi_wPjEhvp?LG$1FrvBRdA9C~h$Lh@-)$*9^PT z#w3LtlM_(tl0;)dDb1UZm zq=Yuq0{6K~uwtD78oj6&(~-)PhTxEM@NG4*P^A2(6NSZW$L%pa{OX?C>`hmU5By|W*4aZRiF=hs@Jc@Jb!)Y+6ko0U*$PHJ|;-Bx}76t zcJnlDHK-Nx?;s$RpkhrwGeLt*psJy-I;UurRVUHdN7v`Yb%%XOpY+oa&VE~VX9Biw z3`dEgJD7oXL|uhxF@EZJjC1N2NxBY5VV<$aGt86 zJGhy$t}3Zj4n47YO0M%Ay?Zs`So~3>2U7!k^B;?)mGAgb2ug{s+>wN=(fyZlgA!Fk;iX)A?%D9o}ENn zOMx}JavKDFAwE1XNG0^Uf6mEQr3D1K)X%23UVwcwaL%mc2smPwT|0#H#_0~feZnlC zwF&t8i?$E#Ka)rY88TeJ2}%fT$#j3I9sunluQt4N?o>&<Iqn=qy$?k}QvyvQH@BV+x<}&lDzlLB%c)5| zK+1X38$EQvfJ1ZWe_t7Z7CsSh>Oy6P&UIWfY_{pvpA--!x4t*iBCK ze6;ytz|?LE-KYa~&f~O2#X(j-G}8w;<9Nz;KbkFE5Lj(LRXo=0OYS`K&yKRNd8 zo<@=m0BoFs`oa(pySmeiNh^>$z5VN!lkFgrY$LW2?g}lCL-Bq&Q;HFNUL=Nje@ss* zc+r(%;Sckzc59Fxq+uO#1t5~reADG)FKwv}MkSu^{X6R+y%Dvv$Na6(D^})7 zIDyPkC=qY$mDKy~IgJ8_ITM-L+la|M{G63ispTfV-H4U97vgu&Q3wCP+8JoSipfq$ zUxe#Gf!I{=n%l~S($g5(hXY%(dZzK}+Laid_5xi80nY`A)NY1o zAM$t*I~>45cfGO>DoA#*y=1%PAA zz1-NXtl}r=cOrTM;yh3@&8TLY#eW{4qR|YM@`QF>EZTxD@eWf3=g7}1r+!OjFk9U1vrW`j-s*j z9YXKp4X2#04>FU?e%&lFW#NF6@3UY3j~xnZTjxO^-ZR#%H}6)(0!pHpF&1Nf%b}3Qgp6R+v`|%9#PEOa;EnhfX0ZaFx&}yP^K(*bNfjdHwdu#Ws@3qZ z0Y=PTh5<~pGe2@x)OZ~3w0&bmT$ZR5p)D}vu>Bn+OQW|%huF(B0dPC;-ZKNG2dC}f zoqUqn!Y9O~xpVfiWGX%Z9uF67JwUPeM7`9L>M(9V@(cwX|HbtjsO_7%LU`~AA#gPL~L z$#WYmpxFwl3QDYoky%BO`}>&2B2Mo)JZHIVb5#C|@8=vqclNuDEwPBPkK3KAi-YSN z2e_M*W2S73F1Mbt)VrFK+OIU#@YcCnAM;gl#XAZ5aY*;cXmM;ROX#6C*7=b#SiXsF zDKJ6PCFZXg=fvzHfKW(Z2n-{sY$8c|`BjT-Nd=D7S`G2F@98~y_6LK($^3*~c;|hd z@r(zO99?Io6#Hvq1_0HITt7S&l2F&r4TNXLc=jx~1}#JhMP95H&9oCd`8QZt7*1UH zTS;FC+2t@gSxX8sql^*4WI3%?;k}y*QY!Vy|N2r0eXwWdjK(Jrxx!>#XEpz&?AaR` zC*<*$Jj^fvSo{(b7-Sf5;L?<{fF8S@BG9?PL)CsuWVD^#XC_=kpTuw|3AFDeW_7sc zRwPO9`!%5B z`^3alWmCe=knc29>cn|vR2+*bYUTR#>!e=x{bhnJI~s^T%q-Mqy?nL#a|Y# zLh+Gc&LXR&LvK#7TxV>KGixL)`iAfKBf$wwnB9-BTbuR7yC*o zi+0#Rw%d`&`U?Qo8#}(;cHMF+*><~_)-cOl(l5v`L$Hvgq?tkVOID9`=^iWk1~`e( z)S>2Sc)Z1PJB8MLTlNK}D9l8X{ z>DwgWeXUA$aS)E0J!aea?xZ`2;DC;vMbX~E$o|=pOP*vGi>;U2F)eaB<$ z;knd4a`BP9No34vTt7U)bqB7}M$&|}ox{8U5FGtzrHpN|_qdn(V;>>(B%1B~Q$&gg z5qy){w88q7{ii~4y3lS?e`ZLyGj}xpZI3u4-Q1Qa=(l~Ve3okR6`I-Z`7OjG4LFn}Vv`ulj zE5Fq;^T+BJ8cvP|WL;Vzvm2>Rm&}=VnM8Ic zi#JF5^_R<7-~$so;CA7AyS?&pxxl)u-+HL;m|VQfZ6xd^9}hHe)yDNRCrWDB^jDsQpMddu%rDi$h z=bN<+Pm!{!+-pZH0K$pQfY}ryeH%L5g|-oUGv6L8X_IgUoIIrUrR}?hYy3YO4OLQI zjyX@D)ys+p0e+CSKJtyjTAhc~HzB1aZcW$|Q|Q6D0`kL(72I!IX#jU8w9GzILd&YI zf!umAb2*klY_oh&EYk;6O`UJB^sK&Pc;{Eec!&ss;D411TzFIYZJl;+WMEQf#9K@% z3AIkxX^~-?rdMe6ra=s~UTY5BbP9uD1oPYJkm)or)XWyzO;&HGPwmPai<}$bpU&9g z5Dk=ZG*YGTMyi~Lq}TgWsptLkF-odWQ<4$2EANCZX|kYscpck%R1w(xGyLGwx2|*& zRF>bAJ|G+KJIPU)v*sIQfp%|||E^z+MNq*GS8wE{D_>!2ZxYeYw|fH{U@Uzs*ppuo zwh>)i!I{QTKObQy)w88&&k8!+)+;(jE6!zM`f>)u6L}EHegtrpudGX#x-WY4ZCsXUF77I0w##>#oYplsMQ^4w1CM-d7nh=;+GC2 z{_-@j{8$Kgqncg?j~14!(|y26-h&&CR=*S#q!KSl@e=ZQ5PWu!yKVK1iZpqK$ja11 zeRE_0Z;Z=sjegF-8nWhrfXs$BMU&K7-qzEQzdY_gyUh>nK$eH|jo=D~tyxQsB9q!| z1w71+bq!>72IRBD{Rk{XXF&fi9(?Bitp%2qk>!6(_soRsEG%6AbNYWR_#7;ZO#ipA z`2WL#?+U@Xv%gh`4J-U?4=U8MSS-4NWK7ych{+PHWR6)3p;Rn>pL;>KSQL#;+=a-d z-GYd`80?$uJooW?zSnxE*SzNN`qg9Bf4?{1?A3{X0YfvqxCY6H9g2pI0yGJvMuaG5 zMF>es1PmMr;^_sKpeZq8fH`0jGSET1NZI)htsqKBu#r<1E^2gCXo0dIEt^D97MPNp zj)I&70vKpih;TCitcb~3kgb9T89pT9PwN6@2+dy&wA-6dp{*?=r|oYWsFQH0Kcl8* zW+DFNAgQ^Cn53{#z`_NZJRvCd5|}GU74cz2NSgHlDF+%2!^XL%qGEi!yrKp2b;Oo2 zwMBms7eFFgL9U2&kuW_#ao=qW3*c9v9xa%W{xB>Iz+ZkstV?Vg@)cl$B0_Ky8$qVf z&=13bNf`d^m<{~Q+8X$pgIvisycGZv9_Y6KK}A9O^62c}?1v^&>Q63Y#N3+1ih2?* zvJGUHlmLC;*VF;Mjzj|%R(dc9RFu$Qr6;(87vmPLbpq<=2?rjW>Jp^1ALu{s9AcET zsHu*iS$bTLDC(a&kk`Tk(-7m~B2v`U7^weUNx%e!^|;Y53b0=T3Vjv)_-3m_ew>dkC<_ZIG1MSv6GDd!_O9TD8`JP% za!gMU{0y2E=(vLd66F8$+v^=tjDZ{L{QRl#e*c9Ac708?9}fAO`M%GOhSox{0MTCF z(18j`Nls4%o-#=1`%mi>2=${KW+6bCO^MyI0P{kjy~E^FWBe`vYT%y+F7QAA`m)fm zX7rz@f8i%*gj9&IZ%AMN%0BN?{^1MF!2QA`7zb~iXAg<$mI89u7fUcrO&PGFj{bPFUz~p7V zUq!K@L0uAtvk!%-?SB9I{XoVEF>akaGuf5HT@DOImuci0n-a%iys;{(3BN zv_*;%7CaXW?+Cz2z){2j+5a}6&cX%{v_Iq!b#eYR1x(`wK8OzdVNtQn@NMvubG)8} zF;ho4Y&8Nq>RmxWaXLIaM=#mXe{q^V_57)s+4M0x$i!!A2=xn(i<*{t9Y@&r<6m`N z^OC}catY$FwQUmTq4C}zzxEGis{|qM%Rwv8C|IQgJfP-2U%#Pl zDF8j-l2mbK&kgwIsoeMF%O4xp3e?ON z!cUwonSegk04Uk788h>pQnEKJ!?(zPwq;fAJ}z-W-7hGp%8`}zgxZyz_Y4B8aSlN= zH2+-lSvh<@xEkg>dWLyg9VC-{TrZ;k%HEB;qmh06`roI#klda<1Nz?yp)cY+^ShSpVQ1_W`VNC9#Zz zcFM$HHY=ZPGyQ&1sM?-`zHA$I{fWbY!HSVeeNC48Pu-%-qp2+3>4~_`&5Lrt2rOCj z|HNk8v$F&hFPj6iL3O&mNa$Qj0K8ZG8SXF`&@x5&J=oxQ9+GO*KvT?T%1YX(jMwp4 zdg!OeB~X^Tv93ugU4(r=EKGE%5^n1j##|M_DT#*(%stsH-^>cQlushN?c@R%T{P7$ zR~(TqObXSXJCgd}+Du<{0vo>UPhpgTA9vf*XgEs}Z=+MvsWHe;5a#L&#+sc(X;thr zty#+oi#|Q7L^hs64ZrvCGccU--?q1H)t85V0++vBgoBYkY`dgNbp!@b51G=SQ$uHA zz)(|922@{8@~IU=PsGZ?P=3oE1}WDicKK~J?E=9L01h?;^he_Y!tVz)0G@W3lOi$R z2`^zqg3{JN53ISS4-b!5Ms@#=tvapq`#>PEZ!&fCRO*2bNW zTVg7iH^`Rysa%I=EgN^&Fh57nc}doYBGbnsj?llWAo#jm>vLaS_o|y zInn3k3873Xx{gKK$zrm|1S8Ww>WlQ_EZG(br1RhayjbD zdvcoj^@j5e5kHN3P?g;1Z*me6!R1vMh4$sBXDF}GyQyr4IiO2W|oQD2FKeE~$ z@Wu};!1tgq_q-PiZOdzOIGNk`AK-&IFiEW7fz|E>J~6sOX?7CmhjM0*#M6>P0P$a7 z!OeO4Pr|#=Q4K&xsK2_?W9;{+YelI*N!@xTkRz-81YuRTHt}*b9E+%iT~n3 z&3)(#NUAu9E7Y8jArboo-yRZjkdRt@5-X1lF-O^P8GIq#nAx*+zu30F(!?s6OELE& zpT9nX-5N5UT;_Q`Do#v!OE=bfBglLB>vd(J0NWTP=w7{fGpDrDbIG!dy@S+w>gE>j z`{c%!=er1p2%Wx8or?mDBe9|lA*=R{af^$-<+6_lic!bw>85Yyn4mM3hwppsXU4~b z$y&aFDC|+xS_pmzGL&7Tqn@7#`uG~Uu8tON@a}wQiF|{`ZTI`0NxFTu+km&KgI}2W zWENV?rx^8>YL3|$&mAnDvnQ865q>*|1#V4;Pfv}WA8I#(%)bA!a0dsLOhXhz7fVze zw+!6btZ@Xa3M~ye{<-Wje23x3(#X}B0R)PHM{y>5&yM+=OGmo^ly(K(E36ED$%&G(s-rNcNyx87cP2&soNAlfxILS;-%Lrzlz-Oic!Bn-^-N+%fzb>lzC*b` zd|06ek=PTmd5a?p7qVyy=9R=T@14)_ZE{F{(Q^aN^G@_?FP23+`6hgcDt{g5JohDf ze#7Azejfk)EnW}STIR7SZ?h6&n?<@$>&V`Sy+_M&5F%jPnbB}M%U=~INiVs7+G^ac zWyLm+=&;4|tf<*hO$dABh2=Wev$H54u3U?7ki)3?G6sG(ml7eI>>O2NQ^PB{YRm9v zI3e$>)g;~j=Z?5a{%(U>c2P~I$cBF>6PLYnE%w@F=05sIwrGVl*^}m^W+OMPixF|r zYL@KlkbkK9VtszEMVuTy#XHyPo+s8SZVhELD$8~kZwJvK+fuK~X;AH_HBYPHdNb<#W#&gU7KCSae1=xwDB@ZFY_enV*1khbN%cR? z&~*dpBTm(Db)S#L>8Iz@z~EQZiK9>G$+*jcHmsO~A@AZL)o=3*zWl~yW|R20^1XZ~ zwZ!mZH1WB&fk`a(fcXch?9=%vCRN^42&+DdL?zO&xJGQoNSXY$MFnt6?G29!kq@x zR77>?&~fotb*X&Epa!k05PXxwC$wr)N*eE%ZZX?WMq}EQBZsBLv@I>BP^pWGQi1-( zD-AbYp1HSI3%Sgjk6OivfBzq&V$1AOQnxrDuTL5I21U}NKXaBLvSBp?Ao@aFsFJBu zYMWCwquAgis65)k5T6?{&_LCw;lm$XC%w zAzFjjO@V2zsmv_IJ)2EkdjEW~{kL9tUFGxZB!l8y0Y!nU8O)pVV{0qcV2#dCXa%*C zQCGHn$V#5CyW17My7a!+qRnV;neaI5hVVN{S_fY}!J#t7V~Hn*AGd-~#&zPq4BR6Z z6bstsvIw)(TXFwX-$fVe@e&_3V^ZAP-1Nt`*?6+Bx(5)BQ{Ht11JZUVFcWwGp?Qfj>_`7B}rPAFQ)6G_uov`oOC5Dx1yY*COuCDT1N} z5mgLh;yqc=%M{=rjjyUbHsy%!?FaEstEripBS9{GY-F0Nj>h4p(Uw=l`28dMN%)El zx732ezf`jSLUblJ0Mj61L}wYp{#Sn9`Xoy-;Vk9z_pkkEWGy6ARkxVhWLovgzpuYv z3kq~@-0O8AS(0&P4dU!;q>i4l4{M_S@M@M9?pjOR*puxsq-tn^El^~%&KDmyx{VGk zgLq%-VZHOCP{uQ#nalP8_B1pF+m9;@yShdysVqbCS+&l#EOp#YSM4Nz0lt^8Uyd%_$r>FX9O`Zq8C^^3j}Hb6&GxuIo$r({!#Jm^~3WHfomr?^SiPI-~1rLz+YRPClB$)ejrWeYTYbh+4#5 z&f%(&_`c+?XXKzP&Mb<8)D^rJKf4&N-Y1eN5`QK17GxrjwW383;$4SdM%}y!I%#LK zU*;&6TH2-q6BrY{etWI0_>;OCkjmHc=X0SEkh5I1Wa*#<)rjC<+GY%XqR5J>4&p=A zp$YIIlp1`?_3CA%|CzISlkZj9r{?r^MT`drELrcg03EtTZ4$2b%!YaMe;@X*CL@o)(qE~D)|Jd}=A2W&*O+tLKU;QYcA_1|A z_Qwok0TykQ9zM?Dc=%pST3rN2;O#~r5TdF?2kw8=i; zN^0e=I(NqUSqYfC-dbPv+dOxQ|vli{wzX$O#Nh8fW_mMJojX13EUCY4)^CI49`Jk@i&rI$CN4e zRvxj0qvO^A-_&73sB_vKv+<%rf&O(WLEs^uJA>+Te4)mK^wQ~X8v}EM6+E4*E2w)@ zKAZm4A8?j>$nZRhCXPx=Hr(a3uNE04d(o*Pc^i!D6D*xWF3)BT{|sV;C%4fStDKVy zm;C>txHNvqq;F5%+4;XDwP$(Tt6`WX9^iNzAbE`9HoloShry+)`%o7)r0UZ-VdSob zc&VY}KrnjQCPJO-ILw;NynKZ}ex$$ml)Y$>s#+eM9Q}+>?jb50*C(Md8*IjTqf#;q z=r$<`O*+g8j82jg0g$9u9(o-oXU?5!J|e|^xB@RnRNA@0qJ}Q6+#jW0`IC;bK1^_GpXRE|{r9FtT_Vm;PDv z9s!%1W)Kiywh;GOIvsAAuk#Eno7?EpP;dC@HR)M)pGNi3wMX>N)27ancp0^`31Np0 zE+*IYM=0p{{GLSOxb8NG`Ehf@=@f$&@J5>(m_U_~THq-+ikGIbj+du-w&oCd`ayC( zUoJ31uc!8}zx0>$`^dI=t2GA9enu`>8_%=NI3tkIe zLHUV0BDS>>@6-y%OB`m1LiTxeGqP0d+*WjH(Y_Lsjm#Mr_>Kx6%G zCJN71iCR=sdl+l{Z4XDrs@nH+O4pd(mBB<-)5wR;o?8nkr((u&@teQTf}@j0&#-x3 z_|pYB#3QH&eG94B0NzS_^9Vt#n#al)yilS(!`K=uYr$hpC^+rK*ov}N)gVELY0r$=h0mld zA_=XO8aPG)8~i#mfmrY>d!!j=)_JzgXQL zj2`~vSF5!!dTpdNRkmR}jgxHQNwHjB4KeJMxL)>pfBhohx9>EeI5tncD~Sq)r0BCm zs6XoK&o8kRRk#4YybV7-@4TA2Ej4lhR6Muv9|@s`nhijZYGu9?@aO1-4|4kuZ|tHT-TIW-o|(Oxf|+>#O+vOmXWa$| zsY}gch23e1?uZqDS6Fw`d?KRyvzzlJ7$ zis_3HNj@w;4Vdx6ZuWnCO&wlMw-01fnMoLGm>6Jt7MH?y!mkM;s$Og*=+Q0jl$A?A z#T$T8nP9Utb+fb2ROX^=rJc!<2C3^`xiX3}?5fnTGY|F(C`^0Jm^UWp?7ejq1|&~t zNGp3U(=!dhvncBLAb2;Q<*>!ONW$%Bt^*3)Fr0mO6;e2k9O#eTOonvrj!K3D5 z+qP}nwlhg4b~3Rwv2EM7?YyyV+s@9vw)XC=+WTRQkqy&x7A!nA&$roi-rP z_2xV2@Xrse{(1ToSt?f7I^bceX+2NWiX+2gSQk(TApSaIi(sgFj7xZDy z+4B?7wO2c{y?rIEs*h$np%O(v`;S>DQLoRe8uDchEq5>9=k!RSWItIE0PHLn*&~AZ z{jW0irBv)DgLjv6=u>iHzH~D%$w^2px!Yrf&g)1~LB!SN!{1AK)1_bd_~RM|^=2L_ zyzm|c0T2ayJf@f#Cqcp6^ocFL$|NRr$tQS!!2%i`4#ra*U^G~NWq@yC-$1yPDT77{ z%Jhb#b$=*TnDqhIbl_HxiY-W!nsj8m>ghM&veOndVLDVRYG(hx1W@;Qr+)2a9dw{hX@HLi3mOc5c;&Mkfg4vbH%*g`(dd(oG9xy zaJ82xN2owUBV^OCcPr#r`|9TPeDaB&n9RJJ*x7QBUa0;lIea)*?YV`F0%gneuCF$` zd8YBbr8e;~t$Iwgd)pilr>=P~VvjgX(-B$LpQGd0l+jQXc)D!*V(o~=!>ddhiE4Lz z>!AHUJD2uOCSZA_=|6z0)mY~E@G$D^A|80}&cw*yG3n%KBeJgLr4CPCmxYl)oxDf_ zTC#>6hd19Hd~lOKceKTZH+R{_xy;`=q_|6DLWgFV{x+;k`{V*VE;))!Na8z_xq4%Z zq7&8x&HE8y{uI!(3*-@33P8q|X>J^%@U3MFjg&uJbQc4BUdoqP0&p%6x@`ACF>4EB zeA$tVKfDuin`Warq?mtw@Ar@vg<=4;sR)NXyAP!QbPTKXY19X4{MZ#8{GE|;crZ5- zl=d2u$FrIS9R6e`0lvF_5 zJH^mZbR}jvX4zPvdHky)dlHAy9QP@Rc1$t+KWLw9|D*QF&G~=SP8K3g&i_mI`S02% z7Z(%f|F`zp1g@53jmZH=MU*EcEyd+L2uDu7wMEX}H#-Hy+T@%Xl;j-P^+cXe=g8CLP(1VT3|JN;#onHVnHyDJ_B=5AP4_%g%{1oS}~5k#mWA1gdt0M$9A!MI5cyMvZnvnkS@ZU=W zo11GR$iOH58>>H7@ei6fht#s7^kjwz2uM^QF<+Ge)VSth-1n>eTt9Nl2ry28o?oU~ z>q7K&e(Z*O`(x$s%?^$MW3pf3!Xm3bzcrA+{4vLVvNCgVfgC`DHUZV#e#I;Ie}X<; z|N8ciA#`=)8O8v~nxG=t|VH3V(<{HZ!Yabh5mg%cf^=en+P5OeenaI2Oxv-8zHa! zBL*B`?TSA&qBvFvjjzq_zq-7E>Ka*BL2iweMxRLs(A7I~&??AZFe_GDAj9m=91@e=0a1@0!zk(P3~^EQwv`b<3*yJ~Q{gL~fJPm} z9M)%ZmJN-WDWlSxX(h@X_iWW!IYB$2@j3Z~JQO;|YYFATs3Ge?l;*ng)fIM0FKQv|wF^ z`hzW+yA;8f7lvIo|Oc8i;eP#t-gWXlJ9NYoGz7pILE2pNwqMpf3f(^!GuMeO zT!+=lbc}*5RIxg3KOn}1Y&fxbmXI7wZEwNaFmp-2=+frF_+g}ZJpOG(WO7ixA#^$BRZZcoGmj^1TeS5qRA zIK6Hk&<4RmW3QfI^Mj?ZHp(W-yBs@gtHz@%5#US%doXu+O3O62Akc4_qcs)X%S(%< zzTuhF!}*xXV6AuIeir5p`Q~Ukn7F>s~~P}ex! zz@>G_CD7!|7oXuP8pKqi+0Kr>b=J`6Epa_Xg!^BW@KzfZcOQyQ`tnh2Js46UyE|?? zxLTKYaUN%j%r9-Fq}YIM4lJ(|n?k4~`F9F&xW=p34Ut!V+JDsPg7SXewMmV& zZF@eWyNlyL5}?VKv|AG!zoM3G$oOi$9e~pKga~Q{95pKPys+7n6ce$hxNsfK-|UYZ zG78j2)xEytDOQSk$?#!cD7Z`A;cU532oR)xwmn2=#f}Fmt-~u&^t2r194-P!sq?eb z5=#WYQ-e3t#)m#wwT=V1)r&_I1U>Xy(m1s$Dh7|;-HBKhSc>Tq3JTa_>KsTsgN3}*WLyG zxCY*WFkfFDm3E7D%JbDW3UGA->uAITCaTssrSb&~?iZoL{8a_YLN5?O3pX^i`y<6i zjcTPWO#L*`2?wc=x7vtbcFJsaBLY-C-0ca7p*APtyIjsq-99Y*3Im5D4cw`t4VR9?c|W6YS?xN_p`&rzyyH}zQ+?^gP!d@WxC1TExpN<*uC=2KUV@vF}Jap zP;s%@NvrpThey06dYufq1?*b;rg?^N+?lnHBZzjbG+yn^M}Zf;Dhq8iZn0}#22Lb@ zJpKF3UB&I68|=H^FWWdG2RpMDF3OdCFPr!+#qlx5 zwU7ninX@}8A76tMSce^BeN$HZd?D9UIKgSV`;LaHIRtLgs!lHEvm3ZIPOLPIl~~7K zTkiMZzKg`Eg9XlLNBTHZ1BwSY1t0Gk!;0_J9)gG0&aO2_S)S=7nh(lxP%sTzq{d{o z4G?duJ&!PkdsPavIp$J)5^9N`^`k^dCOcn!h0zS`^8A1_{c<$otQ=kx?|~ZL3ne8o z?|5i(hgYxHY+n3Qq?ClCEJ}rh1cGMcJL3uTFM}W8G`F<%lDFc!B;} z0Oa@KqPKa>@fNJ>F3*m4m9zGZv_->G_yM`^)Hurvg`U&fF2v=hH5XPCmldNl#W9ga z&UQ7o54Id8<(oJflzKIKHI?ojc}poF=Vx4d!|8p3s|6@!Q0=jgdS)f02KJRzdbfXl zPoFUFvBn0&GlGNPY7>=INZ4qi9$eyef1EGlV#)>Yt{;e!pokW{7zP+7en~Fq1}QV< zCEj8O8vQM1S_eGOk?r{}4flDIXse*n=~)(L>+e7Uggkaz@QGf_h#EOs3~vpMXEbnO zh};i9Je(BJl#g9en{iww!+hAFPRSQyR!#rqqGqD3H&w(g5;S@^2L*c?0=TjXpo}|& z$5l>z&CHde0+Uf%l3FqcRkPWxj7fy}M22_cF(GbRF>@~!kIkTU#ZjGFjZsCtj<#ER z`qJ^)I63BW*#@h4=;;VHg+ppzM9pO=&wGCV3G0rxg^cYE!S7!(cJnJ;o$?;c*5&hB zP8U+YFQHXV2m9h+tGk{J$P)cMVyDoY?{mzy?1cQ_Mz^AZbOutPsg=U1zE;*y)8-u% zaw?o(*mkx4>BR=n!!A@q$Wt}A<+xpbhb5Ef+E!_Bi$JIUV&Y73d)w$U*PpUkRVbB_ zO~CDsb12gDOeEUVT$5ZG$jE4NwBxSv&aH6Mwqs#gj|ATS8JiW;T1Q_31e8GZ0Nc6+-Y0&*Nzq7r)@ee-H>_HPV9wS4HZ47rPDbz?^gsc`3P% zP4gF~H%_7UgZB{20O@-6E559X(2GSX|Gs3UKE0pqF(>$BdsmpX%;yA1{_D zMP9sc}rg+mOW1IOIlQ$?(4ikztD;;xSDg) z4KLpT*q>T2Z-xk|U!zw+irLms%>CUw<$AR`+FH21fzRN7z(vE0JI}<2^?WI?OubXc zcK^{0dkeJ0phx93sHqLxs_>9P|DrX}ZO`+@iRBu@i=&TmlWRSl;~woBFMj?#qAurI z_NR&1E}vw^)h+jv8Mz|Hu*;R8BUZ6oA8dRJSG`1eLu`40 z{AjK@g%dA85JsSyzJ&>PA%sEDU_s z((U({uUek|lv>YKG zN+2A~3hb9~13M-Gm4y*6Y=O#(B#(dxw#j3iOzCGJ83Bs>&-@1TQ&DBKGV@BxOuTc< zV&V~52JmNH<(=5O4ukTo<_7fh89E!G@I_E-d1@Zt6l2 zO-GQw{jdu&Q)Yav^~!`53)jxQ#J`!m(sdZ)=#I&4{7!vyHloLY{Y%trJba>NEiN5e zKonh1uiF|+9zXI!tEkXz2%-F?ML|r1rBylvO)D%#M96PKhHNl63=}Ag!?!kG_Ffd- zJ&$AlL<8vd!ibs{Yx2EBgSbl@^z@zVY9e-O0Ycj0O zhFKAEjC*oL3AU^)JD2O(5>SjWHT?Y1eX>c3o zZHkpJ=}mNZK%`hPiWi_Hgc*;WsKZ@d>>P9Rk*)v7FWa3j+L^=NS>-0Dk6NHpISMmy z{D|VTe9g&TF(gh!hk$glRLn=wBfa7>c!z%oYrrni=r<=xl?WgQ$&;{jJ-eXaZS&sj zQ1ZS8j82S-Q2-n%?J*Mr~XSbD{Xduf24=?7kY4Z1|X zq@d908pu^v?~oP@gf%aXhlyZ(-0t^{O7LN##>8n&d<;p}WAVP&#?1B%%h}BBZN&yh zEWu;xok``o(dU-bFp!(QL|yWt zMvu)cKvVaKI>Kh;hNM!A?b46-!#`4{qvpSTklM4pzAW=Pb2qI3`Q(f4ICcLBu}ord zU=cTQ*@m%m7MN1Bq)C$SXVzAz3cN2cWFA?s;o&-vkHRP!7*5Y&0hT5C$-B!s$>Bb< zWfOkVs$+8sm)IZFI5+9}*s^nxUh8CPzo{c~B`Dk)ZXE&q0jQ-bi+@5E>_L2RpZK zhR&)hER#_PH&NY@ic?|V;@5F6B%Mxk%Ja~1K41&TeVtu)IVj+ddt-Ni2c8jLLcRvO zwlG1(MmStT3zm1IZSO9J^(8VtGy~zOniC%~X_0`9UeiMLiOQzIIzRTA3_&%^nJmQWKP-ueSISe!(JzR6UE`fE&FD~3URp`S}zZ<4M7b zt`c$O?%JD{x!uKNcJ~TuMJG?hCsj}lmI zghKi8bGP1R)@zBnd?vOS7eh@T-J+Pv`TYU80MA-;)c{WK*IHj-vunxuSGPgL? zhiEllq~e=F8Il~YdE*Kk*|>J04X!SnoWNeBN!d?1v3!1R-!QV3ESaz)(>{%JCB|+x zlclE~g_%-Al~m`wr~@e0%j3pw{T3nMb22Hk9*|xA;kcuw)^d=lY&$%I-h#8Gk~x(` zc-#W@_fx!g!~633?Ho$qJB?{kPnt5?QQ4$76vWIMMxYC!`0@MAl%JVJEW__*CFH0B zY^U^FolY|p5?~QUQZkL7<*Alb?oQ~O_I%TCNdEHIG?0f4M(J}m%%hl{;j{1Yc!0h17%^4AOHC@eGqIrT5#sK_s8yu7>v_ z_p}Zw!E}V3^g8|M?tw(^8FQ{jalB*2OE2lkT!gf~kgTr1Iz%uGY>JLpBSi&Hvm48lK$1I374;O^csmll+!21^-3lZ#PJJSge=#g*dAdzv|FO)rGhd=jQ2y%Pre z?gvhY#FNdgj*ZmkTIL5hPwi;u%rj4o_JS&Qju&9K%CrO+*Co@vM6Bz`pyT0e0mXn_R9{%Ow?r zHKwD@(%f>X7eLG~@hGws9^Wo_dPb1h5GQBW`Mg?N*76t5RoF`>u z^1a;=aU?fk-YQ+d_5eNc17DRMaa6sEo=O0Lj>O#pc;juk7WQz*62acUmkTOI=UaQs zU>#d=uG1CzdRxtU+>Cn)F-F{dlZzonTFBD*zPK=u&S%loBTmR1)6XKiJsABdta z4n;qY!6}bO#5cGzuVY@ zgNntoPi)_i5FW_@obtBX5qq1a&ILVXgDevqzfqwwH;Mf&fVG4dEe&~_&A?|AWg3+U z?=8pE)+MZoZeBkcu@X3m9(dXv=bQWC;Xz_n?U%Ax0I9hRjAhC}*P86w@`p-GzvvG2 z*5j!{oeJt2){A(>hr7@gZa(koJkFm2tA1x@mZCo2k?psyv*~oADPN4;lOtH=FGzY=@ zkntTk9*_Y@CeQXheI>H6_`Kkf#fouf;jd&9rh4C^ls_z;)R6-r_BI3;_k^&R<7(T~ zwF`A-Yva6cj~7<*naDRvTnQLP$5H1gdGr9EZI^_FYgwC1el4>l*)O2i^CoD6b~qk4 zYA9N&p!PKE^0S}B>Q(5$nBUVZB5lQ4wl$e-QNAfEt(qcUzhh|ZE?J=2psfFlCT&0U zX`1$G0~=h(kX)uYSE0Fg#-}&0kctN&r;w;rvti&olwODCa8#S3x2&)VKVAoZb!fxlJ)^?&Bv57eah;mrYIu3sPh4}LK(cyUS7eF>!lhgSt*-}r;MeLLs9iXC-b6I&# zNZNAaQ>9!M*k!;#S21>Py_}sEv3h_i&2R48P3B4XvCw+^8=13I_v4rPh5nf(m}txy zRm$hfE~Iz0Ljd7>p6QIR8S`d#okRuaQeu{KOqW<-6PVadiuy%8WeWi9LV1XC`N4zY z$U-Ao_I087{)vAiWUBMEoc89>+wt@06mp=;#p)xt2t6va?m&#Q*jOWrvqLP61fZG2 zgvh904kxIfF;Ib2aTkHL-hrgMks~#kA54~`Wm$Pniv0O4fOzOAkclnbLL;ZZKt&fZS}9=eM4yxCE7%3vWp>@)6kRHr?C zhu`YInM5v2Oa%EV!uS_MmCWMwfd2OTol0)Au z)6L;MDJ-gd!7juK!D*ui^`_U%T=o}$eSs9nmSnb)9*NO+ZKH(1N%EdV7NJIVy#C5N z=eenc+N3oZKAJ9X>xx+QJw2Dda{Y{Hn*7e&JeI9(JBw8T11`p~)LmMn&fVKk_CkPr zjK7=kchw98>Dr6GQA@3MeUUM#N!Y<}Z1N*|#=J+S2;lk{ektvLs%C%{*pkMC0m4;U zj`BK;q?ep?{VT_*^%g@8B~4h~?QF+~?QDia_O`y-V?NN35Qt;G!s%fSbmoVwcsl-x zVZ1@N_ z_qOe{ee+X!O<%z=bFRO&z~AU;H5Q(%b`}f}q7Z_P%Vy?EBaUQn%#x zFW{fOW^C9r0ORS~@dEvA_WN70qqp!!%Ea`=yso~SdTe=nb$W1O8sxW~DJU3~%osCQ zC+`Aq)Ya5C5zYoz!1h73UUaohl>9cdpN1V=9FhhERxjtPo0mdKjK=e{0-S;dhhNj! zt7OKD9!4uGD)`zu$W>PM?oXNG)C97{d(Ra?lwWpLGyWK0`ojL-BIah_lBi}3&r#>D z8VC$Rmi4{VHx#daHW)(YK)k4^sFa+vK&L=J9ho{T-|_l@L4w!P#5cqTFGvCXXCg2E zH!oBnLRzQY4?%ZEN@Go;zO^~<(}O4bQ9n|5Gc*76#Qny%M)8X3(_n*N>Uh@6N6%Ay*E9pV=Qi0|{z*7ioCv^znwlaJ6DzfxtEmiNvmzhRk;^gy6ZKlP6u`5)E#iye@>cQ39o;Gb++;Kv#r zBL8#3_zUKG*7TkqrXNAsubH?X!Qh|xqaTX;x#F>X*$=tLFOJs}EAp6`jp@W3+|>ipI4ND><#X>SXWY zeX8D9EOldj11L>ER@HZ#2GHY;~6N-bXIUKc3!dK-P{Z(9P8w(3Eh@tzQ-uC9S{mJK{oa zSR{5|*(ajsOZhjXgA)i=^pEf_Ac;gjBu@XiN5QbKEpwO#5BoDeIzQ(Ti)Y5y9)w%M zF_7PEt?#KXK6;UUyIvfyqk<3@gdn*7bN2>u_Y|Hd44YUzF(|7pO6hblx}~3yC+W+lRpPN8CUNNZo7Y% z`t`qb{ZRC-+}zg!JZk$N6#wz}?9ca4UwvP`xHE1lUI{->#9_fYK;`!^&4f$3`g5)S z>fTfa-EE$_jl7nQxv}-CE_l&%wY2k*43ep6mO$2UZ^KX`xcdCsMk(z;)*h>S7ythe=!nQ%NF!uz}!dY~3OFGNk zpk5^G-3c?wnyO0a(V<_UGS7XOmq)$sCob9K@dY;*{1xC zS#imBH(k3{$(%IN#oqURmWML(@Z=~5QE!Au(*7#{{1)lk;LTw?5ooR6^sdlbxNb{jAw~yrtVBV4Q=k1AIx=Mio|fXiem(VbL)ZCk#6>l*=8X zO$N2Wu`b#j5TOZgV=v=zC@55k9(Zr;peecG?K*0EZ+gfUbC+nuhqKDSl#@#Be(NL1 z@4BZab#=?Xfm{-QHM688)1X2~wUs);uQY#M%Xr&Nv4UxSPWRpv_hBfZKuS<*F=+_vclqFkcj9OSb{Uy|MZ%W6%np4Se zN3ET|fX7x&&jv2lttVBCYQNb#60r>CQIJ8| z`}mL>ZGea#9PPgu~hlMm>MB z|Hyv1xkN~|B1<4W!R>Av?4{N(a3m=rba3Ozwfai^4rR0jLV0y{Ga1iqOb0@v2SlY2 zd)4T!CK*9p8op(Kr!8#(NL(+g=vaHk^s14N_7bME5?tIEA>sNn6uZ^5H}&W=ZL1y! zvANDGg7||)k|)?gVs>3hpM~#2w&8+A4cT-8K(vflu9}8qv~5!Jug64;21y2WR;O#K z;h^pw`(}WU_`8!n?1TacPYxId$R)29Q)=o2AJw<2c`OdbQcM2v8zkzUrl7Wc9N%B! z^-Hyef}kR5-4d$% zd#8hhZXQP34x|=SdqI9bNtsvS!Tj|kzN7@_aVRw);uCf;BR26{pJ%o*W8zeG$dsx- zrwub88n82JO3ax|4;wmU1@FW%>q#tF&l`tCl%HES#ISYnE~8Cs0|JIm270vS>LlgV z-CJ!Cru==Np{M&-2AB?kcwcm=1eqwmm>7)$Nuw=nyZ#v7_)oYs)`y53|Ep4KQ?ZsA zsX@)*I{$ZzQ5Te$`*4;?hqjby`6yJPH9oZbkiY!uz4fe4is}PTqHQ#~wzjyPHgAmy zktZh2*PvpdGON*@Yj$)rk6wd;iE^qen`#9x^df zP{3+DXVSoD72IaoYeHdZre%L{)So7wj$LUrgsC*qeU=x$qsEnh80N-OCot~75~*&}wKt zxCcx?1BywSujMyR3ES#a#FkNtMNb#SfA~(`Z|^cs5o%QXt?y-C6XR$IC+FngO&L}| z8cHpMar>_mWWoa6yqW0?#5^HzK(J8^?Yir~!KoC8jsX(4|eTceojwKa#Fd6phY#C(yAQ|X} zJ3IH}_ZAp8UsN%Zs{5@o|?QF^vh1^!pFEZP^9KYTbZXDd~D|Xup%lp z*?Un=&+2&ab4_Zt6gHT_zKY$6S0ommcw29R;VQdjWJ)B9;4@ch8g%?Nx&9TF@?=@ zaaal3fIsI{yT_HOQNk$boG^1-WA(r6aW9ESl@zcN#~`VjpKKJoVeUz3!)-~^f1BEN ztM2C<2rP#??jwMgvaQolit)JqTJ+vkeogV?+hucE_^FPUf?DT;V&3u>av~4<8w`MN zUL8R-Otr}ne}JnVu_Z6M(Td+Vq<0GytKWrOpDi=vj0UUthA|F^my|AYWdF6g%gKK< z#J~rgkzh*8J{4K!0}9?(oo-murL44#sqWaU6P(+S#hhH%L_^&;+7a_+IRm=R*=<3& zjv$n~eD2{r^cmLaaivr|YW>O#{m11l>!5OF?16eMF9sW}Txuf26Zj9lX+AUBS+I-w z{pM9`(IdhZiPbbg#PbQ=By%U+kX06_?Zg@RK@CLnHLMK1Wbausngp+Crx+A=yNw)} zRs|XHYesj~-ksX(y(c&bqjvavbFmZX1zX}0L#L?06e?-^#4n#!@&mpno7-dk+7l+V z6#(l$(_L;Sw+-~l)Xw1X0i(6II`NAvqikO}dA~jT^fZ)&{{-RtceH zUKsQ>ZX0S98cJ>+T`;<1H{PlfdhjB5YmF~e~sI3fNV@)`ZO@nlx zXZ|XLPEhEU2j&x_G1+{_J4G{$Z6QEk)Oh0Bs|ke6?X+W$Bsug{6N7_N6N|F-#cyB1 zF#}kd-!9foVrq!gT;(w2=LQeviMJ*dE*`w0^E3NS!)o8?jZr*nv%kA~l1b!;-v}x- z@K;tX$wAOJYqW*3?9*jyZo`~#G7Z+{Mf(x6*@r5hr#;TyzOUMG=fPr>>)m-wYHI;U z=p&3XP?KmQP5eP$=wmV&2jTD8=0t5|4B?yztF!tnlF}e^e#!z}U6^f`Q^Q^XW4yK9 zIZkcx*~HwO$Lpm&k70zzMtpipjZ*Gns^Cfrg8*>yZA{0pEae6x%x%e92M(2|k%hXC z`Wn$u^LmFdT>qF=ORRb4yv1`SGA;wp*!gad_pM1NBykH@LiPznWWwDbajqONr4tgh z;WJ;4(^bf91mso@ZC=Sj;eF;!utfCf&?J)ea-n5eh`KPVD?-S=qH>jW4O&>&_AyLC z*Svwiy_8(*XBe;}q{`43tXSs!i+zTxyu2-KG_LsQfkoFKq!AG)%q#E-fO!$+K%|Cb zFK<(4ya$lV_Sk1I>aRJ=y(Wz?HZYM?$DY)}0K6fIx-;J2#!)=PG~Xh#Ov5?86!K~- z4k|;Ld4=?)bsOBxvQp!4SzrtZ8{9!;ap71=#KN`&eNAou!eD+2@GAfj7xI=lD9N2W zSxk@8Q^H9`3B4SVz3PQ91PtG;O-x+wERUl{a`1PdNhcS1dqtM3r}k-CJ%rmr&#)Da zd`t9a(OarA5vx;2ko9nuEx)QtAerzPO!C`k*OK6z8xo6nzU?Fh`1!p~DhaZ^_wTxyDk!a>Yw+@1$L~t| z4!KW$iZ3+lTl|2f<*cMxM;rgQn>@@53iOb|rc6vtnIB(W2(=02rD}%ylz4F5SaTAa zX|O3gv8zn&x%GSfjX=-95E*GqSJ82{w2yc2<|AX4K`T#X@c^e+mzLV4sUugz z5Je*pf#=z#&SP?n%@h-`Sn=-NcMcq_C~c`yny<4CH~bL(wWAl%Q-uVuHEUq4|7O z`)@XeaokVK_P0!3w~pB(cnufCOkEBF%2(Cc44e9TjJ1}`;ol;GMse52kS|btq2GDG z5Tz_DidvUv2-l8aWQ%y^E_}M^p?Syl`Gz^>7X93YJDM#d=UTdx&TgZ!ubw`qFXYX? zU9{~FT7fS6E+9D_+cDq$FW|LZ<${%Ksm?*w#0bSG z9NCzwXK+E$My2-Nve1bopp_>#Js>2o)DeW!+U%)^wyHmM8*V_CE{-`a0_c_CILGjg z0SmLA?JOzQcq8B39~_KwgU6JA+}EfST^g|pe$vrk9+Pq3qI?t#jE?PplI(2weeE`> z?*5nn=&N1u?Q?Xq1c2+`oLdNWIx-O&JKVE_aGcb-8rG7rxIu=9Y+f|49V%f z1s2y%$jLw=#=-Y|u*KHrx9SW4^mS#CWuKhV|H$+vcs1-5ZC2~KJqZkknq%a>_0i}# z*U%*aUnO1qJr};WiG3^!aY>oQg|<_WYfiS za!(HRGr_=_()MJRpmJGNK{)TVU1+k4w!$dc=X{-3t-Q33yZir!Z1!8+nj}cw{gNsb zQWgt0Q^%{(tj^n{_Mv9y_vBYtBrY3qB4J~62x%_84FM{wSZW_o187QY8MW7N!{X15 zm~GP$FI!+Y4lx;2J_oD|pp6Z#G#`ODiHXH7sU~dr6PB? zf794aH&+_GJsZsHlLO|AW=ljoR_i7RU*Ute#IAfVFy9%@n`{y5;2s(i(I1PR*O^0V zcDKR8l-X_c^nEYHbs264*Lh_M8DyL3STmphJf1L(Vv@xQ^$q%b)SyH{@o7}z>!J%H zGoQkcZg0JJKMmbV7{&LWE-p=Ulgd-Hi`|sVrqOX1i0$++Am_?MO>z!1+U3dVWvT`uhkR$^KOD^l5ey(ZjOOJGyEg9T^)Dsg{k1xk|^S zL1bs&KG_++8-Z2T&~SdYo41%8bm^R?_P)g3;(kX6jGhJ}YhgFOTD32SqM0hHyx!5f z1@5vED4t@R=sf#UysCLsh1*GM z+10}P`2Nrb}J z>V`rzS`{KqLJ{m)|AmI%a5?r*Y&m6XakFS!FCr0NA2UZ%|D%Mw1hfby5dWuZe8;EQ{$qh;(6a+h(WyW(5ySXtILhJJ?cLY;bGZUQllc zjzg6&d(oT0)dZSd^T`ctYNaa<_czOr>U$6TRv-rD{py%L{)lS9j-^2!A$OZS3Z8HG zXB#1f3C6fn1tP#NK}b8o3JcKZ1pUc3={|Xd&~s=Le_K6BFUi>UB@Ko;31KPv3h=R( z$f^a>{gu1M(34`_q>H|OAw&pki?Oo`a1YX0Co8 zMTfo3*CCD33IQ+GJ=cGASxV(`J z<}#^P(ye`!6yctYA17cMOdYY9LVS-Gn5r;MHJg|_ZjAE=7S6abj}+*Hs!dNT{>)y^ zdLTySP`67T4~Gg8X<79SZC?zb;aD0d1MJ8jSe)-RM1wS!272WTFzgmzf^N1XqljGvLUg*(70aI0D ziyCWR8U~?1x+-cr7tr_Igo|D(g4|(NsN~32L{TE~v4l*O5pzRSY8BQ|zs7WbfVt>+ zH0O&U@fyv`++^p&gOwF_k%)an=_TCdK-_WddRM4xvFg_9i~~W9K?f^OB4DG_+JQ=y zFTfO(6+rZxcx`ilcRN2dO!1qv&lyb7+MNsj)4*ruhdH!l-6@&+=8*hGW3fx1cB@qR zARQ>UgpA1awtd*wq!2xKAB7CmmF1G#UiX!y%R|UDH7IRtDE}}nKU^dAyqgFfMQZjL zq43laMPka4)yePF2L2X~1s?}AkRPU5QxK`JTZ5CwxncThWv|)a!rPc2^FCABj60%X zz(&s&6;QYA7-$$TKE0kRJjgLY;2V)`URH5y{;6bByPbGJ?(o5@o5}*NdR0u*Aickiw+%AiZDMxjFDup6S)QP75n&`!Q5ME3AeCu-Zi}kP=*ZA@yam zS#M)8CVTMyTW-7h&B%Aorlf(6d&azT)$n?7OARL550PO(YN^J5OU%Pi*c@T5ui3$b zb9!b#botwytoZ~Wvyp?P-(6)TNp)|EXOAU_qTW@t4^O_n86q;kS2Ev7F7T;oP=>aJ zOrVh}l+ecfzySiNatNY;1!yZfV1YbdiG7a@ctwF;?MoJ&Ff_Z@;!S2Be@rI)E#Jqj zl3FeNA>P7>C4i-7>4G${KmQO?CX}kmirfJcLXw6kdx#dAbQu6WgIZcKc0VcGz6bMi zc%bw0ic^_bZC(d#3#(1-Sj-NH$w`XT$|)s$y2OVa?F(I508+lyjAwTU$t)FER2W4uRgcM+Qh4Yn*Bd>p&3I>FVK90*9?E6_N4hLt;+F{#mx z@QTPpW6FxTxX1{w?_i7Fpt+qFdBkEnCT}Bo_uVk$^Y140TkbZI*wwrwpxnw?6b?Od zNhryTH=}7FTsvB1FcMO-H77q$#q%H&7ED@z&pu}o9#;Lisa^d{*tB~<3^7=v4$xu+ zyYt}-zp{l0Peyd&Qh^XVH8&OFw&Mm2$gS7=A~VJkN40e^^v|5fh~5Qj&)c}|4~r2UihY`X1U^QKABJR_%IkD zcVol=f8jMHCOWNt1EptyGU4xo)(C#uCv-~i&c*e%wm(I%B-yHmy|7PXKQ~F3AGH zzC)BQ2hHO~kd7?=>j;+b^{0H2xa>Lsr~?8_&kbQ%5LD!Laf?hgfBebkzHRLxhpZE8 z?`6Jj0sz4G&jG|KO9i7vQj0m7q5Or7e%Zn_7Urc8jLycddH*{K7vbTzWScLWr9k^V z8^rj)zM;1QiSjuIF<|en=fAoP2jBGAX=8a#{MeSdI`B73Fy^OUl`o!BWplEFV!Nj(al%e2Tw28*hE6KyiyN1!kIcv_$dA;3xFF$U$@ zmo1t<*KwFD!^++$m@tihEOUf}rYf$w)06(eT>k3&Uyqt3B3 zyy)dy{wU-Db!FHniRYA*Ko{S3l>UJ`LM@tY zZhz`pzQK`OFw!;Ifku!DVmE5WQsQbIX9?`TIDxPtv@sNR_ujujLwhQLOyIXc<~EsD z&J^}Lokq~jbRVP?PU-Bi__97?94SkBYk+^imt3*Oi)9sD`a ziBhhHl2r-=+_??g(--r)YG|bIWtsKC=KWN+{uIrCh2P5K?A-g2lX3B%kN>JIS)v-> zt>Ag@+I%QvD5@Ysf2r|`p)pN=`v^Q?t|_!RcDx}3Z?}_#Nk9lJ*7}xIE^A8q{ixfK zIz=75{F-|rqI3+|+F?g%7%IwnK}Yvc=I5k8{3H2&(rctz)zlJygxt|&#nOhu%j%d5 zRc5BJl<$Z)qo+_>yzdYs#{-22Fq?oT(sCuGwB4^_z9=-lA?V%($=fYGA)kcgo#CyZ zt?l%Rd={W#HO$Y#jhpMq(<9t|JZ)*{>Wla}5--2Kd4eYLvi3P|k3p*>Ka7@WNfZ^N zg7*8!>?{74S$F@vs0R|p=_$Q8tIXg>Zr}sLGv_?Cz^haT3MAw8ir%@6Xq@VZoWe|`Z4(k<0!fKR2h5QS6&oi6ocsCQPR3dqoW7vWi}$8AdZ5%(a*8 zw9MS-&UFBxr&*z8QuCbDQcXdigydu{5({DaG&de-g?$n@SA5{{Uegrh9i`%Kg<2T}p;Pl6y-w;ENUv`Jt0%5GpqJ5xK4c`$UJp?7kZBba+VeZ z;{#u5BxZAw!k*=(c_G1fIK}n$i{@LzN}dP7k88!VPmW};4pzAYUC8~UJ(&)KKO*kX za!CCi=B!&++c0;w;c!lkO#(A>+FQi9;$!=SUl)y<FeV)(!8F^8q58!R2p2sna>= znxsT7Fa5m$f!d43aGc}M+1+*`QoC4DCJypCLk@5OGI}~prfHtPCa=!T(i;@B>OHY& ziUe;kZI$l8qA+#db3AjxZvH5@9T*uan?5~pFs~yoH3t~;C#nsv7#{_M8MH`Z&R>bs zjnq5vkr&@8AwXTpf}No1f(LGLO;g3rW+Yn9vqczUy|EOZJLb;EnaON0@&&om=qw^T zn0V8RBX#JuBsm1>JFvndmVPUVIgWZ1GP07l_)(Zwl$&9o|< zgcSOZZB0q>mCR^lCuKbC9Xdudkb5%~ey|eqN>L!?YG3Pu&(}u87HMXfKB}Yf3T2t@ z??r|gwWm#XpVfTxH`r4ofN2C71`zr0VNf~%tEJgr~UZ*8T^ zMh#UKnJ|>(AW-q6BNE<1K|Thm%PY=;0*LtEYh#Wp7j_b$%E8_18{0Ss*>DZe(PYBCP|aZWyp+DPPAZ%rPt}_Eu26YA#EFgqA>_wX)Gg10~DZ#K2FUnwyo3$ZJEb~8ai-}_-+H83$d!; zts@;>zdxes&85&OcCi(_T#iVyUKP6>JqxdQXna@3Tg6U|@K%E0QC>JYueoZ!ONf7x zvI$Zd5?d$9beTGB5C3p5EbapNlxyw^b~K3hK|Zi0 z_n~ud<}Cekk=`HqV~!4FOsEK#0ka6^qnO6%SE5OOGG;gNr*K6@QeTs?vT_`D95D;h z$;Ukz{#m=ECl-RFCtZu2xszZZC;5hvqbxv1U-T>}2y%S;nt55hqMJK4)J&O%xF^e~ z8IRHx#VOv%b~b^*s_{{Fgv`{C-z_kulbcDvzl%$jqNnDTRsu{cqjVd2PV24gFW}>X(=@cRgCfW3#f|ZAU zRZwS;#2d;ELpxb$>Ye3DiF9hDuQ^Xoe-zz4W~Gx=!K#=3B8hJE5H|5)O!~kNVZ;o-%leGs`3@B=QscJ z?*nj{9MaR16k~b1Nof&fml$~wpb}3PLurUYZ;wE0Y&j1eO_$ynf1282s##p#0D7A5~Yzg1t`-em6IL>;@zavSt#5~N3sfCq>egZ;@0>%i$4N^E$=yMKR~ zcqxt0VZ&P(cWl?JIDjtx(I+dHnqI&_Bn<`Lmyz=YO|uiMneCADljp=4qIM*VOMUZB zJK%@Z!{d&^iV5WOhXfWwpd%gMX8|W)fI`GOZ{9qPuVhZ_iB8R!gZ&RwX0h?)wm{#} z>g9fxMKV|4204vton6Qk#AmW+)(6Oa;1Sh2O<6<9oI$NRjCkI5tx)CY)~M^E`emH( z?TZJcWp*&qy4@-flS4d3Uz{UmiRslV|Y0FT`nNmOIi5$M+bTvO@4b+ zAi%Zp>}3j~cu+QN58n@VG+AUOSBUuV+jjg{hSakyE&kaD+_yI&lLF?sB+5md+ecj%jLrk<*!lUynG%?Z#pq^NK@l@7p{D&0+j-V~wK}m)2^3t8 zj7g?+K2HR#XUa|cDwHN}{1n;uu@z%JaEPgcYcXqa9*J{l`PUg;dy}A%q%(ef{>2_*lL^>mk~K_Tm}^UDt?bCUf>$9x9x$(^#B=@A$-s>O zC1A)K;om>B<7t$xh2vs;qLRW6Rg!gnY<3!FRXYU|js%m}6K*l5z|kcme^4<`4Rqbc z{{^QbW_uCoL$e0RV7aww2aX3{dIb7c!Lv0Q8dvxN1kLG`d^tFz1PrO!MfCGkhNSZo z_o!nb9OJL1r*Un4p)&l}C-2)hWo;{8wRaP5f{lSAo<-lURaQ^3MArO(*?bRIc>Y`u z1$L?V$vTms{1AN(No$7`;;A~|HVbq5xcMO&AjX;^c?y3CGjrh3HFwO;2^_MDDypos zYbdLa<8oWAo58KtxursgSXqjIBmZ&%9SY|%kCU%$_4AXIArpU;$hS?u3)Lisq~ z(;8}U%yJVtaEV9YR_|$zF8K}GmWxKM=1(Yuay55|quBc)k~GjOq3(B_vHmxGibDxCs)96lAXOgp@d{>gu1W9BHo<@zlM67oc+yAHyn98 zkHZwwsz9C;>R95hC;N-^CcBmZYc{nn&{VZLF>rgY1{|ql#uFw+I$RWcH@7;mD3*;L zHIjlrp3XF3J;w?7QM=GBB+`y0w@)clDBv&YZd7}YuGc*b;~l0YurE!} z>u5kFWp2L{vv#)2K#Q>14wSLGqNt*?7iN<2k=yXGW+!$LMvxuWK?SP&1N)pT*pM}s zGb0}|m|i9KY$F)r*m0(9e76;255lbb3U8u1*D)?WwfX6hP|_u_6pSPqs>WkXXXl0K zlaI>=x4@iXEIfUb#i&Hq3)lQCLwF<2CDgU=r}N3#$1fQbVnWVI&16&MdBVLS03{Qd6 zjj%+u;5Z84%=XcIlr|Bp(nF@i=%#p*>reNuGeLjWy`6MSH;b74SIftXN71J&lk4=HQQAZ85-g?Cia)Z*%&l+ z7hT|kcMkAbj9|mShTn|O#fV=3lQ_0}K#3;p;q6*iyyYc7B1KY)44m)W+Z zkofMryI9{(KS&2$9)au_&)MwS9e({oCG{0ELVpDBW8lT8ZyPRvB3Q^g^q8t0RN386 z!ScA&(EU~rNUSiAkpOOX5C5b98I*7?1loNLwz0A|0)T5Op}4hxU@Uu0ZC6Hz5Za{D zs#i?*YpFe z&J-MWfBk5Fl;#mWdB(q5oI@C1m=x3_aqi9i7&h5pAKZbOde^|5sr*(&{InCcY=>Et?6soM8QU5z@Jb&!CMhOQ;gzvg7WJ$_Dji zl66HYn4xiQ0DUO4Reh-jf6uTlX(zL<3!m#6ner@v=7ky>X4SJ}v7z-bT4_zMYf}^% zWRF`#s6smeO)7tL6w&%R0yT=`yzn1iuvY93cs*!elC&qYTjS}2HLzaMxyK&$-QDkqJ_D~5E|)=k`8=F>-kC& z2BdD`u|Op``D!xV^Kk#Sb`|f}6`%C8<)^zZ`|w7pZTgB%5PuPEE&I)!mpkJR$Rdmq z27}JIp-Gc32Rkt74BOgg@{6Y9a+O8}_fk9WorcN4SXBMK{Ha?S?qKQIIc-@Kt(8|q z@bJ`QbWYoDWCHoZ?LLptiVrNQ=w&ul^K3aDf7IR{tStDMKS;7SV{c$halq=D7+8~x z@MpE)OqXLcd(et}`)OeB=rzfczke zSrP6jWb{a9Md+lv3&XwcYT!{zKOTGmq(dC+n#^aE_sUZ4PEabXHrtxDOEl_47V4Ll zhLB=(>E)VIuxto^_>Qi%Ph{VC<1TuKDQHJx(S!ctm=I(WhqfJ*E{|6iFXPo>ewZnN zf~at3T_AU9-U?PBRjXCw7LKSnj;SY36ZnN(i?Dhrp`0Vg(b9r+^Gw6zuu}b)&uJuML*8xM;CyrUs*8zenQniEtCvEFz!*r-~Ys)FT|VWfb-F(L^-{ zf6E+7uzYmgh8J#d1XAMzc1{Fm-;7q>b^M-4BK6yuT`CStb$2cf-bundw1u`##B$;J zlqo$R(&9CU0E`VcWX!(HK!Y)XvvYECYxzevvHFL=_6>|r4h&CD!RVWqp1k7=a*ONwrx!$pKnlbn5*V35 zI}7C_v^2T7H8U`ScXzz!)d5%uzh=NE-E6wnIHAQ;0ndpw$3o5RXC zFt-8(Zv7esX3pY(G@hCmI=Z-+urxdTE8}B9&MyFO*YuwPoDd+-FM^%}xf34%@DRq{ z)5~Bak_S+prp^8-tXj(m)P}_k@MjNf31OUDIhP$=UjaFTaCd@}Pe=u&SOd2CMN0ja z_Q$((vjL!qruj|()cS-MMr-w>!p6ehTwlZ9=+s)v1eBqz4gdg!)DVlu4#(3sw|WT6 zFK9{H&gv(bbh(pQvVR%$EanM3m z;Ks(zryYabk9!-U!3h|#GjTKfsA^Jeb**j9^#fLd)#>?Q(uYNZ41 z@*(i#!07k`#1}EoZ9eWs{}O?qq4`IIFhb~qur$?+zS(@oz_5Hn_p^cXr`uqqh4DzMpW(62G4DXevJWl(N25mhHYZ5Wq#HeRN>_O3yO*g zxPcxw2^t*j0eCcaROdm?UQS_v(=lwW1?;H&+n)Xcmb%75_&Fyh0r!!7fuGY4f$AfD z$Fu{=81^E<`%8Y|4-Et9Cw|4O0mv-$&Sy=>^&*n{OTMssJ`%jb8ybKyP_6+?!~7Q5 z_bQ^-;shg4>6`eE3C{bL1j>_(!mt9LzL_)%P6_$k=fexdejGGxel_q9-Eu6F)%{`+?6 z6WZ8aM#rB3oa|lKy*2=9|M4ew??*$+5BhKZ_Fh8pP5imzHo;i_H`kfi-^N!m!x!wH zV}p}_jm5BNC+z4ay^Eez4IN$GoO3UFNOsMBWp}2ByMVo@6DRCnMg6}EKHT0iuDvzA z<2}6Szr(&!t3T|Yva3JW>&BmXXbnwYvfp+=Yr7X#zpipuzG>Otv}#^fW@UcsenlK# zH|JUG;AY$ib35llU?3YAG5!Qcremb`9TXzFh$_1Ww|6 zy&F%d6l2RbdQf(QS6}pRs)lKPtlzY@al0BljJ*D_eipx{EEwF}Jt>e+r}w^H*uO!) z-bla!wgN`M$DrJY@PetZf;w(41HrX0Ub}B*lrJm`<`_I_xcuDw`F&)IOQxXK96J!? zalV3Dn}}sSXqto`FJJ3BAlMrTfcaV8^rynNs}V)Mf3S2SR=SO}*~ zHzZ+8T7Pm1Mf5viQz{HVy-tPZ6*{cCgvIp6`HWiH9ttudklX%Vwb`UD?_K!4>7+P2 zPuqxi-e`{)kxd=jhpk{;UQKW;+LoL74U7+g>EZKa6n1d>|K`^cbE?54#4;e2F=nm3 zhnD3aWD;c3a8eW3<3R1Kf2fi%Mzub|a!aEYFy&8SaDzlaZ%j=7*uL*7m+^9+HR@{UF|r6MYqcvz84 z-{6FDXe?`bXT%Bq;F0}Sr~g}m&uw1N?JG$D0@CgI5(ca)^i72}bk2U~gooQnU=PZt z#dKNL`7L81kL6vkaK+Da&kF;0+t??L_3eLK%UkIVYZEDOwUZbbk^m`vWtS8zH zx5e$6-d60^J#e=WyzZ?(zqpz<3uc~94Vx2N3(m{=s8L!eazf!J8Hyhb>;%n?pvtSIB_mbU% z?gAGrv6acW`h1(chhd{xyAYr+bfb%m{4k4`;ADeBZLw93=W0l)!O07IC5t|#Fz8@M zo;RmoM4O*GJri+EMef3VY*0m~FtfW1U1^p)z1KNyYzgFtiM*ke9PJ}=AuY};bFBGE zRGusrku(m+n9s`~p7fz8B935N#3B$fKG@MhG7YMvKh`ZynhMJJohy>mapzr4dzgD; zzHro)J7xg20@Ju>AE;4L;5AucFFDx!V`~)xD09UMF9!yGSRl%zqp#cs)2u~{WT&_P zvvE|B+V&79*|g7#m$y+NJXg@N0o)315rU^uUbI(4P(wLBlB2fuHO=A@@Rnk{D<6m8 zOper9qf#0-3V3HsYFID7FP87;BThzMslbs&cB-XmQa%H~BV&fD3f7?M&i~8Y{At00 zH_F=Tv!IdXSi51f2}*X%;G`ywX{rsN0ySuA>H*Ad`oJRbp|Td^`ZwM?%6U3k1QY4c z#2?V;@`oVDJg&8fjndr)f(jSO<}Jr%mMYBBfqp7t)%ptnHKHBis7vEQ`WSs~;|7W? zG2O^cM6|S@RuxmZ_m-(JDkEc%_Z^ZA>7!$F$-!2x)EenY*28D zB9j%T9<7LM<`c~9Ij+0vN$hE*4u@NbW_F#WTBg>TE|hKx^QEv&dFvT2H0q`ZMus=a zE*L~#<$dk(p(pMVP#+>X96Je#FxR+y9kROzWjKoP6CCpiOleffnB&Ie9#a43QP^i} zNh4WOcUzVrC_kza0Z&=v14D5XPtZX=!!kL73&SJuU(j>{#<2{>vc|g1^#Uhp*NnL* zI17Ym9Pu=5ePMLs6Is|fy9k?^yy=*t5^FR5Ha*9!e;YI#2LM7nlTpj;;?vDYTx#zu zcunF&mNj+o%s1T&1ABeMON`xs-a29EmABrM0n=8`k@hK3_A)FZ2kY`fr90F6O$Rr@ zHQ({t{j4;@$?9tpxs`v3LRQD;b$Bnqo9fF}qPr#N1&>$-yU;LDK_WCz4I~=P@M8nf zDe3}QN`$2}U}G@Fo7p99E?NDogaHZjKRgyHZJ}@G<~iHtq$Ot93YXurLIFbv04tH$ z?^CKsvM?KVC&TDOk_^*ZSuYv6-yj2BSImk{6|paKPHm#wIdtI7?4 zCNb-^yFk$lJD{}e*3;Cv>YGG#L()u39fGt9`tX}Nni##-^w)~6Y#3!zm>?(wi6jyZ ziH}k=Lmyof*X{=HdrYS|7NjKK(!4M6^%e1T{=Ug^7@U%%xrGSK!(|dG0BIF9yezaY zqqr>HveaoOj=psK)yQ=3tDz3D;;&tL3rMm@D;g{*J|lf8m^b0EUeOxW^EnvmDVFO0 z1hq|jV=K7jl|}aK$^dVEVV9|&UB^P^y>6?dyoybgq&tbs=0b*NifKO z^PMw(k#Gwxm2EmV_I_k)L6dv-K8G`$;U$Xzo8F4i{M~y!CsCd#XDQ`&B;W|;xVTm+ zP{9^$7`e{-QaF^M={o42zBGRlpfvT1ohxIhAV+gbP;P?f;c#k{gHOaQnwZIJX>*)Q zLMyP3dXh_QdD~c|{!;!g@PyQp{7rXqqxnUWGm%B{5HS z?)(~QzFuViVInv7shl)~G^q`+Wme5TYXUj9EG&ggVh-sRyRz%#B{{4w6XADtG(>Ll zId0Lsn)nXP!2USO@{_)bTSjNaw!{gRHcPiI zE89LlI^yN3XLW64O=IhO>fTYY0}e>=EaPxllq8#jx1)BN7B}^4eKdK^$)}lnaSMQr zfOU}?B2mL)?EHzNa`KW@T06P7^|w>~4fRoD-~Oc3akmQs&7ExSE_39d`amFq4sg+; z{Bi`a&BC|2K}`hZKs*g6hqw3^%;PhfdYTrjXM*AIK@g`*RY9CwVz>@n+2t?5->w#E z_&?%(Uh`AY1$jf}&WB4jj*NGYI@FPI7YUG1FYiW!1V#!$vG0FvPNvcW zzB`P3>c!U-~-OYa~l}$Eh=ej2?BZmKodtU*0tfZo{)r~Z4qP9 zH@*w0Jp>$S&M%jZzS%a9b%jN0pa8GBzJRD3r?J%f`96PY zN>?L>eokrSo!H>+E$Pq6(F9hn{3DEl%rSKpKD8No zX>XreLk6I!x6ABj!Z^Ff?`Sp|-oZvA)62M#Zc0XkoY4sUs1WP$$S5x=b|QInQqwo+ z8_DD(4lTG7UW|VSI)A{Pz_kN#)3D`~PW{n)AI$W&;`Z=-;rS@(k}Qx4)x?<(NPOVU ze0Ukyr@UgYl=BqBpE~H@6=fcK_zCYc8K~8)z-$|3(UuAjKHknSbm+pD>%>@R4G&Ye zmE|i#K@S^yMz>}Z8x+=P9~45;k;RoeJ+Rbgz|bWNtE@?NTKDHA;v2ZPgei5#3jYXI z9;}e$(ibzeV#2IUI*aVVKC+X>HEzU7vSc?CchvfzeB&68MKuY#^)dtH5mD!zXK=)) z8tRf~@8CGc^9i0+Tjn|w%NJ?&>b+~c30bIZag3w3?8!*bUdM||~BTWte67!iF;o$c0)k440W zmXeZyzO9&|AUh{~jvK@dQ4f3Zsyl_ICsf`@xGAy$02iJQTPMAgr^LRTY zIOkrx4&Dbon}JB7k%G1U<1zqRkCndsr)~_DA`7@=TBhP0YXstF%!?*M8mHstek&$e zMgkX_;R2Vtr9^GAd(V|3 zMU2nA!*0#cjZj}RA_NphAprJJrd-E38N-!%SZG+=niu0!#V?!$>9CzQ-H3r8KmWfn zurOO0b*NgQN*YYhrqvcUJWIo-K5d9;2OmAX%xw-}(shw~3QOE)7T3s^8+X~ukF029 z$FqbGLxb>ro|3i0AZLc>$zA2MQ&OcqGPw8bcZhK$Z`frSoC1m|HuNj$A`unv^Uw~h zYrfWhR})hm3ffrsRL3z7Cmods5=yEjfC@!$u^m5l;5`Y+8i{6XmTE1CgOdF{Br!FY z7CUTH%uVU5ffd>ayK)Vo-zj?IgdT(}6!;q!Y-O#$U3+)I8*5ileHzs5r%p3N;R*<- z`kbTEbM@&@B6Vwg zP--X7w^Sh}v2)5j(uakPE+cG=@UnmJF<|_mE8g8Q%;a8l`|2Z<=wohm4yDRZCheuD zumQwYZ*j;%wM)e^oV~?l`h;{L$?=f06!QPDN@^N8T{ncUlUcqm#dWdh$k9~Vh#4T5 zp5dw9C1~L|r33|M1@7Z?<3A@*kbQ7prsYfe%+?* z%KKe{4A*4u;e`wFI@B5>daNnTX7g;QEz?#d?{*>Bh*(*>(lj3*9hq1vkxBmiTw^em zhhSogtL$!-ujcdIdqXg`kk188^RXhel6Le@v^F7D6Hf4F!Z;>PN-R z()SW^3}zZ9x?gfy053^Ng3Ppz__t!7N{y@s&WW#a=G zRqpGcv{^8aTIIREpxjf)W6L~K7@`XN^fX+1al5aS>I|sXZ@yyy6+w6OYfY2v&K07Wv({7iCC>{aZTo3GRZWI#x))E5lH$i0ZMVH8>(V7&?*qA53KWxja#Wki zxb2aiyGMAc@CePFs5^=xnw~gTwumLZrujhY6083v^1vfX$RuYJ zR+e6O_Ltz;CnaE~3hpx?rSAslpA#_HnlvEaB7x=d^SQ*{Bm_LN_5*)kL0l|Zjm~}$ zrVbKB**B$CdV_m-|}V7gYMO$^>+%9>wX4p(OG?;7GjbtDM8fjfxRaQoh5XlyIR**ez@JM%p&NXEaUeMKqmTFG#`HmmCI9C>9MBfmi$5a*_LYib4Z7OfUP>EwGZmqrXu_)_!9N& z#2jrrWlM{)E!>87saAM7G$La{!M=ViK71-M(&cave>244u zlbcz3|29I|wm^(1lFYk>d-#Ky@u{h}{QI5m(ThzwoT>Q!x!IfbS%wN0fmn~=?RdoF zFKdL0YRY;mUa-db5wNUp&#o(A(q1rnuiPA`iOBRXTNN!mK7p9T-^XL{2u?g#&@+8upz}5E?bDEn`qhFaqf(I*zjO11W*1VOK{Z5X44wjU z(lGMjygx%pXlYFDDSFgZlbntNS@A_$V!NuHD*%v=+?7Rt$|*5mG3@B#1-m04z}!!X zdki?i*<~AAX}nGVl(pi{Rq`EQO7SzUyQk?^I)!kDCLJMiFVWRN%{1TlxlyPY*bl?6 zp46TPI{0#_D(K<1T&jyilg_M9L3ios(0opr>!5%zzg3v@&&2FQC=~d`hc4k{E}u=Y zEv%1{(8lV}H|dSAUw#ec7-Fs)W4~=TIim>Z&|;R1;k^hh#=LahB%^!S-KvAZhV|N^ z(fs^dcynv!WgsF3uixo*#FT9+o`tKB&O+?TwaUnZyo!K;w;d^p#-*VZBXW$5^^)PW zusJ%OpjU0(ZUt%95(e~bt3@S>NoW$~_oCf)V*i;=*i}Pq^ zoC(z$s9t~(Sy-xXw@p^B9Vg8>2ogXi-A9Hf-G<^4XXaaRo8+4Fxh zDsHaO8(=79)PJ!qqCuv7t!oj#9k!ND>4p=XF58ecfNps>L+2;++_z%5xnC-7?sapL zWTs=EFyc+?);1VV`1$^n7rDn658h*j<>aR&*cp@u#ViBM%uWc)6v-MfouLq2gm4F&X(y)i=9t%yk=rhXBB_dG!Q}Pgi5IC8_R1j zx%I=G#C}~++a`I9-Gi8wMuqn08)0FCV(;|i&u+nn@5>U;#8WZ!GKpah_$QrQG+XT_ zp(%vg?B=AT4`Npl;XrWavlVFzEI!mjrUo&56Uc=2Fm1mf7ceW(mO%NTjt6Wc$gL^@ z?7xv0=C;E_8YCK@kR8c%w=D@ZHA>xU73X-YE$5NB-%4zD;Y{ui0V+Na6$O2o#5q%P zRUjHM$8$^MX9-kad{9WYg_OM~5KtSbynrrml@`T`Ex4H9G?5G2Ye_m5&P#= zMLRX{=t8$|)K4IuQ zRdcHrxuWO--+ZHDF3{%fm&BPvVJ%!>35hPX>$pR%Eoun}i{>Pvvc@ZesQiL-rXv)F zw1csz=**LWS%r~wytb}Mh zKv7y9*Qgx6mt0TQ9b7ZAYcwx&Z_e9rvBHW&E=emj6X^de;FjkRvy0DjkO2b-QAy zMtB^jwQTNmo9&F*f4rr(eJZN3R$;n(@)$5xzw@otAl6h(FMJ~*_W&l1rKspMYUW8{&k$3uiRDQr%CJ>f|MuyQ|H(9FJNzV?k-K^lv(iXK)p9Zvq*~DjO(G(I+nVLSKBK)&AoM*q?Vov7{wuogPfz`o*bgYRtnvyf;`IeQ; zs3cbQDa?P6t|tKc6}cN=@D!0yQGE`3wr43~tnY}M>8g!^h8lmQ=9=U!m- zs%oNA@<+%L#+^v6LIx-({WYb-|Rk&oMqIeXzjd^QC*C z401wzx5L4OV^&X3r8>=u5JcH#p_lMBem$Q9U1o!=v+Z&7j{}4+w7v78GdcdF4Sb`m z@?4rT$>Ei?D6N)X2OShEJ{K58!Z%;*_uR|G-tjAA6UldV>_Kh&>4|*^9wBk=i#{Ba zgQa2uUe*&8d9}6k7}ND1jNLP|C|$HA;A7jiZQHhe?y+s#wr$(CZQHirKRW54U(m@8 zE7+^Xs0!BnCOvLdw@$5sT)^HE!U(yE2YQ9~5Ec!j4E_{DoI0liXm>x88PN&kTKe$Vn6WSl`xEJ7-glt_NoY_Mn|Hw;hO0$GPqmhM!(w*P^-#x{H*Pld4ffQ!q%v`hUDwiWuXhO z9yUfQHK@VLWXEtvj93ylXLYb=vpf;&=mG)X>PVnYUet71WT&GBWqQ31`O3>Y%v_HC z^*pmHQmGOhQz(m|h4b&Zs*EYYPd0(kdQnJ;mSJ)fi6yyNxPkOGM)4_^Qf(Y1_rX4=tb>Dd3B3dr$ z(P#n@AR>#wxArDorJ5QUc6-lUFnSfI-Vl{nTWO|U?c_>enJga96j8mEHOR4SfSfXc z`gM`Yams4=D-f~fB{J2rts773Z$SC$-tl9rc0rUyL061;M~cG7X3puHLSm>Jn;OP) zreX(&;`{i|kdf$i;mB~@x!3v@ldsNofm!?%is7)Gs{h-*gC zOLe$0EIzw-`#TG52;D&N5}0?iDHhFoJRr3(wL8bUEuoX-oS}(iPdB@X#|GV6=yeRH z?s}4naye?SX>c@kn_;G0cI!2qxJ71RUk4fiZ@*tuXQ=V#UUGZVfPPA#>IS0Kl_W*{ zrJg1Z_vGxUpu7Ll)+Gr25|V(J(uN#Y!x3p>3D+0@eH1Cq+W+Yz5p#_t*E{fopXK>J zg`b_1eU&B*-(%KRkmk+6w}o<7J*&lsKNi#&k73~?F{S5!(3}SGC5drrm@or6YhcLZ zxw*VBqsezP7AM&ycm zeJiYOaizadKkyjE6;LSo{s2nz51BmdupSB7IUOd@-CT2%?Y)&oK)8q*nTQZ#s7 z&~^8PE>KD#+=zLTVpc*MN*&X%1E;{?=B9LK?G1CJm22WzhbN0b7DmuC1`P10&5t7? zmFbo%ZjZnALOmvg;QUE!70eDo=*P4`%3DXzDGJth4tYN@4mt>M&jHj#cUxp7(X8|SUZ=~86H(-S!6FK? zz{V92%AP0qD7Ls2HK05_3n61!=wi@%H^fNjqe!@&9Vg(-RTlr#;}Key)7(WiC(wXO zj*A0ny2JOj+^Dn3)_E4eHXd|FQW)ErH%m(hT#q`5rZ6|F>#}PS?f#>bvF$j6t ze@Nlc6vw3P@o_APH1u|W+M|SJL5I>s-1yc&P*YZgUzHln3()mmIWhwG_O7Y3^I zO`7q+_gdbpy2#L$%-t;%4D?Bt{d0e?-D7TR*A#2f;oN@AGj->NkFIP-&a z)v$h4iu7C2d0eO*q8=6Z^`VXrj{{B`LhPSn#-xASqlFKFha>Sr5P2X4z;snXYV^Sh z7gztWfsxZ)f(lpB(ggrU+c({IBL8{_4?<8{cCBN$eJVh$TR@f#2#wyo}kiJD}lx)wE2ph%8=T3RNHaFGTL}EQzbu z&fW`ajUsqM@tQ(~5Dh>r7@dhDSvJw$(1#Fa2EdsNgla#0I_^PnikaI`G^K=uI_w=PRfmD=dPU0 zS?%$)%+Y;{d$+tRfZm9DIVxX8;b%%r!9e5Jz8+~GtWk#`&k!bl9=u}RN-`jlXr4LQ z)|&%jo8;GMiV%@$)cdtbvV$xBw_1{twF7jC$ALaVeUJ0<$16$g0$l@Q0YYgKr5u_l zb@YHf22OO_qjM$ET#|&NJ~v;qGq!gH3qzM!hFRe{nT7H%$%{E%Cz8x0(d$7`9@z(o zBz1)1>1miq2>y7<6zdP0Rf3rk_?mRB)o|L_g8)=2g=|U})K$N_nwon5k0L%$a+;Jk zgiG*;Q?G{yhAAWGU2yGQk8|W{>^l4#ZnSbn3iPgud~=}YH4*`{zPG9+C^d89$q@3+ z8X9mby=jlNA#qZUs`Enil$aA-j-Cgh3Xd~V6(?!!p_6NKIQ{WG9nUU@{- zslkENhY61c)1(DxEl>lk_A!pADswTt%PBXVj9d$y>Ra_7wc&rF+zd&-XB)0_RcDe> z@eveGA)PYq7dI0#QCD3A89uu-=tpnC8-eoli0@tZNi<^vT|Kkce>*@OwcesprWu%& zj2|cjSk&n}xlV0Xr^&=JS%_y-G{nUz%f-61C5n7h`$Vcrsi*EFxRwYS8#lU6cLsT9 zl7XCef0A?shIMQDv1X@57>!7K#VaeZxgR$(Y+UmHOpCw8=>qAK&Ls$?5_a@-F@o+M zaLWu+^os>)h$wvE^W&;=zKV+>mM#IKoZ_Jkke1kwW=BmRx{x#9+V)xrWoR)n z*0;QXtu;zK||R16UeV}k0;+1IAa)Y^vxQYH1ja*Sn4R5 z*?8vB9c0^;;XQaF|9j48hvWX@&~C)D5On_wpl!*XsA8=AW-Hh&_MvSotuffg9mKsY zg6&R-USE+bN7qGod>>^DYL%K^S9itZ!EquL7iOH&WqwCmVUO)s1H-N06Ef5)N`=Yh z-reWb+E%CtWy$Oa+Gs==z!WRO=Gx7VW>U@K`KwoS|qKtRL;5}SwHkrv>;op%am{h%~NK`#?Zf~yY8ib)nd-BDzR#|)8`y@3$xwVod?`eQfpQ*wD^qsD2riM0w)N5**IpxL8XUNuE8jjJD0ow`iN>b4Mt)Aum( zdm`97UlJy+oc8D{&X!SgP--F3Qq??07)mSmBIYCV!D*2sIsJQgAVJ1}bp3&ADmaUY zsO-T$7in%(K&6a8V_Pdoe1GK70 z2WIQyh|;{W-M32~G^|T*RUK{3n5(q>Lif*}$*?R8%UzguB*;{tQv-Gz=0`(&R`+ag z=PGl1L8|P-EOB&*3$b_gf?PAEdFa8CcTD4g=f$CgU=p{Wu7M9h%fRtwhvQ5fvZiRs zXq=b~oh#HM#wKM)O#<~_2ZuSM7VU`5>N1A4%JB@&&O>{YkX)3*+8#?B&>i8wFZHHz@D0;Ll@=TVE zg0tG}PWG)JZD30*7H0iAm-c_cVV{uRAQ#ByQuJqpEnRD6KM-BEq)+(#Z>*A3PTXy% zb<(y6I7#C3%0Wn>A-$^$i!p&u0sg`P1_I1xhv{7ucpuE+GK#;p$JeNF-KQbW0(Hgw ze=GD9;3;|*(!FQ?0D7{Q^E3kmfS>5uhy4OTxP+qn50}3SWT6O293(nA#QI$LNb74$ zVdbN9R+9?iRIm8!<-Zd%%mh8fLkb675zFIC7d}CnWo!>u3WUnHfco%B8Y^90?q$ z_IQ&*&329!tQ@Bm4NogjLqAI09AeRiryrz6XEZ2P#B)dX+Z?^*=uRmhU%bgv!I3fr z*x{8cl`r<8Z&~{MIFfvDnA;^15D+vAsa$-Vk*kUc81f$nUi*{~ju6atzLMP^Mie%i zu}4XW23~aSTM`qtHmNmc8vl#R2?y$n*-+Du>9O7=1~sh2Zg)LEoX9SuqLzNv(^r@$ zKC4iy&@`?@H2$7EdEN-Kj`_*~8J){tJ;Rj%1-MUG_k7Hzz_yEUibDy zxvAloi(Zwn4R1HPSbS}`cw#q#HPUn?dS%$uQ7G@g=@&*~yjpTR2U7)knF7lN6--If zDC8&IUG8tT)?`VK@S#AvaJ}qJPawN%eE2Uo^G>%`ACz&UiM}P1OS>2&J$jg7Y)limVwJFrzQW=oWL%G~&jP@3Wpspg)~2`3I`;%zgXDzrm3g`k ztIMEG%FV|+sFQm~+mmeGXn)>h$rhCVL(nf?(yQi3NPxoZ#!ZJZK}WWB(``!@={YfC z5G4JNVMw+yH*Nao)7C)o2RwqIDZ6RAe^Qh^jye%`jgugiXy!zMuoRxTyFp(m%0?>N zqzl=W**b7&&!lD29k0o-g-*7*gidI{=lyoN_7asYaY+5sts^QOOy!!PqZp7%mRVP@ z^|3!!QOLaO#grSyVmu-kJmLx8{-*l{TcN*p07(Hu{ce9aPUA?F>}MNI2oP9XBO{05 zAyLaj#N1>66g?$J#NmF+XyQ-ku**RCf7H5#ToDsJHpEEr&|z?~K5K zdxPH0>ECGNvGPV=IsxacJ^2KztSdfM#L5Op zOp#7|qm6UfD}Pt*$U{n}fo3pd!Y5bz%>wy!Rg=N9qct;(_1Dav36>-3mTLFHvztDkHWJp@u?(E6IdWyiT6t(!%*nToWy>1n|9C89&S*kM;y zi`L9B(P_$g{7rZg>iVgOkYpR&wNUM=X%8iTh0^2LBknKALM5p7{pHGu;~le>Kg_EG zbbEPUZCTZCTq5wN#MfP2K~(YIy!;Yb(YP?quxLH6-hO(1661u}uhObt+P%Y6=`CfH_gq;-0<7j4ND8Hsb^LFLz^Lvl*trA4ho^o>pifL$< z1ol|l7j-sF7Y0}kUj-f%+T^r7hMjR${TyPVO0CoJZA(5w8cx-$z^;d{jm0TP^gjyO zg8k}+oJGLL$jH%gXA7v~Th2@5e}*5&igyUgR5;axLPad3F`%tdBbxWED!b~}F}-+9 zv*y;Jqu^i&S4=jfq+lXhFk3*`p17TyF=cQB*E9n@Pq4`UYL> z5XqC!Cb`=V5Sy$~zfPbTHEwV9OuHl!I(c3t>e=$-K7!qtX>D2SDm*uu=l2 zmp=ii9+Sb5fnIZxOMw393+)VUWN=)&Yjf|zGD@ua_-2v?z_^-BD2ij`Bn)Hn=9$)x$ zKqqGMBZfRn$oqOKEDM19saP8M&7xFWA1?f5*yk$qdXI0NrmR0L9dYGubh=*G&vj?q zk-|PlJS;==@emxfVgj>?Vr@b18OoC1Zz>6>=ZhDD)c;Vs(MkAyd{RK+O~$hj_ksO} z!w;3A!H9CFn&ey9tob{rY}fa9XzZMin|@pinIC0AXnZv;RQ>TtTdU#m_REx+k9K6- zGO`yRtbcp=>$#0S{Kvu;CG4?>;7mVUMFljISErY#?P+8L-#qEm-e26{?h{<)fI_;3K1qQxa@G4 z@1Dm+j&?S{L~M`xyO0_H)S@sy>N@HX5d`cL|yp^((d4fv?hq{ z3&vW7o{&@v2~|O@f_f4RGq;|%K*$BufV>k!6#7-uf;FDXdlIH^d}u)`v96|3sM{(NQXr%OPC%*Zas*;b&%U=Rq})S_Z*!$x5D zE`iFC@U$pDDNVwo3Yd0dXK?)d5~{D5UB4hxkU}#Pe<{BK{|SV*w}};YyN~li#s(zW zSVU)bGgqoPQqqM?&8e{M;JvnioMC0Jf%BR`$f^Ht(^2GM?}KG1r5_)YIzGQF zD)H8JhWZ_)yZxX9^uStQ~%vmB9Uy72W!(S(j=bU>GeqH3Nx+#E<{Os4TA zKl$E}h5bELng!K>c%vcL+2hYd%A&35D3pxt#ALds4?beT6a*cS08Wm(@GNH2Za{lP zt`fUupU@F+Fr>FW#p8*fN0E)7G~|OQDn2a6IwzF_{K7`~@KKbmRZ-E=VRyQ_^$450 zt{Vgy2-yF>*Nx7*F|pim08J)8X61cFRS*;8T}z{s*r7}Qpr-6-?))s(e-NjiRTWBP z+_9}8p|L+78i{}r%ZKkoi`~Au6FQ#Yy15iuDxW zMyGs2Fcqt4xeAHa0SyH)l=M=ceq*Ar|0+)#J204oxlNa-BtL8TYPD^M6g8%zSYIKv z+$3(I;_9nRI{!nufIRCWh1#UPdC6gX4;T;MJvHQ8-QbaDZN|UHC`klgi@es1ZLnGp z*}TM=wSv0m=$Nav@3EN@)YTE|1@-AIW@m=cEHz1p>!4Y_*S-6z3zf4jzSaF0D;O#q z6zU91?C#RqXbo#Qi|Rg?UtwS8VepHyO4Hk|JSu|=?h&Y4bg(5DN7{AcK6_@3#1$1A zn+WRVUQ1VfCQVB+qvT%1FV|Knz5PI6Od^G!37Q0k&1xXT`jTFtHzM@Qs|LV5tz;O`HL-hi|9wVEU?74Hi?k}%kYJbNx8|Lr z1u}|!R!tNMojL|gNvS%qc@d#mEX?U1>Zl4OjzcSVa_WJMIYY-_?(8wVeKX?CWFa_Q zDMk?YlFcmFm1)LuXW1NZm?-zUmI*KQg;UUTE~#>p#l2P`DLYAp&Vr64`&DK&3ERuX zufZ653%aGQf`|o6WHt(KDVt`=xI((DoZ)*2K4L_+1WUdjx%Bcxx!?+u$2gA2&9{4Y z1Mhp|gm2%>(**^W0z17!Ed>Qg{7s+E0qaCIk6z#WjE3D`B1y;YjkzYzs%?qj0?4XY zM<5$zZ{o<_bL7RLO`9SA_h04V?RPOCvOl}~?5$4xg;V1cR-(5M?4&A!)DDhxuly+8%?7~ zTc2(8FT(jJX|xxe`YoG!vcyI7W<|uPOrF4erS+Hz`*NvTe@B$u-8vl*yr@p{@*F^G zNkfN}5$gsg?9m9N*Y>Cq5-o%v*}>0Z`MiA+UjM(fJ;@W$>>zsq9;mUd)_=Tx(I|W5 zUFv;QbEu-N;~R*&9tTPRJxgGFQN13*Ee$VrX{Bx}6dr;v@35>9$KzCyQF|3fz!N7N zCwI&)9a)SNcb9JwO>4jrV9xI@!glef>%~5#-8(KBN8W11W)MS8sJ3zU2DL+_ym6Ur zlkHGdc-&IjH*MZ&`7crpLBdN**>t;-zM)=BYRgD?SX9d$GQ4(kOl`v1xNCR3qniI% zBcSf;nOfRC>1pA-Nqz$3Wdc2Mht2dq?B&2+Px-c*+(R)P!+`H6qJ zR|{`$FgBbOOT*pXd1=)n`JO+X91Ka8>qsKJ*F_*u0hR|K#m72KcHL6qS? zK>Ed>mFd#}z8AYbKs7wkuO{lP=?HIW|F|(%mEhxZtqwbs7*9L~6CAeyV{;{Poofcd z1x49BI5O15j~mKjv>VRenp-KzwT_tYnH!Uj{zYzj^V-JO)zQ)D|0-hmlGc%- zlUN92+1Z!1t6aGJ7w9xo|1!8nHIlwimc_jm1l=reQJL`gkXu#nq3n-A+mv9uIdT}y zuEpcbRVe3(&{al^%Tc>{AxzGIXON**P$#z&fR(_O%H%R=N` zkz9+qINA#%)-pG#@2UFMw2S&J@2JXJdA;D)%9j+~QGo)4II7}L@ijS1BnPwWz)jY7 z4a!L!493*6=K{O3!5~e;-Tk({|Ixqz)BBsRbg7 zGN(3TdS?hKwIYi_9HW{c8I)znS+bF=lm}3|ydDsJZrZ&~Ty(h-ufOtDgF1d{w(lj% z8)2pd4hm%W+o;P?-XlIbW^|9zvP~E3O1j*D1)XI!?o@$uPEqf^OtH1-9p;A;1>a*# zd^GKFu^FwBmuQ7}Y>XmooneXZ{#s^GdnfITTw@kUli~arg3VoHo+JPDP9QjQ#-&Ij z7+V*E|A@2Nb-2$m%1Y=oNVLqnX!kaPD+?%xm#QC$b8~$ne+W;CL^41~R9Xz#MJhsMG% zh{rUxcaw!c!wCcp>_Xn&A#E3dz{(bACpr5T|9z{xt*O{-Qr}wJ*}JTr5h$t{BD8_^ z0aWrAGQio+7C`i`?qq8t0Dw3?0Ri%0z`$@GU=W|r`v(K&6JLdm0fqPx7Enz+j`T{A z)D+D7U+j?(0M$(#fSul7TOe3l0R#f%9w1=wk1@D265yDIw|^DDMa~}z1;}y8AU=f4 zt1Hmv#vpF&`wX?;dIV@64Gqos?*=a36{sVyhK3NpMLHdK{Nh1`T3Xy6ZW#(D(BqF9 zq$wR2=9Fe|4!oJ&SDgdYjt^bKpfM4pF=?Ro;Xoo{*0Ipxk_zU&4QQ8UNYNG-ShKjA7{Uu3PDaefG+_8 z1;sQxKnH+;o|>yp-{6%ecaSf2hhGFf_5GVmC>O9bUKGGbkc~i`A4acjDjosA^a}3r z-Ix4GA0ik#dq0*nC~!BxMj#=EpST}Nko9kWT-qJfD-aJjpJN<0!1v47)y#8(-l{@) z(c9i>-(8xtyqvJUR_0AyADmimdc~o+iMb zt7_=F0N|h>$=7K&d`kF+K&`(_20ULt|B|Yz5_Yir1PPw+Zvg$HI4&nYk|G3^*KjB+({c-;NBKl|ic=-O4Px$wA@pHP~IRGG`KyJHMlozoMn{M z%IbL7HR+4w1HA4PT#r-e3e-!lJv-X}T99fawQTsmZ>N!)%icB_QcJ_Z$)Nir*Itwh zmF>@^d>*^p9+u!;1*`+^R1Dp(4(Wo6GUVNFHpUn!^fQ=RHwz>G=v za3t*?a)x%JZ#)$@Q!v0uv8V+i({Fb~O=$*hPk>vdfUv>*1*LV1_Ks%p)Y+c;tWLUk zYrP$&CQ}(ATE)Kh^u$E(mr%qihp)SA2L{%DzQ#%Z z6e78h2Ge%#j9Azijl>#PEpcG&SPs=JQ~POyqaRq40wn@l9|lA3MS9U$?3G(ZTtVF2 z4`COw^G0)nJ$<2j59rfr_O#xZZnD1 zk+GF}Cjm%%Eyk3+Z`c^OsrB=9!`+@&R$PmS@ec>|&0`Ahbhflm#5v zHx~ZY&0bO~pp)gsBh7%>-%T$ibswXM(}@+)F@XA}aT<>?ibh6+(M=2yZz&ejGAPZC z%dYCtDaiF%S)_-P1AlaLkx2e-oFE0+^-dHNrcuPb_$aiydCI}WMz$Bj;-zPc8-rk% zIJCA!BU+V0;V~8gl*Tpw)It>Ny-$`ZF_vZx(^p2MYg#2whvGf`-^It$Y=B7qyfz*aMbQCw| zNP1kJ!^aV_m$u@FCeQAjpmLB-pyo;HALdyyVXCp<$^`7i)YY^=Sk)sK-el9ij+ISU zPrhyE861$Mpun<~rhK4bV_3Y=#D~~{|*fSPr$U;xf9ZkmtjO#>m6c@y|%+`&CtYS&tgFmon-{2NYe77@4H=GAMXU$}yVTtfkYGQL7!f{of0_)#$V41|Zw9!&iuzz&zW?PkMC!*(EnWs;&Lv>8wSPStN9!ruxuk7em< zLJq$Br?k*i7#1@x!U!2ZBh*nQ#J$R8cXyIo2^y}_rIQ_hWdr`7V=lkb7 z97I*&shi3=8rAR|YkPq8Zu(Yi&aPX;&3zI$BS2MVuYA>l*C0j1M+7t&SrN4u^{(-d z2TGg9c}p9Le7HH^#2NK(dG2Z><&*tMK8ofXvV+7MOCN&nY@2z*PmN62Fs>B*PO$I( zCw=$gqrZcRdsKOx$V5T0zqmlX6?v9`3(2W95n~n%CC!Y|#AHE6*H_Pg`c`AEGrtMU z&6W9lBiAHZBKy4DgyC$)6aF8d@!*5MpS@WnA(%#XWyLqcg+JK%X4NKcEogC@=}h;o zGm!(HV)`0S+dPJQj}C2&3SRV_Ydk$y~0+s@L z_Ie(wkwDUmTIz85S&b_^6t*o4C3kzra4mN?)|)*nzA>|7)=C@^?24;-7s+l}%?Y6+ zrT+x*{0ropK-o~Xe}s-$!ed3ihi z$#jyN*4s_$E?OKB;iC2adHkc8OaetorM`loa{?IJ?#R^v1|yE{W~Gsti?)+->K} z8OM2l@xa~jNL12~?;soUA(h23jm`5r{}g~~jIoF~R6fgK3uGex?Z_Ig*b~K9rID{5 z#_#=T{M>{F8@1S*#>v1(=IIMZlI@?R_+a&ro7P=us}jUxp4c`4}=#&1^*% zFE*OTy|}N3!z+*Nn0+=ViHr04QT4ZR|9`kkWkNvklx^F=IM{$*3BM6^P|4(59rgey z6`Rn3JKzTo8*j$Nc=#_wtfG)YaO#pucE0~Soo-!-_h&YER_N3HA{Va1#5b z>qS$n;`ebx_o1Cf>vPM}Ci8tr2RHv{@ZMEHo0SrmQ5KhK5^6+m>or^P4b!90j@Lac zj%hP`G?_ZT1$&-j!>5Cc%torEFjZKF1Y;vHwv(wSHS6MD78_(9IBj0rt0{cc4fG(T zC}BSQI|Qvt!vTmLLi-s1>9$>0PnkZJe((%g%Frokbihi2*|7axa;8}irtl6hOL}I? zP#6lUq9;btf6cYvi~-5qVg2i%j4M|o#QJQl^~TQ4SnnaH9;NRVweYv!oeTo2YTulp zcK|?tCvi${}meoFhsxED2sVDzDsfy2AV8C z?To2emuNvj$_`rKWl-iJ!62`8j>ve7Sg%OpcK5<_cZY)-nc_9m0KRafW<9Ms#1oT& z<5^elSx4Bx&oOOGDrphB{_edC{53kMtnR!$=DW>MiD*4lDIw#7@>zTVP11@=3bnoI zn|P{FpiXbHjUp4nA^{*bYIR~E%j2zjvc0-|yj`!A%V(C5A<&}pAd6$6Y};s8U#9(NGpS_xyfcL%n%b9TIv%@hZd8*1scb(!E7gkr`7VjO7tn zp$@^*YEtrpy4mv08cS!F+p6@YJB%A9IXg!?YeV=hWY${V>Q@-iT+JoQR7hVEBHwYR z{%?sROZwDV+XDlvp(qY~T|8)QPYE41vL{N5z?i%Mhn08bNt!<`z5-%|dpQCAWg7zV zFI>j%ufEo8807gEvza<#f;-;ZDPhP6lk4fZbXhJE)C`%D=3!Q;sdZ&dPe4na|? zD9om9KSi?daC6v)mpS`%qxRSl(bls#MXK6kCgp6{tQi#EE9pwtfh5!i=uB(KVf_ZE)XC1Ydu_B;J!4jyTz(t!YbX(SRN&Qv zrz;f9+%YfMO}VGyffYj$HqQsS?tvHWwq3Zq*%RJ#M#-LkF((z+mqRVTUhDFHhx|gl zLsqFMjS3I_+Mm0lwiDCy$)he+or_Ngxa&Fhr{a-b+9*7_)gA}+0IXN{tgH;odaI{6 z<|kWYt3tm5>(g6LUjDgIMcE(Qr>uk^bo%J&R03I_iRuO1Ov_ExR3$vejsfD1DCj=K zv3JBFm*ys3MB#VVrB>t>8|X2|A!n*d$+r~gFd_*?K%UpdHPjdEj*7%)wZQWmWoGqo zd$;D=e9$&6Tks|W?V1%UqZRSgWKm={UZ^`MkHgf@~aFT%BvOBYbMpKWLDSA!+k zZcYwP7|M9}4U6B#C&iG>efI@t=^wBRX;Y#-B=0U_G-SzQ2^FTqc6gZ^X5tuDy5Pq^ z?$D#qvSaE+U^Gju+BvZCGG!`7YfFU7`@z*LA8zOp7v{=Hr7qB8RM)c{c#d6mMi<|t zJ-p7L-R3lnt`8P8t^KaT4sid?cqu; zspA+;Al0P4O6ct88JX}V3ejQ8&Mm(rPG{O0!2Sw?4Pg-&bY|nQ6&4=$Mo27!ojWF? z670J>CHR<%#6vt}Z>8VzTXzX_D??pXB{hUtRa}JMtep36(^=Qc9;z7HsWyy;=R4L2 zNzma$Z}khcEQnZn66s}+S=&FrTd{_d*C}4i@Ldk_sVNBeM$MF8T^bA?zV0(pGsU~Y z6AR_T?^5A{XQL-sO5CPNX-YDYzY4quVoWNms4nHyp+I;x_<_0he7QTG!a4h!qAM#x zBIW!#PSGYgYH`#Uh|_MvriFpV3{_-~U9X13WneC6jwRW1K`t>O2T;I$yAY|@q)+;< zipO-TzP(d!DiNiomvip$?HDHrQx&L6U`GZN;K3H3bqC6f7gOvG!?31bW? zt&Ml*d}>V)s&y7AZ&c<~%|3$6a?>@^14#P*(Z zG%j3GaLI!@RaU#l-l~wo0In~drF!X85a)sPU|-sg-@RdgtYEcgmyE>caGZ1+Mj2;#?xJEfNw!1oyGU1dpHN8 zhv&U{#9umIB$iA{)}Co&f$1DqxF^zqIUCDG@~3ND0ht3H0@MC$UUXcRovjQZsYt2L zKlkiWD_3I;6oR~5XI>sUsyGXTXmf47-?DHcZ{b?+9VoS#&^`h|8x)RNJX^L@IyQ06 zMm7XDPyMR-&{Sg?xzCaCAn#uk4OO8p06Dy7p*m~o5^>oa@)E&C6+&OUlbZlrvCvd< zUXq67j~Vh|i71v{h$nJ<1CznN0vzN;nlZpdmt@Bo_SppA+q4tM0khjU&pdHZtj*4) zSL$IIO2?1OG;EJTSYo4XEl^D4a#qf`#!0*Bx-S0pA69>UFiZ5>jrq?03VCE%Ssa{1 zwpN3(YGGU-!>lzMR(=r!v4_XZbMKaZexF|j5E{*( z``ISyyoHB^r@I{qb&+Cl_bU5r9Dr*6MXc{ruf&9VIe}^UMnttWHe=|F8O?dVp5f zT%woAm?z0#S#RsYJ$5kmKQXg25OP~1auvs^56;$fhmj}<tV7nQ7LTwJYaLMtPeIL^4t052EpB%_dSPEy~X*KWnC4V zJhtvG1#Z*$X=FaLT{DL4u3cKS9_Zs-iYFlS{UrvtL_bWDza?fIa82w-DU)(b^y4|u zZZZ9tuG15W?u!C4L-5fWofdbyNwHbl^wF9Z=sYP`VIMPH!QT20)4`igK6o} z2|*8Xxx}z1q}qyE6E{rsC)P~A!h74kg7G6NdCmJkx(cjFsCZ>=bu3<+U20Ksw{>d! z=V#yVCi3Lv#+u3wd;rgVKCFl{@E1Xm!oQLTX?N z>iBt$TD+QM&$2rrKr!##9q0T@hswYv@!+~X6O$i|n{{Ei ziJ*7J?i`-{90mK=@t99L3SZ+x=w=P!o2}U<_I^pNN%_=lSp_$pk~>{6oWl<8BjLwT@HTh zT8e$Huu{aCP=V4RB7g#^z;?-lja0t@-ZSCD_CQP|o;6f18M?|JA&d=K&7kRl&RI8? z;{^35Hd&V({z#T{Ex`^Kl2CX-790|f%m4eG=~&cDC@)0~yaw7g6fZA_IcQoO4aa1d zSKSn$^MYX;p0W_IkZv2W4*GGH{o&3A8R;0wa$-(RA>^yw^1>K(nh7T)d$$liTKQoj z+jo>0YW&Lbg2SpJ)i2}D!+`bf2ai)K+SLfZ(r02g)&FuD&ZRbC=-M3O>@sO5JR;TA z*J;=3zmeZtAbO6ky`=`PjMbeHDK*Y)#NC&!=hZ&nP2gyGY%qV-V>aoQc(sBRI_fKOr)P~+y`@8N z`H<93IMt=Am&&R&Q`4S=+@L{Mz?tnZ!?}3P6EeTx_bc+-$Rs9P69&N>MwdGO7kEwP z8pN+Ww5ZmB%%L|hahNa4KR4+63!ooU{L97Z>-6M>h8k_QY|XFLa%udcOSg0h&zZI3 z?hu`s#pMBqDMF|)58wjn`*192B(+M>OHgNSIA$5;K5?M~EJbl__<3zYPct@R`vLnx zWh;=>-2W5P5BnUeCELe%WW>5pN!^+}%vdpgvOpczaY2dJn!M!31dG;P=1VPz6TETs zlro#M>zkLFT}<5Q^agTrKQ%)XFSn#$)miC@+nY2a@lS&Lr(twcw_Wl*1;c z__g@eFC+dXc)oD3NjddoUE$SWCnf@NDX@G_*vS#<0@mUvA<5H2Y1TST^5pF71ze5m z@y^q2#hzjE7_$_nmv{NY($Wf(yjZ?ozoV|$RpOsy01T{)AH+3fm$z0}UFWrkY-Q`M zL?-dBc^0guWU#l_iq+dmNp*Rj8A;4JW`QKpO#m@4x#DM;w<>CDnN3hzXa-Qk(=|01 z8yc}PuB_Nc8M*HlRNZ9A4hu4kc)b54ScH$6bLhj|`|X}icGUFq>K--KA@;-( zDhC~ltQjL=Rk5l;kwmrkK?5ZYk@hod>Zp*34wBst8tO?$W4yrgh~i&|yAJrC>t(!f zla5)cUwA&G-AbD9*QM27E+>VTCri!bSJ#A~*}ObQTs7F6B9M<7_~fbY0lq(SXC~|A z$4rz77I)Ou+*TsYQUnH2cp$AgxJ%s(e;k!XW*GN!Q3M>bPc&zlgKb^B2Di$a!@F_wZOm~e45DWN=9NI0f{M3wp#F#Y2pwj z{l}y2wzTP2#uWRsq@eQWeBQSsY~n<->mj_BW*{ChP-f~j@bg>#oZbjND&2$HLas{U z(RhmVtAT0+ab~?=0)^MgP;sne9DdnS0_}JcL_{%Y;d8$Cwlj4v|QkF3+ zju5wlv8eeQ1&WZKOUgnvBxFz+;&LF@XS$SRYoqDA3Q1hM12smUaX?l?<~Rnbk8zU3 z7f~o2s5cN#FSVl%^?^;ar1<$0PTdY!gRErvLq5)q}(({^}=L z?!|Jwm85CYg6|-e^jYtBwi#bnOPzL>CI&)t6VJ#L{Eo2x_oq_Gz^Cc=ve86ql*A;m zgUowO`VrJWF>vn$73f`tM`e(9i(?Q~X~LZ#1<9#VVK%=?k~F$Sx{;Qj z+hzK3^K`5<8V4`Br=Cc*fAC2o0wizHhfv-uQ!+_Oz*A=w!P=qJPbUaO_=J?Dw>_EV zKF`{CM1Ia5BxN}mDz|tf4mt1N5SGZeOxn@Z zRi^?1Jpu)90^a7vrtvhuD?SQJd(tgCPnc2`O}TQw6a8c)dY^=$F-sn7t}ZgQ0bU zq21zc>s+MmR)ojRx~sR`JfukxZhM#cGySy=48tph6p@7CCPXIP-xf!qf~Gz+Pe+9o zB4VAjbOCf%K{|i)6*2~YHU(ny3C@@dBQG3pZVa53GM2~@cO!9 zW}-I#MIUO`L8p(k)qPdDem3X+A3UqFeo|kv1P>D%)BhoOSm`_a-@dOHzb-~h3MyvJNZL>_1CfG5eGmLDLP{9;=+p$Dpi#hY@6!nC za&LN?0KYiwBVYld)O4|PQH0Hol-W8>rDUl3rGg!||q(2+ox zf(^Fz#65)27ZA)sgYfp&dwh!ETLNGTVS#G zL0rIoaZt>Gg!_J=NWgc%)7$X8eihSmwCaB3ps+(!+z9mS6JU6IQI4TT{%;%nOgg}O zHgxP4bY?-l*uwsPdNA;Wpzm%Sy+wXxg84rnLI(8A3s8}e!ui?(wBT~=cP*&_=&S%# zK*5FCeq4e)K67vG<#@>Z5H15;Ul!PqONuOjg7=T#JUMXCL3aZm;qUm|esbU+IiP;y zndD|J%!m+T20j42pNstZd-Pv5V1Yl?%fKNoV*5Xwo%r%Iw7p{XFV8?4`S3eE_Bt`W zJa?3Re$KV_)bfzfpp#<(0rqzI+yEz_A30mxb5K8{;O{jfuXurvf?j|+cSLnSf5Xk%d8V{H4(|V1+P8h-g_H^iR-Qn@y zUQc()xVT%g=gDXLe%pREXvHTrwHDU|-~Jt0D=G?r{n-^9F!IaWkkP>d!lQsq?!w~z zOc_E6e{O)j^3-*bp)ko`)tcV4KGX(%{p|Gi>!h=)cg8 zez8vc1b^(#esYd~0q=fq#3ol4ALCT^THk-`1rxw$`+Be4yFLu>*Vu#)G5kO5)TG|@ zoLPdoh`bYiZI*`x@3G}Y+C6_h5fOMb!vWfw7=WOhKA|Z6&S`v+rjP;xv5I`)d-0I- z$w8oh=&*8C=;6MK_Jc+b@sP0PGW}AQg!|`ade=#4NnnBv>F4+Xe23j7Aj5<9EY6_e z-h%Y;#i2t+4ut&Q?gjm6&7t>Rc}b4_@xPj$wBE%=RsjvZ=lzcSkOSWh>D@EG0fBm= z{Koy*VZy-r4E)a}n6FlNURPgtaMh|D-=b<^DPr&IG)*BQ4@wzmddirM&jab42u~Tr zD$l=job%FH{=ll3w$a&V#n_D*W-7{L&IZonC`yZ|WdSM?P2Gm(*;KAP*(=ybW>!`I z(Q^mejkv?NCAMBXoPB*sDPf>B=6<QjsWHu76@UmdRXfr0RK z^9PG2ue&vz{Ds>#yttNwJdE$>u8I%UHHHkO#9Nt>*#IMpGCeDk;od*1A;%{?sx6ps zzKF_*hIiY6YyL#UM-%OAuK)v>#Uykt-_euC0-ZYDn#5+gaTH}cvoXn$q5r4n;;#~z z;0nx*)0U=Mk)wxk|j_z}f2E&zVFU!*Wi}GUG|bkt-1a zO_*s(2!5vbsaDM~Zb@fm!emhF`b#MJq3>fb#X@OfoIF_1cAYa_`KJ#{c1B?taia8C z9OLqu^^`V{4@m{9<0KF#nq(&GsaT9GvhOhoe= zV5#j)Z6;q2GBsTHMA;;t^Lh8(n0i{P=u$j^i~FIh|0ukS8UJkR#Mb8hI<{z*2aiST z-8PyOQ>1Mr)AFMbp7`SONm*^QV`Z)=rvx!`{8Z9b9iq!NSx1c1z76|FvyoX9KwmE= zH2C*i*D%z9Ff~_ly*^jxItb~zo1!iIRv2M-lGl z?C!?0pe0ZRNgt-RGNvRkTXya5;9%rD$stj3j9UpqJxq=PGq<|=dxzyUA!Z~&g%Ho# zp;a{!){KVqvl|dKEJkhI;g;;Ltz|{NBRqF^c$#JF0HAfkFXwgPc;AbI|B*dV zR(SLt>9$M~f3V*gIqPQk-#aewEsysTPI{ml06sCp;_AY%dnl4PqFl4X0oaKz*G2F) z#1a9hiKWp~6a!-Ru$b7QelkCy|9wq^1-=tX^-S=CK0Yo1go1Pb`5 z`h6{XhVp_JCZ^czdSULwXX9u|!|D6TQFfE0T3rCI%?l$y2j?x`D2?*|8SU68DjwlU zBR~>pIIfdzI1UY8Q z^F?UWH~vdYdgde)Kt|Ik!-ktlLy7dpm<>PWtfT{PW3usNueMq;$}3!)ze6q8rIu}L zkv@JqjkqN}y!_Fnyv6^oOjfwG^?ku>!>SYG*+DL$GTVk0+}@P*QywgyIZskgCg;Rk zIAvKzIm^Ni0Ez;ylU(DsaNu6a>(-j9AI#g9=q4 z#`N?_^UdT!9%`)zB<|mx5)e>p9Tv+JtEAhIt-Lsv`ObOi3(~FPgU*FYMxr=mq$p4i zvj;VI51{1%0qms~T0J$NXZ=-1E%T>G)z{p%5|WQUYXlJs#pNxlA@1~CqZrRN5UtiG zZYADAZmPEvPEb}=VUu`WD~Klyg}~9#4PiDTYsLiYj4BP3ri1-jVuK!I8V17`kzCu+ zoW-f{BScV$pZ#XS@4927`ne|us!(Pb&mD3#);?~x>c=;wQ7QUbx|ZE`F#Xa?e^@oc zPSCmyTrw(bFf#s4a-q5W`|Iwmw`t!`?5xc&?yj$9w3eiQ+~>cuRkiw&leY7KfTC3m zY&~;S@ioI8;B~Qj-01Nhp|mG&V(W{&J>p-J+?Aa&Og_hxJI3s_ld@`?Hnz~oYPMQh zKyA{_@g*?|U};UQm-BW$Vv8?li~W9L<)*v8Q?kRmIhxeA)Zbj+_w*d;+?jy7u{la| z)%25jC#HMkHshQ92Urg@?{Z_EolkETaCN0nYc>1!?7l+z&n<7;3gUDkKgCl`bTV(n0##W*o7Sbk)Q^DT}3upX%r=Ah|>{p9eulJg{Wp zE!}Ygl z>=?`WnSDF8n1YaG1TH{rg-EYRY-!hfJ@P;mMa^1`OJRq?bF<$FQ%Vo!%--b;4WfqY z^PHv>16sI%58CYC0I49k)-ab(eDsGSeBd|4tj({;lq55+lZG8VG{kmSg5{ny6S^Zl zuFX49maer@BQu4hb=i8ZpM1G{a8;-WzY(YVs%X3EXYN!tvD6suJ`^Q^CCr~glQI9! zZHX-)lXzXKLkG_vv<17k$ zx9v>tB2w;sdV%*+x+jtO6(}@xYC_}xdVd<^;*Z>_*mGCAWTl#ahCti2(FK}S+vcHw z0!7>&ves`AA7li+fTDsKoH5e4QoLP^hli{s0f)^NPS*@FW**edFd4ZwHhO6NX=DST!aXDjM@CUrg|h6MJ>7GGz=pYY%z-U7wEbSN>}% zCDG*-%N+Uj65L2e6Ze`8a9uvqx;f7f)`J^1ln6_()zsbIb*v0B94l(mP^Mob*(ly& z3iiBwx@ZY06`4|-_0ej9pRZ&-`FwrJa99Bp>j_N9+b|w6{FI3bll(_;Y-?Py$E%PL z#?qHFw<8;xDNIecu_qlGr~1w&cGc_nrjB6>GGX&_v9&dsp^X^1{Cn-Bpot*r9KvW_ z5sZZXHIXxZx9*Fx!#gLT@>rL7=Gmxp(=?f%_GQaPK{n5B7JHyGIn!z4pf3v?-I zRKU%`JvbFpD`b4<*AK`#2XOfY)ql0`bo|Wtmuz!0@(`$i|Mi>#RmV0ye@8kgY764U zkutC)_aizTNXzZhJK@t=luKn06*a60#f7_m|aoUhD zZuo^&E=Ox}=^fA+dV2xsY+gi!C$V zsa07(i_JelUdj9>5FM}k_2|5NNIHh5nVwqZkjkP`KJTHIMd}!6f>hNb zFzcg}>`ad-FS?4pehb#pBwB4Ilj_~=GCxlA+g8#&@^*<@r!+-Jss4PKv#qZt@55@I zfh36IuzL_lM!)CqFbVd1s#L4D=LC6tDNDXIx4Fq#+PeCdHlKdDGuaInKj#-vV0-)= zlYLCgYMlPoJ)iyZ=RGgM4+L+w6;WJCq1B3n_ogk?qO{Tts(ZksKbHu3z#aJ zCz>iuMQrm*!-zU|iR8ga`VliEg5c%JDUB+`&~6Bbe@VD#r=x`g4ovhdnK9WKce26J zEQVOj(DHI?ebvM%1B60E^1U8~Xf3qI(88`R;ErQMIOHocaLNj*=ESXy(%3aa5det18&vWq?_vWrXIs$wG~A$ZXL6{aNjMrl&Ydwb$ERWM5o<< zSu4;jIJxg}JN)MaA0Y2~eYl;0zl(kUR<HlbD_++*iq-d3lS05EJ)}KK$8{ncB#fY9t(IbVt#FS5Z zEHq9*kjU^PiN*Stbtb@fGsMI+swZ9%hh)zieTY(Sko_&CdoM z8L|AxqQ|Rfp;f*|FZ_+-B;q#q3}2+nP*sBlPE-fx_>i;T!P$<^Y|iD%9sRkZOOVN2 zwEz5Bo+SA}On=UK3Neg+(CW)Cdoq9jUnLek&G^z$Opf`m==tfHn#ruji(IbEoU%iE zG#qC!sg|9qe~t6RJ4satjG0S#!_Q`QUqWy!7}60C0a@-oUx(R_pwMz8?G>;-1tNL2 zJqGQh#hVysTh)~W3iC$+Es^nXxAA&vMr^=ZO~QcTQcj_In0P^ydeDdC*3RaP6)J~p6)~d&8 zg$!@YT&0@X(M1a&rqJpfHXlVme>?HLl=la`sIr~CzqYK>)l2YJlSrcv_7Z#h$~j~d zFVtAbza(~o63DmQ`-bpTB{W$EH3hb?3H`#zh2%ptjijaaTDwi)5kEUiN5$@&vX?ky z;7Z&)<8+OZ*GQ47;L4p}U5QX+DvdxH($t&&eM7P<|VD-!ooK&^Vz-*2i(dWjs zrvh!RwN_P4R%P6)4y<-^z9Qy@v-j~rj8tyzcn#XQi(q1BJ`lkO^^6Jc;GfuuM7=Q* zGv3C`B}QIQdmspJn*}9M$Zv056e*g%hC@08tIy|#8kL(yOFb>ubmNvou+FqijQ$GW z`AG$)gLu~du;g~M*T-zFVu>N+=1lITRemUtcnThh(<>HL_gL4}sy3w;^4qb>=n?xH z5ujdir`Y$GckQB`{TO|eO;q0lH{*GGmoST zuVLSKVcnVNYn6O?OdS~TtsxC+vk4crPn`ncRSb_FB3*f`o)Oy6rNgj{;Cxs%c&z&dYpgfW$*razz028r#q{qKKX=D%;J&?wpJ#d$jsZgC8pWHo@f*YNdXki@x#-H-Ppvz|Gc?M=~wU z`Ir|vPXbV8}|gMAV!I4J*`rSGsO^ratdqt75e(+$>>djo#;PDDwii<+Lu@L`?!F zB&7NfAv1kO}qOXzLVT3Rdq(QefldDxG};+jrCJktogK=E*(?o>bu-*@l{(2^_s z7XMdhrS7U8B4FK@?HbBB51(%_Wa6}(GvQkN5JAc=UFRJ($$pkj>?5nt(aJXTW4g8l z6()ngzLrPyI~dk~PFB;ZExGk8^cwpj>zwZBF00gOUtA8>tZ( z1a9T}bgCxumw+$`hq!#bbGMk8RB(58)v&ytO0iHxwMjfWu>h}H_nE`Q1ynGSVi6;B z9;(q44Z@ewqASFRa#C=wov$_oJgE11_Hrsy)3>!3SIDnrTBt|#_s;kUxyWD zKANlMEvc)UiP&K(-B)>CO_TV){@e}QM?+o6yXU9uI{`Vck3Rr6Vpx`T?QyM2sOZJ;nqP|j=s~` z(>(-dR{03;!E?uo?82@oFPA7KtAA=;8}Uk*Pz zq=bt*!pB)ntu-*yfea-MNC<@uVj%~*nTgG#{)9;~V4-#^oBbmuI#s=O51H1m< zM4+%L*2(lP-zYcGs!MjMI?;1TQx7*i1ex33seO~Jf;oJO(E@8^Ap~AiCkRiUv~TBC z+U>!%Msl@13Qj%^fDas_qI6#$ixYwwZGy zcInh&a(~V1Ky?nU6%!2S#&!jhQ96vzyV`A61Zk$7Z|J>(k0BNk79sKV+?6tGz2h5Y z2$25|Ss(L%%KDhu|985_h|k8z&hekJKK6gt|DUtI=0D0yHb|_n3-~w-)Z(v%G0tv9 z&b0OQSBO%r;%*W|1o$N2;$_Zk;N&nsK!whJRlK*4U9+FRd5=D3v+vhDPSaC7PO~h7 z!gVE+|5iVnfGGO%?P>AZ>d5(3b;Qv7CO?C-($e6vA|&9T!~B2D8#18zYi;$>m7jX; zHPqrsunYbv`$SVq2J-%qTp$46Kmd@DKq0~&9)R9mU4;LX{q{(p|5El@0bFeTA)z51 z2Tc=0IQ}X7*H`=DT0c%8^_oq9{)B{r*}dC<3$plX^?yl_^KBto!8izPn_GeboDEj= z;kQ2Z2-Nd72KQ$Qxw&(5bGK4uZMW#vxFA?%{mIa6;pPC_1GIVgS^f2nftaat_Fb}>%J9xf0Qv;=;0qSPC=N)Zz3Yj|FZSb9|^<3K<<7%zI_-)>?c7%L)?Fj zemdK^7aSQUAQ!NEp?T{jPpcj(-L3 zey7Fyae&@q8h-+R`N~U>&=0=RV)v@Ju={;n&<%m|f2}^CpUkwE1z7*f)fY+GPYuV2 z58V*>@fEJm0$PJIF8ULywfS2xf!F<02N>jE@Gq6edRr9)v`;2{Q5=bX8;ffH})KNpvR)o+1Wuz`oVSz|L0fir<<1_pDv!|WdM6h^QuH> zdU7So(t=X1wua%}qO`{B+*-Q_s@CR4%^khMT4kM1ReQEr35*ZXdnewECq=Wk^Z9#4 zISgSZyL#L4+RZ4poT+^|@Y^D=+U{$b?R-NQliHG&r^2RJ3ym*GUo4sQ2o|N38_mst zy9Ve0Y8F?dZeyphB%!{Y=K7jaKqWh?k)l@p8$D?+5u?<*DqF)5)R`R(hLmeQ0qtk% ze4Tmz^4^OxMHtrl_j`>@q(`*M+aaxqSC8`PZHtovog#Y7LS8mPlr+P~#8tO~JM+~? ztNDO4kyUDiwc{iiDEO-W!`k9ZyY1$O*~kMU9WnI`yh^PQHEw0kWujXXbb0pQM8h_e z2`XEaNoDH5yMG@ur88d*Eb^%`BaD^I!iZbSLJ>(>*{w+>%m-@+#@f>rQq<_QF~og0 zZWp21^7@_Z@s+dDp}b}U>ZZNm$JmefLshV%E0)k3c#^1fR62ds@;zZGA*VyNf}5pT zqe|~IWi5t#UPI%3`8zS7w1or!rIvICZ!|FG~8htLXdBqXLlAn7jB{xAqVCw}Opvc`SLvuRe%+=;aO{g_*}HZEBSIH>C%!ktLubsK^kGH|Cv-(2xZSUFcdMDd3T|~| zXRh(e(i##eH`2~SvP^d)6EmsxA;k%B8OqXHt09q|9*H8^zS@V?27pYA^Qd^w0;fgD zTI_?`EOXO*@n@BosRat$&Dy=p62HG|1JNa9nNeqk`)(Rkw!IpOFU!-R+@zfMOwr>}hUZ>SWX za;?>Z#6y2lL&x_*8g=?-8ZyFlh|Hy31Pu5Hhcjw95Q<%nQ};2h0#%Hc`#UEXf<{$B z0ctidkCq#6i(dv|;T1v5kfrjP%4)sQvPi5ZSg_PgeZdWzRODaD3Zyt>+%fZNW%3q2 zzL+%N!`ps)g?u=NzdJN%Ext=WJ;Y(AS8vzUq&u~{Z}7R>%RbUyy1UVWjQ8f|_6wqM~C=zz&^z}H>_nRZ7oVrVT6|gqnx5{^P=_-==}7>t76k zt8%YetCwc&)6f~aWpp75WPPa>!dt{Ud%Cc0t<7Ytb_Qw?T+N^IK~rnJFF z=tnyI67HX=X8gfHNs|{5W=UgB!B7QYKOB!|EMHzqGxq))y476)mG*Wn7T}`C#ki|W$ z0{O0>BgUfWgMqep**DSgVDb2|JLk>_I6t#+`GN}Hji$N(;bg8FQ|@K%GZ%%U*%Ff6#23#TK?jeAuD6shIZV^BI4@m@ zH`j_;6mg>uhDqf>zrJ$YK&H9WbQ0+CJW*`zNT+5&%b1by0>7(WM+~6EgPmsFSj6^Jht*Y|jFB^50CVm=-hAzFCh|Aft*X zFYQ!yk@u&y-^E{R?Z`NtcZ%VNxO4;Z&g(J+;tU7Kju#lC&(0!47b?yeAG35T57gG< zAZJJFZ8Rxx<5>%hm*wVw$D!83otH)EZuuN{?#Ir@VBuKmjP;PbxS|ucoB#d05C_6g z-uB3aN0jWj$TTjZ&VPL;v*D_9B-Gg-vn=6DgPL#$+H+xbg=og^EQkEs_%z)>d=(6x(8;mJ;1zFoqGjE z7~}=o1PoSCL$>}PgbR9xfl*!l$I~>d(oFkLY$5|6Xs?+pnL}N~`dj04Er-#>8sEUt zUfo)R+v@0mK^?`eM?IZn{3~qyCfvE)qF%J*AGed?{8<}qOIUX##H33DJfWZgNBt>*sOW3>GG!SVjA^N^R0x;JuwxzF^8?JLlYBZ{dSbs`p(dMhkG zT4NMWbZyllVsqGXP4!S5{U&W$5?b@|woOJC?@c`?gFYeAc_#Yzo!< z+B4k~enPJU>Vy<+IkHb(Lq3g+Wzd!RKUK5U(D#&#-R;awSfaB<~@C4g`e3+!Xz(fRod>CxHg_8|;*Zj*Dp3gg^y+XpW>w@LkxIX1&}SgX0*j|^6Zz`| zE(-ph+v%aq!!WvYjFCe=#PKe_n^`-!1z+%UMzlmp0_MV%TMC;~io_OM(>#1p%9I<% z{W65b^p_f;vcq1!v0ecb_L{XT<*Ex!_%b&5y%CGqdpD7PZ+uDI{S9w_ z%gsdx7CeQF4v-`FhY44~-GsT%3k$|a4~I5MS@u#1UlEkhF)w_u)@xp2o!xw>*-s?#i4OD!I-+(-bdMPZVB ztP=Au(9HXe!;JC*%>jS-=62Ew9UXG=?Q^o~VM@6WO=A2EBTwU|Qg4cF1e1)DmaP|2 zRp_vos%O=tw&3}u^EOU54?4&W-T1ryY>IcO;eHu5w;qO&XT^2cB=>8JN4`@>fkxQY zM+DKM^JSoxp^ErFV^ z!s`9>K~gMFJLrE>O|I+G2}^Cy#fo{N_OPlS&)pq>TUv?dSXVBUQXIyz#LCd1N6bl~ zbbb%zpm(ewM%rEOrjDl3+x)2ek6V&`MOF^s>r|i()L;rmV?Zjw`RCt!BXfheNlg*6 zFRtN)Tf5*94ytTRT8{DB6y|i?74jqJ z70yK|-O%Xnk%qsMC`vt6TIZ4})cRxUi5a6g124G!2HE=aK|d5)*c}7 zE^m^!oW?Y-hs)FaCAj2!v&NK6NgHo0Wsdl$nJF4;`b{HRE7&@Hg+%)nCog1)Wsk@T zbVBx2ftgHzD6~o3<{&V}5|eVor-z@6z?}4RC*cvh^6ezbr%ywdpdVPqP!7a8hdMZ5 zUeQL7cAerLDucDq z;T7yFUDM8?iNVaAcwel?gFg#z52m+@;B#KxFY^zmo*WWG;`L@()F9XToz(|EH{nq7 z1yY-=aN!*rn}|7-hKV0Oau-HcD{38JQCijA2ushV3>ixg%;iXbTcu-eHSjhn--KhW z)8`M2mm7*#R`hwoMGI+VgXG_3 zn{?`VXif|oIcWjL5j+X}(8VH6IIP$@WyKrW3gYmFgqeuNr_|R6IbXH5-5Ir8Tubak z4sR4yq4j_8s;H|CAI9Z9d+IbS-~@1u7jZjaO3<;0Vs5W0@$Ki%U*O~#l7{z+*rGB6 zqZ=3Rb{kX+#Bnf|$~MZZVRNN#`niypT(O>pBfHPsmM=IG4?oJPHCba@mKzT2G4r>( zoE<_<)rk~E%Dmf$rFIX;2BH=?7J0VCAB9b9=mOZhCX?h^fk5BEG4k2d+u12q<7=PP zGDcT*H8Ap8Dz2l_N|5j&8k*^sia}yxO;+G{gqxUt?N_;bsAJPv09p{aZ|jVpA`*>U zog$RRitR)@%&+HIIi^OHRYg(gg_nVHId1Lu#GGX;jg>^2q&D)CrY}rKBXImdfz4a# z{!qaA2fyRWq^jmw=H#Hf{n<*5T7>g)M-17D-P&;-;~(_(d_^4&3swnYajX99fF>C{ zpifGH?=G>P*iQ+zR>q9iaixE}j$~Aj1tN_=`PyLF+7EEqU`l&&a*r==U`)TMh??GT zE+{zN#}F{p*)~(u*8>kzUN;R7@w-P(9&9Lsu=3MnfpQBx9I08433|rV=wWmL7(*z{ z^@f+9ZXO1rio@G~xn7hQFv&AatSa8auCiI(-6YnWyZHA-L+Q#drvQ&r@tvqI74eU@ zdfQ$lJX*h-_I^aAP01&Dbblgh)X{p&0Sf}kNWF98OC*Lx&I5?qdm({!$mkPyVH|Lh z+eC_Xf(W?$+j)mBkeTwpe?Ba2l473fu19Mj4pY><=2kYEvJuk^;fCyV24F!VA(8Nj&ubo=7{GAmm8VdanlGmvWV@5Ru)2q1|0KEjZrYNBwJ&5JnZUi;5b3@0(=*QUX^k6Mjrs<`YcX_N zL?*Dx5R%>+FGnCYwns?_Il(SOu(!vF?t!#?8L1I}6Q31N&gD%YvU094)7edS#{F=m zXQ^K$0e8tY92wD>h<3`$QtR)1DbQL&7(nLFzd^fxG zqvp*+xO^+hX;4d?heXewM5hO}nQ$wM2)_9Mi&m*0Dd7sR&PJ;BXitQ5BR7Ad|5+Y3 zd*MS@ke@`f|MS7OJ8qGHjHPx_r&%z+V4QYp#+ZjI0<-cGOMC(f;smf6FBBX4l@=s7 zEIKOfyhu>_pok(Q9XIE-YtA&KZ%vDbM~^XvlP0PvJj!C05GrHC=7BdS7Ji?Y!me(g zw!l(+)1Vu<N=mbjBcFx)Upw$*w!Ye)2|5a+74g=SNCq~pwk=i8; zJ4bfs94Je%xp1akskmFLGo6;^19hip&ATf7-3<_VO0mcV)4m}-y{i+-A-TaayXb9L zX|1&uRw$Nnxu>Lh?~Od9>|e*llDLd1EsPqT_}EAG1ew5+7&y!XFOL&r$!AAa;jJsQ$5SxEf`=hYD>AUloH0GgEN~r%%uTY$)i6|rx1Ce(GK40cT+QyM+|VZ2kx~F z*rxQQEt?f()E4aZIWqe<x>x?AWQP4Mpz7lsTI$amC4-?;1e*WF@B|!&1 z6=V-vRrPFxAx#*|t*QfgU%{@Oz-}*75lRuB@g;sQetS+y@tpSGN9dzd;MWk#s7UAu!46CuM<*Tcr>D6 z&u0&Q@tnX|+Juh!+Q3OTfVfJ8_qnSqYPR2L&A^5bMxQvjcbqCO5J2wv_$)WIFiV6M zA#`EFThoU=KACbsHA~6@qfP-lv2yVFwN+j|H{ITayN_DmTCFd>&ixw-Y3uhN15UEQ zQ$l~AI|B>u}W@8$(`ipHuz<6Bg9JKxPEyN`47C@843V1KH-0|0E zKkQ-I?dwl6((XJ4D1_ed@#EJWw&FZXBGDdk_>!||(z_@~8gE5iGln$L==1{FP*q6} zZ1J+^xNQKYp%Y8|Lxz@c=6+Vj!TlVs8Tzq;Dd~B_JH+REq>a+oJ;OzDR0ENiZf%c(Wu=iK?V25ul90rT7i?B5&=sP22TVu1$z zp?gSV13o{3*&RPaG%BLo%;d>)7j0peN1nU$wOCFRXr55ezjeJVFqgEJYG02#mT|XL zo!3yW6w{C!rQ=Fe=gD(Xc|-{{p;tgn$s%`-!+84fo*IX@=&wIL?7S+IY zS-$!W8oO<1#*m4ES>=H|X@WG^JaP&o#m{OM5Njw67C`hI8a&t4Qwce5oaaSV@k@-> zCVbB#JLfq!>Q(X^qDIKj|p`br(h;m&z03L3?!#GUcYlm+fDBB^n{gGj;-#E zer_X{$N}Gj!9fMDNtnA5lh&|eT!&GGyd$w_?97@E;}ie5`y+J0aS}LngJIA2Cu2Pr zK^Teso2J>Fpz18d+NU(x*a4}koeGXsZkdSI0jN0q=oq3{_aTDl3XbBBl0Nu+zhBD4 z1F}^>M{Qjxvkk5;rhNwnl+73i!^_Zsgeq4oTo$r+aMYmdh}^#n_6Q1Wj8T4Tv`Xhv zPFFJ>n$&T5f^+0z*fxBg)%Bo{I5*+lUGdx^elK62+1Ig!F&Awm_$co%u1%Hzu#5jR7wCvAgkHOo5L#|V8Fl7&`Z#U3vjfs|o!22<`%pKBHNvKM zU4#g+zmWuqS!mekty>x%isoYYNlh2cci?&8_r)m5*cM44kscP~m{0&aowriz9R-=M z^zi7uDxdWjCLWuZc9GuiG(oI372&Y6@zMXcU%a4HXxM(J;qS<}IWz@(((QS$(jdR1w@ur~b)VUc z4tT%`6DWF8a;vF*9A*pbLNK3$Bh!>PyOL(t**G>lwIdP+b(dZDJ5$ly;m+HjiGrtd zG|P0pR>3|SU#0rHDBolW&a47gQO&|B;TehX+_DkhX%IDSCNv>4g=myXvhZSORm^)o49O?0u&`#1bzR6e#q8PEnq@i7+Nnw+Zq1 z^w2X4HJ=&UETuuNJ05bsRCE*z{zWoE=Wo(1hL<=n=I7Ny8rSRIVd&mTY`uLiXR_=% z)nspVbsUOCB~!rlW_C|vsKpt^Mxh|L@MocF^b1*Ls_p?9Lh6~%p8fkTU=}A9?| zr-q_#fRbtgS|G$((22Q6`Z8yu!@VN0% z$2~iH9NQqY(U%kt27^mSBLbBmk$*Y5Hie<4}b?w{DDV^NCGPF@7`|%nAruu zLJV{gJ4+bn{4COcjl*p#`!TBrz?BRPfQo{0@`D2#?-Ee3Cl3yk4{>kr-@cU%9>Na% zlpxPOHTc@ASTDuy?%oy&7_hUm(*=*_rb|4b8ySSP2lHwVaMr(NKu(uVv!}KRKobsi zm3QKPuK@rGYyaA-{UOc;X9o@m+Qz^>SU?~ADHBgNfEo(4l?^wiwhUn2IRNjM!16KV`PrfjW5_lIvbOq>YZ-&mVB@whbI2wcnAh7oHkH*+e zV7rH>1K+|hbP{^g;ReYku7dL4dU|sUyOBrUS{}?<#ku*alG>|dW(!gkUYj7&(bflt zbNkYJrsz|kKbt=C3Ha4+Kmt0C;s1@g-UHX_)T>$Z>;Qs6uxFD?uN>H|#zOk(W%Wu2 zT$v&x6a{lvu^xlO)C|lqLa2<$*7yuv7@29!P(K9yj5azpn z=e_h;WwhoLmBs_l@{7N1$47B|04%W#7=44}5J3Kd1qA?xhzNbZz0BtVdw%K<;#E`w zaF7V!m3x_z-=!9{y~%w)uLTYOKisKk4`Tfc0H3{qtpJdLdF=XozxM0DaPNNQ-|8v9 z@cqB`vQjxSGrgEszxiMKFyYW!>#z1R(V@J&b}xd+9*wBszr|RCKU&6|MUB_LA1b^A z?AnBpb#6cANe*tLZSYfS;5UG-Z_+G&>#%;+S8cnlCv{5_exL0sEB zq&MsnU)O=#Rr7xM<>CHBwtm;xxp@cxfkJ}b_x5xjV30s_dzr&cA@5%+OaNn%0-jsJ z0CpMwBm{(tZ@qS^5-0#FU#1_?A|ZeRW4#g}08Q`c+YI@?dHT&jw!i)c00=MON8kY0 zzy5&$1Yhv(iEHowhV^58cVYvAgMU-Zckm-%0Nr1IAOM03cz5TxPkaRkfTuUuUuz2m zd6bJ2#CO{3%!nWGU*CEI27C+@KQkyuRCw1aSX<8Ol;YA4DRjy z0fO(4E`MAM5d&l@rr8e2^{;=_0q5n}sYf~2ndr?+f4UmKCjHOXHOhJ4jD#v55dRWxf;a@U2v&!dvUM|V<3E%{?&5Y4$j7`#V|R|Yn0w0O**?Gp8JH9}dIU$; z(X^k?y9|El{i0fa)TJ?rZ5$a51M=0u>;(kkPEFpMcpzA_Lq6$Q=ns>ED2By9=W!?9 zi-riLvCZr2T`fztx7oNjCNMpHl1I}_^)>#cCsJgb}|cec_FvMwCE?L$ib!FvD9Xkl}7UzRBKs0`ap&lUtJ4|Hd$7xk*LlWo3$39XMk^tEBe!18 zZJ`pWYe8EKy|g73_+zv87>rj>0G6_{cl$Ym~Z01~q=Dr_EF`fUgYtaKE9y zaorM`D87=N9KkH$d}`_q85FuY#pM(e|GY`s1*Xx(}i6T~D0$dB}GKo`A@As@m4uJM-rgxPT zgVl#Ks|UVOg+?VigRcx{7B;&i0%^}WwFB=)-B(aEN-k-woP?f8)*W09eiATzNFWnxma%8IUO0B0vO z0Nrq9x#wfc?jN!%$PJLVOtMhT{^BLx6$D>Qu4p)SHBL;CvvQEsZxba1>>Yx%#{pz3 zfF71uC!5rxGZ{rGFEMh(%aqihwU=yA{?P0bx+Mjr*6L*i4N_YwfUGc%v};79auIJh zwdY#%-vyf9%Q9VOh;)gIX1}ne_rM4hoNPw!4DcM?HJ zm`%NxP1X3lF007Z#3?;nd6OLK~KOZe3lLu02AYzB_=%^gg<`TsfAwcqkw0#jW&->wWR9lc2pLsqbo0+fOC=qWQxFXR}fx}M$Kg6j(i12CBN7tY6qXJ0zvrL);CL1@_YrvOW~*1 z4}_m+fE>OrN_R9M?cU`ptQ8|pLrb;Jhf(gnL)MhR`PP-1S%1iIGoNE3!{ckl-AUe1 zJXBf;NrVnYj$bM3wENw_8A9O7OXaRSa#T?APB6vbUcn(^&`?Pyyzs4S)mpu^SOGpn zQ(2aN*G-4~y*^1NXT$MI6H4UJp^R}Y$s<55T64>Y?~ca&XOG3wL1zq6EoxJiW=|jQ z+2l|pairg-hHX3_FpU>VEF3aN!j3)qU_8ja;23p|+{>>Ow?<3d{v3;$DmLm!_ zzNz{w{FI$4Qd6@c3U0-i9 zeVa+BZGsxA(z>of!6AW>YuDh?7zw6p~L?6vlj=89+!XV%%6NNO#V_*V#cm<~Rpg)_&iU`kyojv#|Oud`i-XOF*k|;enXW0(CZ3yXYT!omP7ls$gkEYX0Y?MlV1^NeMLlgl9rl zWgwlhU01v7QKp{DENA6`u>I9}l^kZ3zT?cel!8BkJ64gaB;g*6Zi>9Q+ukMkB^hkKPOcf|ckQ*! znvZAwBD;9neYGvNg8n-kiT>*9Pj%EFM@}O4{410qkD6V#J-3D1rgz|DVUCQJL3}A0 z`FX{~D|hryD`+^^=0=U)Rj>EWZ2C*lfnq3~xa4riNwEJOP!kW;H}K2^n%a1P^+<`@ zU<5nnL3{M@Ay0qIE%9tColtN690-SbhXD%KeV1egoSte#KK>kfN|*5XJp(y92%ErE za*pVPHADmozx{M||LUM9bI*+0@x;^mxDBI>-$Ibmd{u<`f$Eg0*>-WLG9ryZVs4`U zrE@D|Q>~^$=a!qS6S5L;=UnY*J?Jd+7~QlH^J1V%Y%-tFA#92Ht|nIm0|4WtvFwXd z27fPy>Geu$6oXwgdgP$3*S{w9*d8ZXD8Uq@SV#d zXj0z~Zb?SM550836CmbsrbIy>HnnqCccM?yd|1{uZ7i$PO~=_Ph|4orHRy36e*TYo z9JS}P8y#)vAU%fSmcu!?!kc(xM957lS1hY~s?Fy{j;EWvi}b`0kXBUvAxD?uw(h*) zRP@---P~F|)_YtZEo4s$J)?)MtLlj8z|>k%x26)|N34IQZZ8@!#dD#d`4lIUdibI< zTeEVvz`KVKvF`pOh8%KgEepxtc)1V3e@(5x3NQ-w_2C$JX;c$Yvhl`K8Ec#GE#A$9 zD<9`1l%-~BLu#NUlPovgF(CKJ>p`0@F*60jCI7KC+tP!kV^aw-$~fw46c?a@u)Ea>f#?EpOKEU`QDH(sr}B z0brQ#xRvo!9`Dp7p#&Y(5Fwl0oI7dpy;=}>SgJB zuAx^}Hg@Y*l@tSa*3l}01aOx7WmpGTd_PcpL1V@iu5VIRPd2{EmM<4sPKnVlV?Xs3cUW-4XhAs?r5{n+prHMH4L2d{N3^22JYpXbkCU}tl!}5 zw}>eeJ+zxS-UX(a^yawC*WHF*Zn-RnPEH2OYts$v+ z0v@QP^NBXRe7D4AcUY>}E}IA`KI$+77PjYktk;=OMQ%auGRqNW zgIZJ+k;P9`0t^7fKZ!S^P>NU!s`G+~(R}GLlDjpD8fi2PQL>ehyCF_XtC#@$E*`c--Syxi85<+JmniJt4d9Jm>gZ?~ngeMQt`|Y;;>!+8RueSXDOKlM9OPb5kBo>2T7P zq7UhJ2FIF$(T2Ph`mg9Jz>>P8c}9Otm(j#dmHpavW;~nsM8YWV9pz#*y+N@y6Si1` zMOgjO)z`J^s;pPod~{NEWg69GXk%aVaF)#tG`MxA+m9^4Y=l{Fd^q|iK5`_Gg^?s> zPV>kKOT8pu2KboG9Na*)-G)w~Nw6HGqbsYpVXlm)u~`rSUaW|V^m^2BL~G9x$7?0i zlcE+0MH8Yq87wV`rs^9Sk2yIs0z<8kX*=AKRz}PwdsUkqL9eBA@u$9QjM<>RC=&9D z@>}63oF+aGe36)~B`Smp4rm&?0?Y>NsF-L~SN9_^X%BZCY5bQQk5x}0ivr{%2OBO* z{@{aq+DY{q6J4}(`_5@!i+m!=Nn`---y}uPTaS(L`r8w@7 zj9Falo2bILyrR@PY%K8n-vdf7EtV?Vk|^iuO@GasF*@wD=h-|n{~ngU^!ydwW&5$4 zZK~0Mo@kbMQsJzlP5FIoWHrNN-WzI~|`6P|s`=96}vxJIWa(ge=%RNj9}h ztqk*!tsj7gQV906jqG|Q3Bw?t_YmH<%irg@JstsR2Nf#TRQVT^K;_7k0bh{JlFHLg z-Jg!)$-rC{$zsx<`R7oh>M}8^v5QTfYLKr==Xe8V>pe~@1jEXe?v z`2^BUO3GK|$(Gi1h>t>?SlF4R$9h+LTds2FT8BI%qoQ;o$Wko6G>yHlfb!xQ;B7E% zjE41#A-l}q>I=L(u6pEs)U_i5N+{wvOwx7g4ku4K`Rl^{N~!-*ewaA-O9GqfW=!Bs z_S7HA7R^#Emvde$R4E>0`%#qPwjP?(F$i*o%r_5;skhic8BGvBj7@J6DwTjW%sfhJ z6YBERZC417g46g4^opPUybgXtVnu?>tzAjiOR#L9`P=cys5N; zXH#C8y6}K8SaRTyc4_-pI~XJSx81YTdJ&sC>R2gY-6Cfjjzi ziKr3G(ZP>f04lX+C@5d>oq$j!Td8i0PSAyrFa6%f8EIX_6;)-?x*^ zj2(=V+M61j%IvP<6?jLOM{l(9Z71<*!612YFBUz#lo4`-RF@#LdR01rLg z%;tuaCZgF@z6xjk*i*@(mxH_tCJL5+A#U`AaGi8-g2odldPM2ZN~}pwEntUvNss6e zdiVW)L8Z>H4YRZ@g&~#Jb7!`;I)8mFXR1h%pL}fa&(X^3$uzq?rI#q_D$$BkY*$cM zWW1%J8?)-(-w2WSk9AV+>R2d~<#+qkmujS&DSdF?v>s>n-mr!Mdox&+i&rraj;E-P zoAh5JTkyuU3-SR`tyK?W+>PuQZedKuh7zn*t34OR@0lnen7hf)r*-;G@(FmyW4tuW z-5#7$m(FL(FyePKIsEs4g$l9lFW24E{eRsoW|o4pYfTjp01p|m#UzhKxmBA?bw3o< zCn&kkleA7)p1m%EDG=pxz|{B8Md^|DTaDR1^yFl^AQTZqN|;EdwaDQ@;};XD(8&WT z+GS!0uX0R&dW1tID4i3*5cn@O+nMqjjAFXh?hb-}S~SD>x}JPHlrD?d7=MvY@^dpn zs_rtx*lWg(9pwq8_(x{dcq+54_MCsa7UMm#i<=rIL#y1ud+;joJVzI7#=6z1w-lQi z#V2#TRD+tG4K%vjI=~!zUzEDZde^)@H_#K4v{P)SP1m&*+(@?8)G;&JvwI*<{XhCH zM|bK%Dc>P31NgkJR~~xmWPDR=(qzO*#ta0G9x?3wCMz0gSP$I{jT1bY_nJ`boq=x7 zW+9n(G_}2RLU5;Nl}n(|Oc)e6ecb-R7C*4SuA1oYG>CUif)SG<%N- zqukxpGa2=z1X@|5ZlfO795q!nYrA28C)rayJ38+-a6P%~jIkYQzP)fzpDDkfVB39p z1F8nHP>Tv?;BdYprHn=a+at&DJ@U6+v00X^I1@6Du`X{%nYro1nsg@ZjeU0;itYcf zzBoH@ipX?nVIk6byZ^ozhe14w{9REmyKS(;WMtiHJ-{>gG*wJBy0*(rv4JPa4YMxQo4y_rBTe#^Rq1{&WqtOyg(e+FM&qxWPmb+g zVYc5YQ2Tuu#%T^oO=+LsiF`%{#Fu7}&|aIn=}t%^ew`0KGfSg6WgSc~x6jvJZe(KO zE1sSW>dFbhi$s|vU;;~qUoH#qOh%3PRFrHuNNifVowjKg;dd_=Ha;&?jx=hP?#xoz zrKszWKj(o(Uwc8p_jUwop=<3bTjjeJ(M?D^-waKM>fji?m)5FhP?|MW%r`5_u8HW} zEt%Ttz&DnrMcl`5QCx%Cp6#@?_@xcnG^uz%V}@ka#B$swytP57Jd&#(2=voZz)2A| zj9Damb11%_bJFKiVxghPwU+pIsOv11Tp7HdGsi*M)V`m$sBwP2$$vQccrWQOmr20n zD;wID3fI^yQep9_V-PNu@79b}*Y|!UD5`QcuOMS>F#Yb-#HC8NGWL*J?qct&F$2h$YVP)+r5WFy=A zB)7V#bBGUP3#^rs%|N#Sm_ys6#tO1>T`s^6@!l(Z6LK@f9SQSERHqW!?RJHz$>zi! zzW>d)qC+n4HhzI5pQu5~MhEc0ZXkJ3jvQmu4{0m{`PvDxRE)eCJUu)xWOfQGrKZWy zc8A({4Sb)tId~z0OX@zO^6e?1vUu7kojT^0gkQr^q2|#0V~N6dlD@-crI1>xWvHj* zr3*kFR~qwYzOwalxW+Y>sOh=WRDROL{nN&6eCXbgnB>!1jMVbR9cgbpH967sz<}Ii>K+Gr6<3G@-7HI~8wUn#0>h16 zXi?8^Q8f^ZRZi9j{y9}alYNrI>jk>bNqLaMu{gF zdskM+7GA7k{b3j920jD$>pCcZc!JrA5KnQs%b4D(_|@zJk;6>x#TSned~sBbFVYGF z)_*?q^TYzVU7mzW0~`7MajA&v+6iXMr)7ZSUeNb_uxssr-!&<))?*dlm~v)S2!VL{ zt1R-8lQxVp%cyEH(XFV%#5_w_l;{>Fzpf7K+nG9vV}6}K;6hYe1$8WjYY;w!XZH%S zjc-2=$jI^dA*IH*&%zb0gCePn9WC30@Xpy*a>Tmj%FmoOzGcKTO+h85Gx9exc5_*{ zvE<~k)$+NK@SC}m)wQN$EVrsQIs*H#XnanSw%_-$>GIq4CdBtlev~0B%&()ht%A!^ z&8(1L8!Jza%2xp|m-Gbk!d5z|rk~)B1=1=WOSz-&L0b%A^X2h9UgCAqS>6?)AWumn zWEEp<07AAER-;{W)9)^I#B@oq()5pu?DKAPv(w#7xAnryl-p&LqzoT1`#i(4@d$Wh z2#Nhx357j!cJm3>bEN)O!4&r6$C{llNt>~0bmzM4Xh#4W;yzFRRqv##o751@=SE)%& z4Q@K;9@}i+c!Qw6;yTtQ#7?V}Njt*z73v4VkAi__M+(T76h+E>uu7}5nA!c~k(P^l zX=Nu&q~%AqCG;bOd-pf=8$n&)s%lfn$&C!`yY#ZutG78mbl; z1aaH9Cq+rWRJNFuT9&HTfNuf6FAUYtpSzbrk#aJ0T=zUgBGoDR6TgMtT?^3zsOz1h zbN>N!lRr2+JNO$7PN&IAh$ZOcLgUhX;l-_R$=l}uM(XITT-PYBpIf=XT`-kKJ^;@$ zs&tVS&vBCzbCz~wdj3NYEPs(M*0_HREn(oE02lCj1WjyQu}2V}F%!&L?j}@fQ}biC zTcT3QwW+lMQrc|feNVkN>~RIoN(86trv1Vn;@B21zRXL`x0oRBiH-7;AZ4Z=yrH0v z4xNc$bE??W&~^6enx@H1aW8Il1qxSY!`a1#S%1lUt;(}9IF!0C{9Qs%j&w-;6-T-) zouZwt$reka&THGoL3n%ly%r-XM?7uGRLVNiE(y3k!q}RY{E4m) zE00;1sg+Cgm{@UyolaO({++Zwj?a7OMyNYG330yjMX%JIY9TL?TjNgS(9|Ix0Lpmnr0TLN)1>L1!-QVD9@9;&{q+9z?ll`aX z!waZo4>@vN&W=gO<|Ps1`Jt2vxCpF>(u>B39Ltpo>oyUaep03rPf5`fBvX2mckuoF+CRW3udg=K4HY*OZXkej97NlzhC z_7F96SbN-E7)+JqguX^N=;EfE^MWr@%LTWE0vn==^5O4NE=PeaTTdg!#T9BnGK{{7 z(<}MZij@BRDMj>`1`GeA3flpxald$O-rreXnw-o!&K6pD+}%x$hg)qptemM{`Q7c6 z(ixO3b>h8JJ{+zWbt7f}<*jl{T|T8*uNF4agFlLM66&mpym zQdc)H(AJ3R&E){elgH%usjhocnU**i7Pnc z6TTfHg&wn8>A_M1J-RfB^T9Z=w7Sx$=7Z^mK=vQbFv;pm+ZoAhid3>2=x;U@Tx0z^ zdLNBxzra+<82^`3f#d(oBe666H-Yqzv%=2F`rp<6&LeSfaQ^=}D{bH^iJM4lGRSc; zPk3=Vk^h+4uXLmW{sIyVkhn!s$VIPY-4Xszbh-i^E`aBiyap|Bf!5OV{Gr|^oPg8s=g-av~1q`1V;gaQEs1rdD(1r2%F*o+yF zfIhHCjhR9F5&zLvE_yMf91sv929g3KP!z$zKrK9l0ECDD2pK5}9VrC`{p<4bj&?;b zbfEHJo`AT4T;2dP7$_hDMoT~*??QsIb>qr>etbb3xEuh3Nl1r1{5pYAwgesOfDxeP z0Eu)3Zpv_R{So{TrvPDuK7Ob{PKD7)7KEh)`ZhN+@y}xR!uqpK+uZ?o42q!p5P|{v zy9HwW^+|zU0&ep7i|-HX0i$&L!h2!F7|4s*5#WIG03g-?K}7R(c=BTiH~^Zt`y_<1 z^G*Q+e?(V)BKx4QieEJp4{gE+%fX>RT9*KS8 zx&R24?$Hq;1p5?z1n3DcfSSbr9YZ*fGAaxJ|1zlGr7#EoAl^6#Ul5FkO0fWaLxs^Q zAXk;Z_RgR@36P!IucUs5IN*ydAJ89`RamIU(2w74Cm>Bpna|V>#+%pP{f1)(3Wj~HJa0Altgj@uH zyVXm6`4x%~&Vf9HUB9zlZJNCDlKi5wsmIczUkp@KLp}gMK0`@>+@drB0SO5S7y>#v zD2OjN93O%=dA#4_N@>LsQ}_3 z$Pe|N{{zARa*RO&JqWsQ5DWa0kVpLu0w`2@C_VAR?F}NwiIMtv&C2t9eEoPG1_yfg z$GJm0HGo^#uc;m6uCYcv>w0e)ty^8`EI_6KD-emldZho-ZE|c_D#54T;8atNExDvu z5s{e&opZ$3kNxDi7>Cr9Rh|_uD2K73%6UMA@#DR91Y_hHu*fDKS}bIjlt+Ta2*0kX ztKvwQKI!2{y+vL3X;${$3|VVV;sI#`mZFzTTRe+%g!0f0!(_D=wMvIlm*$vV* zb;q(!li4!j0p{;jx(Y9Tzv#4l=5aPLJ+__M6X+Pz%vaNo)^G*Egl*3ybKbF7K!6oB ziZNpbiq=(pQYt564G1Y2;tljcU6k{F-jvxl@H&VKH!p0gQG)2%NpzFVd1jdBOz+xR zX7=2ywmGZ?3SOd>oTuw*KCk*~!y03eN{mU)N)-3SM$zi;c+#Rz}xs)pd6M zv+GO$FIb=IiOl$1WOqs{E^&8!DZ`2}*x&OwkjI&-!JnWZGuZjb*P@awDx)#3Y7dQ8 zTJ?Vk0hu^MU%V7wuhfjD;;y3s66vmT2*&`%^RD_AI<3$fUFh;ssD5S=5fi&nRG8Wn zy}#XFgvc92iByO*Zzdl9__ynO$~==W)vS?aSW7_+)}DCdcx4$K1m{UO%R<1@|PoI{ADPNJ!ZWytqx4+D|e0 zi%xf(J|mgq@;=!(<(+&N(d?-jr6w=LR!YJ&`=oIdCGPWV#mRzyEs!e(^ZtyALeq7< zW-Bias{;{MQlEos6XLOXMR$_Ulr;TT2~gL&*3~cw++xhswTgk z6w^QK7y7s7tZD0mYPfCRCl2abH;%eYS*yIjv+%5s&uq~C8f~3Ivs>AdT~w<47g{Jl{ve> z#im^V*Ah5A!EIG4(u^*%35L?URZ(vfw@B;+O%60uJ%^U&GF$JB_T+ec+opa*5}w0r zA4R3Rn7ww+VhZOxWW7?yZ{1Fencd0i9le3u_`Vwj3BrfE$Jxh1d$j*OH{kJ%Fa&foHE z0DskKYeS#s`Bx6;K_GHaj^@zp(O{QcI#D5E-Ei;J8z`p*61cQhz`|Uq7)9L?cvDjF zHZ#wNK0DubU=2LTBoXc#8xs*g-3^Ph5BY@W=ByLhd%+b-+`e!Aq>vu zNSg6cXScEq)0^%}X#Hc5BvBKz@R$DtqHtYs_3y_|pR9c7#hG~WR~95e`4@1on<#$C zgH5v4DD0sR8T-F?kFiW8so9mhI{Wk?v=?)%!F4{{W7YIk{pP9pN)b}r(p$Be2(_2H zd#u2~NGPm2TI2m6KZdwF9OLif`va42E>nq8MCkyRFTD#ld2E(K3m(w92D1<7I2@P}{cO8a<|d2!o(H2@_?qqQ>tm(&R#YTx6mp#zEtVhZ9V~O2oQ9e^*4vEYQ>>e6`ELHe)WUeS$ zmCWS=L`N{q5MP>pCuCQv<`1UhF9rsAhx(X0usqp47Y+4mn!qDGN5?x%WL16tZU5atjvD?!LY+ zMW;xz`v*M&E~LRGgpUT4r*1Fus=`HmibH+qw-0sESnCA>7vzISIo>^1qJ==AR3Pn* zl-+^;SaY^&$(r-m4wohO28V}Pan7g5e^w7X+Wsqwl-IvGtMFk&Gpqt8IsH+7EnX4L zntOxvF0;C&#qQ~BO>%?LpY zsZLtSks~RpwA1-+>4Tc)7y@UkQ69Tf;m_#Y2Zc~U)W1;K2sycKL6MwxucjL!jnT$~ zH;c%;;)XOuHPLuOTu@jxrvks}aiib3^;S1>Ajs;c zaGQ}LW{EhBAcwZ!XqY4YzG+Z6bv;5!s>)VsyYSmL7o{AU9*pLG9DA zmWgSi8~4_M-gvuxFpAZET!UVo>Hd+KD~*R$T;XG^8$y9>w^}$28ldBv;o`)T({iaX z40_{(gw#PEK8Xw)a;gm9k#~#w(t+{HIkB%+p`82xR(`I@Wqve4aYOu<@ji*Mp7P?` zwkH%fCN*BJV~%(Oq_qb=P3DNju_MH0Dp2@oPb=HH-x=frvRynQN4NL;$CDr@2?H2~ ztX?1Ezi&+1AZ=1#>tV70TLhoC^XO{Fai8G`3<{DMKzKf8hmRaB%Ej{4^FdwHloR7b9|%K%IQ@$&^YLT=IzPqtIcJ-ks!RDl+jqh(2Wsj zS8)(IhQxMg!Vg9Gopk~lJ1Fd>1RYhj^+6t4;XrmSnq}mi*v1@(&DGSK=8KbE<|&MD z1kNt*(R?_2S#KjdJUEXIHa>-1?}brT0dGb3>!U$^0{L)28CTo6VL!4y+^c+eSUTA! zVFKP%i!O#K7_PK_3x||z<1&`q%B{&5k|9h|Y`0^xT^l$rI%DcG&0V6l3LjL;e7Eo4 z9ZPsplki7B8B_ay%E<rXqT6)0F`{WtGD?2xkn@ikXj-Pzh1uxk>FDK;enVK$mGU5E>3&&Q z$xfsc&5W=0vv>CRtw|SnvT(uaNRy!KDGQp14 zo2t!pfEt~UI&N6?owMLYQR`{Nix08==3AecX)Nv*(qAdA1f~->;1L`^!9PP8@|Pit zHAbkjlbUah$jQyf)JIDRjX7vOS%Qd{u$R`DP8+fLkDN~6F%Lv=IwUJZ$xW6b;Ehj> z7B*X40T)j`P3fPc9t%=2qL-L%q5F8*EX_hkHLdRzMNK5zig5CXFk?%^tTC0a#p0H> zcsd%(I;m^?PB!Tc6431zW}Mpg4boWmt}YvQSeJv4`0$?f?8{L)l-0J8X9cX5+C&%K z(a*f!$drhq4NcfZ+1m~zUN??f7I&mWLRWe|oGC4t#cSJ&X+x^1R_@P6+d|p>dKB%Bg}Odt zy~Er#V{;=$RFR?K=(nJiR_~uIuE)d7%37SU%s9K{Pijuzs%)z1FLOKjg2NJ5lf#oh ztks}CsUPGWuxhj#Si~*hiv3b;r6Wncm5Xw2Znu0{lF||1c!74W0MFG`L@cG_^NyW8 z16Jr3?&z5uDCU%BiXIH-p*3}x%7k|~C*_oM3D_b|a}FoXzH>f^Ma?!RxrNM)R7C9f z`0Dx2X5Xq4QDPZcOOcfOl#(O3kFe+5`+sF5-3lkC#t+_~S6PdWAJU^E3jw~~rXeQe z(^AP+v}*?vOiHGVefM_BBG|ejAVa|~2~2%Vt%%y#g|CtsI&;<#{t$tmq3pSWBE*zj z1}rSyo}R_h)u26uoi__Jzzsq@C9V(0OBh8-%d_%Z(w>4#pDH^>EllU={M)q)?D$bi zi=N$F;_|(Iik?dJtJRn*ba6!!L}ml})D)eO(T@F(f|CYhI&q<?nOz5*Hw zLDh%N-6Q8xAvDmNI=~3NITXRZd=o8rt#}N5?&f0OD)xl&Y!lhx{4Hl5&*!?rm2?&3 zFljf!tDoF${2W4VpWML}<7nYK65vdTxqLoF$VrzBqm<16e`^yvy|L;g&C=if6{#mU zkt&T0YTH_kQqyGk*hb$>p$t-h-Ny&m%1{l=^HAUF@BXFNOPxgIoLCh1IKA#{dxJ@S zuXQv(Yj~?u3xMV0q}XF|`s*w#QMg4O2D()B{~%p>JE{x2s!P?Nr#Hm;+nN-x-!MoV zQB@t;sXo+8$?LEUO<#>v7u6LY8!vT*5??(t3R9ZGF^b*_CpN4;c1$8|Fo>_34)Mf8 zNEXoup7?NW%vvf-z&)ynLrLPH-ghW()7oswjA}ss0$w(1ysqd3NML>S&ysjtKh9E0 z;aGNC18XGIA$h8HnNk%O80i-d70MT`N%)}5;J&>`ibTv!KkjxXnsSu2iaFV+L`;9EhTrMfY=0JzC{|&)Y|c5$ z_)%+f%e^*f`fC8wxKbhUbVLz3{j#KfI?7K1dYPpH##zj(Vd5Lb!8!G4-dRow86I>Rz$Ykl_=SeFrK1mLk<~r6D4a*o2FA4-l}*-eO%+jAdL&9L8yL znW%su1{0~(0a5Gcq)TrH zcVlkyC8H+a9!cz#sPD0Joy|_O8xvJWhp@HRFFo2W`TCSQo@MecD3WLU6&rQNjYZkr zc#QL2d6!?{6s|t=`pse)?Rw@=hOYj5c0g`5*(G~h@2}FCaw?wFojkYCS)~QN9-yJw zYlJ;_H?cnA`wt0f>TErLb^D_8X^H|!9f{p&v*RRIi`1AP~2HaRjomtC~o=3|5A2{qyR zOKGa_LbWR!2qF&Ytmf+2C zC!7utl7+>$Lzl&zgjx`LPThT?~#l^@0TZkbwL!ag8CAyM5;LA*Kb{!6Rvz#g#O(;>N{b} z7Th2R$>)8w@A8bYJb8lfemx}i?eNfV>lx{-Z-jnZ_tjCVX(qAfy&-Nwbc~MW*p6cx zJO`Z9t95mlR(Xc*{kVmUmd6)|GzK#1Nb{dMo6p2OCElQ#7p@XkJ5n;D`!DbyzYTz6 zr9Jp(J2z<(nq%XEi-0!?)m1H{9>E<2=hXsUjThmVVm(L9!^pcdlTkMD<#ju7a2~ak z3Yaf{WhQhnSzvk{QMe89_Oxf?Bb(bH&sM$2t7QwPeTrZ%x{Tk#%o9E9jsw_8dxqCc$bV;?5mJj`og;Bk* zqV5CBd=)MmzTWvVUi$4NDbq~%r_qG2&Kgh$^*%bs)LY4dltcbRhfY7H7AXa5HX-5P z6YXtD8w7_;Jzi@3Zbj2ulZ4Fv2R@uVInvzLGNZ)0r?v{~4CmWPu<7+{@ZL)kSe3JG z)oYYt3t~G(T+GzeS)y>?P1WbIhBx&0)uB$~2NKx+y@o5?+=Yg==RJQ{?GFbG;-yv# zw|vv#P#XW(4i!f2UnodrnVI-~!?jYhrH!@j+oDcN;8a@)X>zs3uQT|G0cbH$8l7H$ zYfUP9Bb^=-<;OCzx>42@^&2$4#^+ODsA|DE6TKLRHiB|!%E)1 z7o*Icpul**;4|=`DQ>s-_&IyQMW*k7`?fIEjNLDlWjtIbH}%e~x8*F^CqVx>M9$CI zceFHLb0ln^?hc|HkSxmleG=tjV9EMSW9kVmoI2_tBvBso{wqb6Jpm!@UTncqd$l5z zEzK5q^!A6&w9TUSpyp}tx=xba=vt66l_^5gc$@+E9$DT(@!2C-t-DOk{aG$98B?B5 zSvDfb1|`<~lG8Onj^6R!hTI1l_C2KJ`t>8=q}Q6-*5yOcxraFn(~Y)6j5Kt z@sVVHe5{8ch2`j7%nPSBK0p#f6`>MuZ}sEyU6a&L(GJcfG&}J5%+mceA+X9~BG5+D znSG(mZ)cmGNl+vk$}0;$3`GNA+uc|K7<=V6&(vM?vC*U2TfZnHHTmpG?_DHIgmudA zp&IZ#kBxX>c2S=lG@3B|#Wi|;GAFCMhCz<+s3^xoHm102m}oVELLQQflf^O@!BKY8 z?u(;~Ca7(Q3_WSS*pBv7PORu%+N7Q1ya!rxEB`F-dpo=tg4o$Xbik>zy;ZJrx z|0;}=)$!`B5#q5L5Eh`kG0!TrwL4hg?nK5zjd`0!o&`_tfX`MK3oVQ)nLM!`{gLzy z`qW~wV$Q9U@JRwq58c3g^b9?>K4TAj;Y0l~UF?4-JEs`Yf;L^ZZM%E7ZQI?uZQHhO z+qP}nwr$()+28E-J(Hh<|>^NhfrsC$Fd_JDTNa0EXQ>7P& zDh((ze2HfmZX($_@EMBHAH$#)dx%UvdvdBqQ%*SYV*k@! zO3n(at?;zNd+o1q&%G?crka&ZRCck|ncX!u^kt zkJ`yLtozqr`!D)a$M_i?Uvepq@864j_TL~aWTuyW6{X*o`y(rgHMg=Y;%8KonVyuN z)N|+eXb}^-r&ucymYdi|AD`|=w;0YGPkRFjtT z4c8p1M(xR&yZSpZPJE|VRL>*HlwU#y#4h7S2`Dlq=i7zL_U>Hh)rz7WEmx@=M?f#e z1yTWgKt5|23R!U}fM_oVQMb=f zX5v@TX%^L`f|T))X3P_cDbRb%F;d!JLG}kk>hTaKRgfX z6Eo(g`l;VbrWH6K|I9NZP=Vj^_JcU7cI+@=F?FKRT;XqRIL$vAg zQ>g7#E;y1FYL?7z$+OU*hh5Q@;z0+w@|>Gk`$5Q4pYC|Dh=;b)hs~>6oCpY4Ukp!; zxbsk}n5N(pq$>LXt~g;4(2|X*=%KW;!|5RC>|T+$5|T2YI%Z0$a5j4Fj!&+>?@<-s zmMxjeY4149wLXDuCzDhp{1|!sy;Tukf!STqzgf;8Ee#Xe{BytlJ|Ob0pEd{UsN`%Q zLO&13AB9NOBZMMgQ%>=8p0alMlPI#y7TS<3;9An_ii>_3OvdPqYa_Q9p+bf+ocKQp@6)IKozngqG z=>L;*hKYmWzr8Yy1g!K-O#i+5pUxRpj{gIp$oZdhX1j%EVF+SDfd9`Eo?tCuHxX_S z09FD(K5<+S+(IS+!Gb_i0ZKU#;X+a16QKx*e8)nOs}1#O)@SbPh?}iZ)X}Enbn}ab z=j?lM=JuSh8fHw3kXfEQyS_Yv8eCb0tpNovNZ_!5ULA&C<|azGqrg`%;MNHQ3|hG8 z_%~euB^coFJ_8Fm-0Y%Qp&ut6Ex){dURhFBSrZNh3<_|d@vn%m;gO$(oGdX;89dNM zo;(D#pC;<{NuU5H`@!Aj*CpZ@_#t@2#DoO&w+uLCCn3E!1`6m>=m8F5%^R-19C{uk zR*3MP*N=RFY(HYCV2+q8i8uG9dU57KR)6MZ_Bu zCPW`Bv$L?l?;fd{XBIk2Aix12Ix&p@zyTAtoE->Q*e;G)K{YtDolxFS-184Yke}}? z7&#Quw`+UvdN0%;`QF5QdW?-_*oX�vx{=adeP5ej)gve-aL0KKUCR;Sy-%$f*!d zzBqarZq8k&Be|T=It0Wp{F^H`HB6w>puT`w(PS;6h);5VZUZM&O@xcHNS>WqU+vFQ z90mxC?-ehhugwZ(@QdL4xAq#5yxpg+P#@2h@RXdmD|}GPhAtEy&=ZrEK2N5mJU?Zsip8!pN>=ph-zoug1E;Pt%_0Z`lv#20)YJoK|LfISAhu;1=4 z+?OLL0xIZ0JUz}F+`gYM;Ey6MJkix})qQHLfCum&y{;Ew|2^GYU%vIdV^Fa|Ew3M; zU+-SR3ek&-6wUx&(jQkT5zuScCuB5m;9z4C690k%#sq$Ib9KEwzDW$hc;8KcUour} z<5;kXpK~-{so#sW$6A25pNv5Kw^Ik#m(Kd)cJb`~`xm_gt0A79CD*NI>0{oabN zUg4izSaY|wwlBEH@0eeF{W7YB;Zr(5It_T79e@wBE?Bu=>1O^fhH74*m?yjM+cH+T z2(|#m2|zj%eR)U(wFCH=Aq#?TL^~m3xRWW9@%&|FZkUsae} zx-_PrZ~x)T2UiIH)>*z+WwHLbJ6&Gn#3Ud=28=RzfT+|&jGvxw;royvqAp)5OmZN> zeET;P0-q6pJRU6IH|OfN4nhd@Av(HmsIQT`I4Y!L|8LkYL$)+Wd5;hxx!W|=b)=bdjtz5r{{!%J zC5mx!hqPn9=VkZRR(4D_O0K@bq#zF9$YY)7B%hecsGj}GEtkD>?RGHGoxc2j`^0iVQwB^#|@`|7S&Dd4B9d>tC$~yS?k%9wF;Q z)xjJqL$66+s}9``GD4tCmAtZlgWD``M9FpES!9nIBTS~(zfxw)SJnuBHH&5Qgen=O z1r&*Mq0Cosvu=q7R%4-G9=ZAl`FCyg+cm0VzPA#rxUu=T0wsa)6N1=D!<@+}$E?B- zQX;OSz1&Kly~LVZA0%gaS}FpSQ!2uS17PRC8}S4V0G0a9*iA`eIBhP>a(Hv(zQLst zhYX>g3BjAKd5_A3$f@E*5be+e(qxWO#uCfMTTedh{&HGIfFK=A*mzP=sN92Bef;qw zIzk&=mc`%Z44fcMZB~<=wK22-w#FwOBHj&5Vq#%cEDf!AH)(MLV#JnSnO?K15RzLu z5$tk0najbkJChw9`hv5^e)kxqto`?E$oeL6SV*)AGj6sUKyEq+NO|G~*ZLeNdQiyG1xXK38o>NYkWzDNPwTaVOnv19reS)~GnI%?w)E$1o*59E`(|mg_=Fkw|A52#@4>3E4fc!c8c* zxhw9Z+TE-%b$Ei#wM*#7dmmzM*=vxG<8+RV$&Y%8RVkmFD`^)#Qv1bnL~H` ziPtGfMx0i*>{2q6&SXEIe1kgBzl^?`LD)d^uy+X$H$C1w>bS<~kX8*D5$%^vdI2!C0Nmgw+wQT&~=CQ{J z6}gZyer|n9Ad`D)2i7RIBdU1o!lk!7kz0O8#%a#r=Hg3P$-_-LuM4I%7XJjhn=IiA zmhE$%&ilxK?u=CgLK?w#K9-*Ux zIAHhiU_G|Y?)A%rpmgrI|t#WLc$n;L<{aGGEmI>eAe8MUk&Rsrf)8hEwoJdt-^dM_{ zrqQo@3g`FyrD<|cjlRto&D>lb5?+#wT=cNt7V#J-s%6DdfQ@L|Q0g`^_XDiZ7CaK| z;WRC-G5YO&nCjd-3JwbpI^tJ`T#h5v%S~#B&uynXYf7m`uaPH)0u0KZX!67r!b@x0 z)l}=|QxRlA?poY+u2R9s0zo^AQTI`h>k%?S( zwgs#SSD$5v$RWvdP0hqMqM~i;^2VBbC{y7_n>Akd09@*Bw7%UTxQtHq*{%osHNvi! zpViQ$I>3b-rQ`J#1X{w{fX!7l$^y(JTY!hQm`I6(GD%pCzm`cU`VmBs7Y3^(qs>g# zI~a6MEYL1wP3OhyliK5`!#es5W(mR?0M8~KVKZk}s8!^NF-*(}VTkG)h*DjjqDrgT zM%9|#TVy#rnfX4fO}%xuF?SL$z4ai{yHU!3((`pQj&YCJt@hzPvpK16Sl?CDUn1%i zT9?|fjq$;%sFJt4A1h{dTWK|?dT#w(RI=LXLQq>FA!s{*kMdVEknQBS|hdiI_bd(mQ z0GoYNGxV6HaO`?D%+lQ2rxslhqo2+78yJo1G-8GIu|<|dO#!3$vgNFz|DNmS8j7HG zg4WG-OH)N;2YZ~(dMGq+Bp?YL>xN*U)stNr-v)I>>gX4C)R$G>n05}IT4x%UlGIGq z65Jf5+3hM?AT8nz4|i~X+!iCyxSBZ2)X(0V4TEqSgr``}SMM2OtPDJ?^=K%3O)5*L z-bT#@XLN5x-bERg(HWO!d81BL)|rx+$WOb!c4I3mS{u@NYZgGDyLQI&7M+wjT!goa zTx_V|aY?yq{!{E74~z9eJ^-G51J4e9>jJ^%ZpK^f$sF+cV1@jis8$9#F67svN%N_Q zP!ZOQw#^m+Fmgg1wUe&?OFNIp>n9Fox$MO?Wb86qJxt8HTdKJNgfMzLnF_ztJ4Q(p zE*Co7m|LWf?Bz~vEdFh1(VMH2+ej@I!tvdoCjwp4@y>Id9|#^8TEW?6U1v3zWGgPu zbB#gVd^dRSfHPS2CKZmCfjpoo#!Z1|aFLq9;Y`lsZSIjZi&aP8g?GM~ddBDqjQdE)Ah53~WliM&qP6o>?L_p{$8QwR z*CqGe<{ZuDqC-$WG_vnw>$l)2ME}=IuHO92_~B?l5HmE0NswbtXKPMy`pr_m8S{Lr zFy3cifz878~IF7fRtfB0JFo$;9(@z;Rx`;|S4VO*nf@|@`8^!CU z?vcb{x7=d9Ka4*)Zv@tu1=sw$c&>E-O`2Veila(zro73Me8btQ6( zqIhnZyW;Q1UMkjbJrt(G?xa+MGck$=-?He@@WWhPAx3+^tjiRtbyrIU?WRN0%wyAW z#rp|wmJsDdJO@guHWrpbX&x9@4^Th6+pRIsk zlr@m^s`|=x>Bpre*ceAV7XDv>^kZrYZRkyMirE7icvWlXZBX-N>X99u z{g4?6Yzqf?-iw5-Ht?j06=)$Tk=S8HEcv6dw->u}5!7~YvkV?7=QJ_rT%ewnoT@8t zc{Xj;wX0|D_TmQ^miEYh?UeusqSTm_aow5HzaDYN_FPsarlGrWKD#BZ$Hm$wn+>8% zt7Rf1nRExDFSPYu>1Su;JI3_N_So9MVW5Teydw(1WZ&Oa*2zEa45|U5uykjM3-pPa5sjvK3i88>3Qlmw{jO#$OAQ zm54NH5Q_+7_TC*J-+5t2hfK1P$(gRlqpLUU#-1+hiIc&ZGqSHI$U2>RZsev$ z+t+;34EWFE)Jk1lbgK~V zA-A5fwwjhE%G020Wnj{!$NwUnCRMFM3oUYF+G`BK4wxmLVGAX};5i~1CyXOvx%a5wp7D>ZCrI$Ec|Ftvx>%qP!)pD2M%#F;5SRJkaTS zj|c|^G@zZLZB=B*=M_O_a}-MD@Ib{bf7F>dP^Sq@aQk3oPSWzIWXO{ zAokO3QBnbm5%0@fOO%+o>p0;VA%Q?QL2H+lYp4K~iblGO18kS=vQCIeWx$@_Cnve>2t~13z$TWH#om?1aL3(kW6BBBbo|H4u`2X|%ykEyJG>A*pP=1kJ&a zmzU`bmsn~l0TK_@o>{wYWtMGE?PjHK=K;?-X@_54u*&0KbO*W1w%l)nXp0Kt{YlSX zte^Cy2v&NP<0REl(QIoJ?K^JDrdn+xf5FjU84Ghf`D&LO?j|~~D1a};PLtq`Nu`Mo zxG%}5oq*O&ig6~vha|#8vC>SvE`w?6pcFhwM}F85>;RKafvWBi`PNer&g3CeKEkRXm%}BEfZVn zmS&yMtycWj8G5nn)rqOi%Bc^qF65)@gSl?UxbZ=_xQR|#hv*~fudz>W!TB~%WGuWR ziB-GLln&iNnbz#TYA-nk6Z~L#`hT2L!IVoNY4Za@bL?^gME^DayGPwwYA3Wvrs$sIO0 zu%YC{xu_FmGahNy+g%=b4N`W(e&?+(dTI~@bf@$wM!cIJ7?6AsDdPYIRibEG8H9)) z1eZ&)*Toa#ENNw3Qn2cEUN=As+p>vuT`uxIKT5rLEvoVP#|@6H?NZrM= zmW0dphqdG&peT+2ipj4G)3fiOEUv-ljiHN5Hs_b=XPO~#a@uoh^3l!D-6YTQZJ9#B zT{1iG1mQ+l$%MfoRz@P>A(L-_CR}Q+{Fg4A1)0etAkV?)AF%MezInJ=_B(&oT!3|+ zxSY`C&j(4OjY2^VA`5Mp;U{%VSb2S@M!&i6sSK5bE8e5A?NkmS$@t@HLRK-y?jK~) zwP%eVekTR~55XA!JySaD3JuYX@=Cm8l3D0V5eGmhiT)rJl5M8T3Ch4stnX!SH5|>K zh6jECOrh7;65@5Q_CfUs=r=3-cZMD2YSWWVFU|WHj50PGFN{7S#{{ zk7sn9YsDvBpdEqp6(-(1KAVdYZ#%D9H*zN}wi45iK&^`g>)wmb9PJ)sVK>zdTr%49 zv%wXMd25~3Ej=BOnP6e`X%_&O$;x9FWm(`*#={hRun>0*ll zV$*f-Rt_MnHg(D(z|@IX=sGIIFO_MFtF z(o7G`p4`J|8Wx6y2b#e6e+}NGSlLDNN~($~9*Y-k*T6h&uE(3SD(KtLlP%71IWNY^ z(}$G#dosc9nKSRz1MvPlFg%>(3>PK^+gk30p5 zf8J|R-p5lkz^H!Hh@|-&U-c&#bpO$voTk zlZEk&*c;nD)@9oDOH2Hc2)-*6&bCG2nskkyFJH;B4@g7M91}hN9j2N|DURcL8{1qt z$=F{m{WWFOS{4sh*V|n?B&Lm3PHewa_wxQ(<{oE-W047NyqO+j`6%VVRpZkVjpaJE zK7_YD9F)d|X-UYvkP_}Ii4Dmaod1u*#^fNYXua`6SAOIgVhs081mh{qttyml&Z?9w z#@6SPyxzzoY?p`k`Jkw;>W{@;YfZEnDIl$U9rJuP!1JdVC5VKU!Xescq3z&~m*z+K zd|azW5|c_Pt?_eEWX}ZboR1}jz{&M)_N85rqxW`)#_GJW)yw*o_q3;M9Nzlm1Mt6^ z!@pF?WUJSZuPqcG-;sCtQmHs+1B#b~is2Uk=rn z#4{1PWu@-q)G(pxitdg2n+scQIs(cTekZksp2hh(ftuo5-OfITYA`3gmor1#CpV8a zTZ^Q$(LcAYL=~T#1s%EuslHmBC9*H@qHC;lEoNvnN%PhGlkk({Jg>Ss?)zMbbG_3U ze)aqn*06H%8_#-?v7^}d@RE!n8?;}0lNagA)o>Sl|i3iW@BNrgG)^WKYxW`fyL zMPTH71&9vj_BHRVD_X)QxxU~p6%4w;B4O9hK-_d!5~Be*E}yK%E1)1dO5n{SwT8Qo zBt{_IGFzjQxbQjBSgpOwQ*kJJ1$6(}J|QOfd`m@&MVd5(%d2miR8wid8$WVVjk_DZ z?@6r%t*Jko%a!^=o4EHM(*2tr2Xexy*x%WS7L0~h88W#=q?av+P}87;*X^!_4KzB$ zi0q@ycll_%6+X{4f8wRs19qjHyZ+2o+o#>#Yyz!VAu3T5fxo9zikB115mNA*#u-iv z0#6s1v#t z+EtpvE8F%yl>?ns3~d--uwOl08&2KD4_vYW?b2&rz%@7VC>S%X>_mz-k+M zbaF7(w}x`th;9Lu%e+LRjS{LqK!K+n-ln*@sR0ZiZtHAr>qMhNp^)36xKY4~KyxLB zOSR$f%zgZ2dX+IrxK;02`K)?{W@(S$Oe_N(f*}V5?4++}XnX)3LS->pUjwYF!kMb7 zx*A(r!XiND+S_$7vY^RJWP$)X`ArROL!MhY79rKYcrYk~00chLx(2Yq0bsT9Va4-N zQ32qhqT1aJK_K(-3o6GR1IinNi3{}epBY;^KmeB|i%V{vl+5YH2Xs1l0$}Ck#T((< z0xWppCyQ&Rz{oSZFo13H9XGSF0GA6*3-qJS`9%$oncEm1_RkF--rmk$U)o8>JTM}W znuV|fZ&w3e@|)o&W6J~GbDabrQS{u?t!5xn1ZJ)hnDM1t`jbL?QzFCP7ug4A1P8*^ z+twC9<0s>ndIjLD4(itcjPO-jKadL+<<}bmtY>KQDcjcD#6^En@n%3j=rs_L$ zB0~Uc*+{%5h+|+257Nm_^jjkfbOgfeo8Cz_sT*nu9nu!q{VSS6 zP#1iB%Sx?Q>I@8|m8Iq1v-7L+#U^NC2(0Eer43-h|1Z-2 zo_j`TkawK>cKnsij|bqrg8oqtsOIbY^Jw%oKo1SEHuH%8$QP3)q9ULvqx^8KOYpLpX0Q#*Ae#zI`U=nv508)nltF>LYkF#Pf>^~$I9^Q-p5HSwE#_Ny76RGGbv@6o{r z`@`p<=oy!Ns*6T9T1<4w!_NBw>LTlq!o|srp#&`)`xYphVuwzB1X%6`G7B~ffW)s`z-d_jU&GI9)A@V;S7*jOeZZk z4LWFTDX3{jDH5rj$vU>)vEVsdOpDOm_AgS~bs1PV^p1`littRN%gk3)m-Zm19-X&M z-EzNSGt0+*BHnmxtK2G-t$EA%8IwPWlj~m9-o%e$PodCk5U`bguz>cMO$J`> z{Jqtu=Sof!fwbYVbMP}Hq4oD4Cdw%_C*lKa9UVBOv^duJsuqcQx`IWf>jtHn)7z04 zq`yTkHjAF2>+P%`XpBL4MjkfKE8B2rLDx%c z>dknNElVDrQN~~C7^`LSCyq@ks}UC(vEW#J)e-eLU0XtUM%a)Mg_~8t0AN|neB&w)}fv$5HFcc+nyeh zjyC(WFYCKS{8itbu^6pGC&Dzc5GQvQUv9@DPoa+l%U?tQAy6y^{T3|J7N z%94HxiC>M$qL;B3b4%{-2?YzEi9L)5#&K8ZCXJ%@2iEi! z3%81drAe;+2lfD=wDY3OwiIIa-pa;epRC_|9IJHcPx-62mM5H~{ANvOj zA58(1=BuZqDw@oiqnEh3Ur{@*3sGi`<3n+7pzCTMjYGBN8*bZmo44=@R0?O#Ok09L zhLLg$ej?^#SJfjKDDvA|!?4M!g&t^3`u(56hbq;~sCPY=;!#zL&6cybV@2 zvIHxf{L#AGL!(W9xlh&H^*aVi(^K$2bMY}Il;M*tSeMT2=*eULH8+erL;1Ky^w;pDnIeICCtO_XoGcf(NX!-pHG5@M2gOq56RczZD`L)v}m-g;!jT(E(KlQ^vwB!qmA4GLPnaj-!#2H0jeismB73Q zPCvPASzRJMx;KaSU!E5CQ@oNGg`hZ)V;aQp_mfV9Ni(OkYc>YQx$KB+XS9!|qoqFZ ztq{cQQ8^B2kSNc1tf)LONnRWZ0(b@%<)g}D6{)oF!umXayE;rL--#3R_Mv`QTjL(W zh@v4@vL?h!V01DAA9_U7KtuWSGn0I3bKfw15vOeanj9Y^RSoa`30ZZ|B`n*iU`+3V zde+}RT%(EtVCgz#o9a-Llv*5)tER|JQ?p%ZV_b>;>a&Zs0btQrI3G~ zVzBxUJ4C&VMEwBJ%cTdy=tJDOA7XazU}7^})q>uy{#0T1n!ocf=o`CFhPWMKo3Isi zS=Tbptj+aOqiwiXs%hcTM2>uof~rR zABBr04_Td*IggI*!6nghGCf>|XR@PPfk>O*IfZvs|JF@P{IGj1{gBiqeFpmj6H8np zp#=Rvg2EMdm4{*;_;>6Gaqt6I?^w|QirCA~9OFWfUPXQ>W699$O;Zoy_sAVvl4oFG zH@L3K3cpj65fC}(YvezE84@;rSzYA7M$pPZYfXV`r(o+HA+&fCK| z3IJ+0IQ#Vjir3-#uEu=WSxu;@_O9e$Uvk5CHu37O`liYojx2KmJ+K z8qhrJ5MA&O%KjR%)`DNJNkWQ=;eqIAPZdr_(8=k15604Wxh=aeND@Hb{82(UKOM1N z%{sAF)PQJRWhfYv_$(x~D?X$0HFU8m&boim#sIQ1jcW+K(p0yTmeu)jgH962)juE- z16Dli{5qq0F04Wx)nTY=_z>&Hc_|l!eCimYg3zq!+UsVvE)XYVUI|yq@IW^YZ1Z6Y zIHG${-;%F7WOilQ#9V8U5_BZNXh-;#(PgDA=U%XPLYv=rwoff#t8H(-IvtQ*#@ypb zc&EfbH?4;)tUA#!p$=WUU|I$?t8_Vvt>ER4+a{JBDA z_Q!SrPt`%GOkQM&Ow?z;1hMx(^ZpiTxx?vhqFW6=Y2+dvHg9E-p*Bf~x6F?4{%nx9 zr*%R3<89AK-SkGL?Ko9q9*tUsG=TV}9>qUo#JIr>&uU362m74f*;Ou7n;h`@Lq0;( z#pGzqFbTvhRlwUUh6`$7n_FN9g61?M2wH{{wM*tUW(M69b+o3VU|O6*XaMR`ih>a% zi8A*)Z0@J&czL0;w@jrcrez4y7DIwk2@@xzO{$m5JRz5xl{=#mS-XNtlGat*2=c_Y zP+RYCOo3xg%j0xv zd`)PbH7tdj^{eTpRdz-1GkqZZh7+j~fWr~wW9(G_!I6l*I7NQzbFd}a@oMOw4Wdv>6_6Mu-EwZoRVjq#IM$=ELIHoA-KwE$K-t*kx$dNhvdI25 zPRM^cSx5-mqVAA!oO_$D8&boc=Le}$ngp(ErJUgmbV$$=DW?3&74+XkcK8V-O$ z>4(7gM|P*8iyV$2gCXi7zlc}cxV)6FEk2f=-0EMs-gC(Z#2MmV-pf*A>#ITu;p#f@e7t;%T;i5=D{uELIc~a!sVY7+KT6dAM8g8b?tNRT@Ub zKa@%|yKa=+NR#yf7kU@JWp(aFxuGeJ8hk5e@E^jvAxx;j*uhh4ss#tR*sBbNL7pr) z|C0?ak_=-n{x_NYnwJA4VzH573$MaFd5K_iP4S}ZSD8xkV0cu3i2kHRxC}9dgB{d? zAY05iYtYe$s!xW&c84KPlP)V#rv)U1z9=YLw29CtY%ug4aQY0(Y$RtXU>ID@xL40Dsc4gAn|eKPvXfDc-8gtiEQyD-Rc&S1E?n-115Fm-R?UkVv-yoL-xP=cwUS>nfPRLx{|+>7bz0gt>qhnoVo+R~rH{2R=6_3Ykl zz1vuat&|yTxu}E=jq=R#MtTpj+WU)!aVX54X2(};+HcjFuw0r%!om8|%Nb8(fp_kq zTpFp#U9w0Z%D|5jb@3hMC;204f0!h7BG!9IVlj3Lwpyo%dlU_5vuO+|@J*H+Sh%64 zd-F4ewW0Xa$WC?;#D>DZNtZ!=?*Y%XZuSof{?am-p$!wOH^t5`~N z*G+~m!)eUvcYg&8OPwcc=DRb#?un+)_1^8D2DCk!z{qqR6B74V+hWUB?~0SuQU58* z-OQ2SG43}LuA;LZd-Df23Rv)y-%|gv_nms4|7&t#-=dMx()Qj0)RYTPT+FbS{hT=2s z&HGW2<|J13hj0CS6Y6$ds*AE$d+znM8?i^a0Y!k0e;c4@6k%YM$8fzD&YmxauJp>5 zJv~R*fv*b=A&eq|WAuz{WEw7rz@c*EFQ;QYcoCP?g{zk^3tv7bb0A%$3TE|nH1(00 zYtJ#4mT@M>Lougok(z2c6#nM$7_%fvaMw2;+Xpc!>gCl4bN9Q=uAk$1yWqG^Fy3EN zvJX|3{n+F$xL-8iU3o)l8OyL{6hJK9g0_6PYw%D28T|n@?j>kX!EJ=|#t`Bnd!t=q3#?#fUQG+SMO9)~k|;HrWYm z-7~}?6!J}ZZ24})6ssX-195hXH)g{II7+RI>Rtz8)c3!Y=`0Bk8F%!hVL${fSYasQ zupmgbn8)s)L=rvOz3E;Gd|@*}A64vnf|X^9^mUP?L+U*8dtmraPY*H0!#N6aCAHHi zd|#|^*L42;x2AFyhc#htGDw#}WI_|Ff`N2XBYjh6N-s!pe-zqZoh$46$19jQi-1U;>% z_X|i*mB5rFZA?JjK?pH~m}A8E!X5K4k@g!?PGLyU$tcz_K6P?Rg34WWwmmY z=4Z$4!NZl|hpu!Mo8jz9ZJ=u(z%{{Z+LYOMoV6!wUJ#un=(+FAQfaO2K|PYi(W!H| zd^7kQy>>(y=l1Oz>FPqI^Hm$By+|_3hRPK!u_p|7p6x-QPQ{ zFZ+4GJW$zRLUz9_@mdfKbqxtRJK#n~NQyhN=O~?8b9#ML-NnI>9MBGJ&u`7e+dtrq zNAjLNF`L6~+bHfHFtV1D8kGg|m&FB^sPn4=RFWr6)fYw?Z&G&myyXkc z+Fiimywu((MKswF#1E+RE!qtLX+=&0GGuY`eMPOX=|OuDenN8E-e$3@iP2{S#$956 zoBMuhWQWf!B@*v+Ht1?J*YO`jNM!em7cIja`^d94bN;O4^F54+dUKdsK?!UkJK{H- z4+~#+#M18EhixYrX(oDz3g!)YOjCcdX2AH|jNTuVN>ujF?2DgGRA9tJLqYr&H+?J% zhStwyhCOQ2N1u?L$bMV3xiE83T0f9WHs&gKU!R)c?_}=wfhr?bDRy!qbM6~D#5FjcE6hiYb4!+xD(v+MIW#_BDo4Z#O zqQ}dZy<1a_ICNgh<&nN@3{>k2fOIx%5|`xW1smr_IiMw1>3=qOY(yb7H_G#MWZtau zrq2SS&=(rz{j4xcVDu|n;eEPEWzG0BhtBGdEd)9f-?0|&v5oZO*^ zf^obSmHfC12d8O12xj;RINV>GWT7!ZA*--y^2IaWSX$=9LIw^@Hvdjp<-w8D7tmJpgg6G2|soWk}3u|Sb z5w!HsodPS>V>uR1{4sbr9fs!oTHm3-xE;f8~(0uX22d(ufN-uc{MMX^1z_33`V5-k@Rq>%=gOjHAcO%10 zZ&Tq`c-d}=p4ce3HhFYpavy5~ON#AIs^K5$H&bHTrI~vqWYdfICo67E)bR8?8I9c_ zMC7oCNcwI2PUu*)a}eHCrcP6_oB_2{UQ}LTcUE;%ccVa3#t`3HNwf0IoZR(qqb~sm zZ|K(t|8D%c^^0-h5yw$S&eW|NI%m*ryxnab@1d!4u|XY6J)~`8mI~8(D%Ajf{(FKZ z(Wik4zIVaB7%z+Y3Q3wwG}b4-sS6+)oEsoJln<&RtVROf=nbOowx_1`+IY^gEVDsU1fX?xBj8G3zxBKVt+P#IW!#0k{cd+Zawxw+e^6 zDHHe3(EOI;UHYH$wsT6`r;YckN9K?+wYdgP^{|*I=^8La@4z`+4?Kjn)#g1No)G8_ z-6-G!F9{1BCS1sOT{~s|=IpWLQYO7n?7XkNd-y-jrt-sJdzAfb!y=zJ}DNS&tdAab@sk5cyU(|_wg zKBT}cC{hc@sK`ljzLaFh6+a5GcV62#B}o;YEScO_d>(V>wr)g5&=*dAEUaooE@a%7 zHYmv6-zH?wkZW_og<%>A_spg+$yE9AIQ`(Q$o=bsMu)7w7;bR0X?E;RPGg0eIN+fb z>cctLCK|b2&}Z<(Ikpha(~mnM$nepXy*!%M-)0Rt5t%QHEbL_SkVTYEf})W7{Q&7o z|3MAm0&AkW0Rh#&xK3A^s}1&sfC!94#8Eoeau(9iQ82d1fN9^V~l!gQ6r;fWu@G+0JsHR?T^c zt716a-Ue1;DZ!PL+Z)P`@>Aa#F;C8uU*5sgox{;qbLGsp(Ew^LebZ-xt6RWps0-;_Tt={s=3}>q1~5wWh{m+J|4zbQ}t_ zut{)YR!pHVK}sba^om|O#qvu16n$i6BH_|Sb~UpSvsSs`idCeQN<|d{%JkB+k>4y> zO7NxBonw4hZV~?GFQ8EWJVDX`=kI1wZ{X;$4O_BKqT&|MwaQO^&-d>u`zuMOER_l9 z%LL<%CUp>>2=hpd7u%L<#`6b!&=F1MVon%ob`g85lITta=o&ms_N%!t3fyOco&ok} zZ_@`1e6MH3evb+?)#2oyhch`~>F+YDsZ=zoy%+m>=FQEi-?p19icZty+FxvrTsarn zezbL7Z;lZsN0Wx3KcRG8wPW`k!1?uQ>df$FFgUv-_9J_gOSyH^mj-UGE%&|UMu}e! z_A2WwO!PENmLox~knX90|K?fm>(a7NQB4pB!p2w(9>X{`XI07S!lWOi6@4Btty}h{ z8@p~Uuut~T^Z_XQq{JBEYG2Ap8xh#8As{VurSOIsT3?=w`66Z$Xzb4qPv(#LYO7*S zg|7`PYkDV>Pf$a!s)r<*YQwo;X-eS@_KaVAm`Vl0;*Jkf!&sp#ykB|dL{zk{CB9~H zhkg9T8O>Hp=Qt5qE9@{`~!?#VZ6rYibg?9}

iqZEl%`upHT=~qIP!D*XR8hNT#cro6)K04e;Byd>N zgF7UM5scGj&CF}0(M9K#vg?2mMiPgVOv|~{}-*9=dd-)6m5DJLkGQ7K#cqwFl?;IobU1Ia_c9ekg-)-yOX%9-L2IYiEoWKm(G+@WS+CU- zb6~}xf1Tp30kOcpt&HO0A8mV8Yi~tE#JOT_-_aURB*Vgx^|-1bT+Y{%85~Wx)D&c`9xXZlC7I0L0C^KR{S77pT zw73VQiCZ;U9g;FR=1&Q2^`t7L5>j!AsE?>yjalMTAry@>L!lH>lVL|M6{$*Gp{_T> zUD=|k85VmxRzciY?*%t6TtN2=X(3vV`?=*`Ms}q*~~-Kb+DRHaalb!$fVrXDw1b!AS#hdJ#mF+;af(CoYp_uA|QhVt2U|=o3lY> z&#>`XFq}W%e2#qfJ|ue3*FKh@j}#uotbOak1{znH{4iQJLUE)-_x*;etTlIyJ7e#7 zpfspU*sHggO?JCYaUpdb&-@y6XMlQxo5qu9n1l)=1e9;Rd<|7rK0?iE1k!{U!D&kV zU|@$Fshy)`Sf-avOUdW*fdSU_E>Tm=Z^zbgCA0kNTY%QUB(JAVO+A*PAMjF;y!{Op zja94@!8a=Hw@~W5o3fO3dv~Fvk}g-=d?L-yruIG_X9_%#arCMV6xL zI#p*i@uW?FN)7l55%v!icxg^b3*@s_I%yz|g2L;z|!c)^AKH z-Nz7tk5zu2pwLFF-x_IVkc@VHK<1Hh8rki%fZa4NWG#6o*>g8pWeM@JX{8iLJX$S- z&TH3AryH5}4O?1TLqz#d4|G*8D%&mpAaubKsc#^zqw z=sgY(Qw!OLx5zP4`e~^KEG;C8cWKmyr&ysB=}kd0nXrT#iNrGC&=9XCxLI09p2A*_ zm6f+2cmPIS9XztM^5~LrxGS2@#(&;az8BcR|tDi*G+gj!ZG0< zva&n4#K7lwH$|i-&4iWkpa$P77{lXsI`6b*7%mDv9?wrR2lXHa7RhWxYL&K4vefvy z1KNTH&W|rddEruRV52_F?pxp^R)NVkjuYJwB{Y^7l2%czL#SaoO+DM4OSWkX{o!Cv zKGlr|?K8vof-uuGu1~R>;j*k96i45_y96RrWy$_#0^ihAdVJ{^;D(UF=Udi0KwQf zii#*(vR&nG>TkAl%O%K3N@F*;5vEg08BO@E?aWyVXHo2&?omYRwpkN63!9CalwLrx z)8d*fCS{MMkMlYQ3Rf8k{^!_E_cm))LV*AuNmquL#wR4$!QK5eVuTSju}_-+>7M(O z4f9LG@SAl`Utqj^(Tx@J#9L!Iq3fAvF)BBnS>cOv)#FJK%FzgftAxXQgz(iXGpVSl zHN9`ZoZLclGuiNZMNpHEgZ3$;OY+2RI6trE9?a1%F3C8S`xwmGZe@zY zKskPt2rh`{USbUKoAl)9{i*^txf^jQ7+5_*XrC5JRs01a0?CQ(){qa;QSjomt(y=g z^@z+LdTCxacUDanFh-(Ldl;2GUT3Q5+AtNCj|n8@!#FuUe`2wQ=)%XqQc^k(co5Q5 zF^lL<2>oF$vZmV4?^aQQ1!UwN8J`;^hb=m&;~dPmJ{nRpnBa!beKe5{sa>gIddD0W zYdq#ys&R>J9+|BcKkR+nqsA)8HFlh1UE2KcJs1{|WtMXJz~Ez!oL~Mn*=~|DERY zf9JO_GBL3;{J*lFO`!7Fr&x4Rs1Z{0hQHwF?}tDjP$yuYYB=2NHot$pfadB-Ay0u) zs_xM3r44DK??xxL;MxYPYL317wlhVtC@BGen1y66Z~Cva$@p6h)Zw{ z5b#T7#sHY)Rl<(#aTbEk;pIWr0|aV!|Mnea$3<6GCIV1bhK7Pe&-Dj`0yU%Mn*q7` z>DU1LlBo#)aE&2fx0nP#PXXR5S`(Lq8@zTnXw9@Mi>|p~C`^=jNd=&0*_+ zHUa@Em?UXxa%!Xj@(Pdag!8(g57+Qd;XpQkr*mPyDR3d;5Y@l|a=AY%`O%>%R>zlu zhe54>I{z&1803u7T$xisI@kknc68)@*2qEqUZiYN-6ms~)&JN*xfzZ=}q@;`|i!PD}k>_mA}Re_@{-{}cN>{>46{GP}S28~e-yUfsT+k2KrvXy@DU zV>*08!uiEM(H~Ftr~+yFZQ*{gPghXBoq)E&=C7SVkj^nbUcnSgeKqJz{y{*IG_hB{9lUhN#pw@|1@FYcdgh4pzL!?%wyjy87y0Sc7U z;DP5U5;$91KlqOaR?PsO9|A_dlt``Q2&BYT}pU%Kb6ncQ~04#FnyH| za0fv3=5MjjE&$bC{xJAH%WwF7@H)-U=(b#EG=z_nlyBm7a``AH81a!~5$zCdB-=2F;pZBg-c^8fRTUP{KTNJ7@J;maoLKoCj-tK z70`rv`6XUx(f(26mp9~|(9f>W-LBbIQ2t9@{t_6|1lYD@<50yv;kHKn8YZIgH#WUe zyL=l{N|kE4*sG!Z#i)~((&Llwzh}hkFepU>NlwyLYQdN?UH^n3(VJ`AqT(vwHl_{Y zqB~AuL&JI|%;_6Ba&7tleobMsiXSL-Jv`qMSUfh!QorV;93~&a`s9K1bqx z2jBOU7Q!ayt~`c79h{)C^a}sT-)po?w^gu;b{byrIB+$(6Utz=?5E9^OLIWQ52pX^ z7x*LLk&qH)Me(&L25Z^@gVr6w3tm}xF<=EA;ABw*gKYY&&tzeb)w+HRLisAOF1++< z``JTM<@_iONPldjA&oy`^tU%=ES|lF%XT#FQt!oc2zHu+eU`zEt7&S_?n142KPCdF zCa+PTRaa$*TjQ-x!ukC^Ecxc}(gYgorcu?m{w_PsxSehp;m<3Za^bJsA7|og(I8aV zi6oBD%(W}LoaKAJOR)Ii@zj>Z(n;7H_Jv-%q^pGFbdp7bP$nH++ z@jX|$Z_J)yqhGRAZuS9}12d1v%iPcA1K+`*D%&Wz@XGjE{@#lobOCmQh|SC*vDQ>$ z4?h!4{D1;zf%>yAOJosHS#UwHX%8~QKmo)IFKuxw?bA{Y*EKzFSPPLr7o{)hlKQDf zG^7sGVJ`z)EecQ*_P!`l zZ;cBF*F&3nE5|=$ z>L3u@>ppv{uRNg~cK)5%H~leaj=sDdlbGf?#CAA2sB1?{isT5~@4#D@e6>y{{8ScJ zKTW4KLlf_D9fOoNvJhU9HIia~E|jp?)z|~}6u!&at05Zd<6I#_}k@5ufzW!r4fBm|%cam&_!|u5{pUJxi|j=eC}L z2wp5z^D_cpFA0olW(MkB&g}&aOF;SDIr1?}!_mMbV=}m*rY|xwrfa?;Kn|#3qo z9^XFo`$MD=B1yZf-I8*%r~@7xEuf^^mR?D{U$hpRjuNdZk(nAZz&cSTGdG37owXK~ zMKq;FU^AaK5pk|+EL>PpNdrxE^2KLlHQ-=j81jg5UKC7`JCeP6FgE#5cA^6^z0%CE zS@6==Jcc{YTwezIn~>raN>Qn-%Nh-vCMTa@V@`ZFhw)20pjMSm^KM%g6-4{|J%hzs z&X5f$PdX1`hsQ&jbM`U90l1!hFqdQUT&JZG6^JO=I%m^rWfZ&=TU>}pq<2m71aJ76 zPm29=r@5nft{`85F?;&!!%RVY`_}+fKuhQtr9MQEJW9T1cDut{SC&7NJRVw}LA8ZlfFK9;C zVud#*Dej!e)$>vFPoLW-g3A=NM&5!9k}`S#K^(EIbad?ZmfD8N2e0u zev;ML1S93CHl8lN(cp0cy%Aa@l+GRl!6!|+yhOqFj(e@v)zsQy?q9!oOIh?Hg3BTs zlE(vKLYY$3=^?(dFV(g{;yhg9Yg&cIxUdkS3eC3(8H9DUR_M=?#y5+dS*2X~TGsmx zQ*L-HY79`#DA^Ag8~b@gO^ih6o{&OIw5|AXuz~F+f#~jJPAFLLbOZi?m9x8*qZ;2V z639DHS&ZRx1)lC5Y^m_e&ypY5{;Q=A$sVyOK=1rJ%8e`~JJ_`M3PgUK(DmTbyGK{o>rgn4NJ+oKmtp<5M_08M3U>P_M{LQ}mcOHP|1D>d|!X#Yih zzlX1>Ug3WJfYoy+^a84;QR^0v-R=D)kG%I@1!(^=%RgWj$>f%_&C!RZ&3~?h)j*YI z1EoGi(F?G|q)wR`gTzMGG!nQ=^_M%R3bZ%3h1-hXSSf#SkgegBnaTRzc>cMqN7Mpt z+@<~P&0HXZpG}fxq{v9mMsaGlpo?c_-2;V(H=s)6M)>z=$E=$8V1n z`~9C*xiE{H*73$%Dq(kM1tHHh`nGNGo#C-veBpase-13#SEcEk2@aO|2^=I>$mbp( zkt~kF=8CEk;$^Df>1D=8#_y?M0MYtb9wRh;3f)OfU*Z9Y4x%fvkMCThk6oy1wTmG) zF{Wm*=AL7`u9@i@C)MCJE=2CP(Cna{BRYV@3z;gZb9%U`;6fLGFHdOLaB?;NxHL-Q zFg1XY(cTYSZV6{)-93i=sk%p%TGUMR#!wF+u7H~5v<<;@+?hY{WNDES=0_no59}RO z&6P=2W)8@-;_U;2ZdY!HQNUntJ87#!t8;(HOlqLgMVqnC9B~uSZt^t>gx0CW=LhhC zqfpeCazw&W7oRzDOt;;H8wjL@ETD52(%^(hCnS~x-bQ5G%4z`0RNc5SLDCMvquzt` zbu;}MLt9Hm?saXI9>~D2v(xjr`_6Jz>f)PrxgMFSSGB8=JJ8C&Q7G8(nH}6WX0|$I z^E8e?ACT5n|C;4do7_lEbj_F4x?v7?j)7BBAh6x`gTd;M@*PL5WTB=Is`;~j8ChZT z=lo6@uNwM&BvSxAn=Unp-l@iC&3McOPp%ura@r{Q-Q<1W~ z;V8Oy@g@Vsdqe^KVwan8H+10Pt5jvO=)<8jT+^N-Yeighx9^mLB~YtR^L~(h-0^bx zoj+-Wx`;s@CDKb))}+Vn)-aUr58uU_nAX3tY`F1?jh3fazr)b3vNvKHeoeZMr13-A z`pk1UC6%{kRo#LqNYz|7WDq-gQ>jyoeDV%dhwT%Edo3K@;O6qT#f!M$^qESq>B|L~ z^{kblZ9b7|@Z)HFGn&hPQ+n?&;QcfObw^7sFWTtQ?#Ol%v&ub?f-4>yNW}_btb>p7 zG;N1*tgdQ6CAap(VPagc@wJtF-n+V(Yr-E?7je|icUJUD%Uo>~+B??O$$(AfRkIie zUNu?rV{=(oJ7Sw>-3w%o)70XgT7MO3XjFO$qB#CcwAmO>_tSD)XPwN*Ime1;h)#CR z19;Xf@dIxpF)Nby?uAjH*ZZeQ8O0LCp!C++HaPqoa)W_+P?AU!vZ}U5mH^i-sjc{3 zlNtLe%0jw}TXTD5ttd8^>U(kwX|Pklq}hupcPmQV3ibv2VU1@;`3q^7qr}rpTiF>5 zrs#=opNeYoyGBiKQjs+(C>~D3lQKPMbkUVqTB-ce;)U^EVvTdC4mCjFz>2n?-rX4!8`iaJtQi=QUi7E>ukQt|XFDvjt^zA<3bTja;Y zE5J*7ZB3|*i&i3g_orl?i#$F)D4Z1$YSiYVeOoCL)5BGNCwug38}-vyc{a_RHgR)c~4{HKHEh=O{=G&(9x)F z+Of(aJ<%#p|EHsby$zGsg>flxPQllXM`%N_yv+72CnJZ9f3klQg%|Fd``|@EM_g5n7vE3M!2q3lTF$nd{d$FqzdnLur}o z%`;EUWa1=aI(v|Zo;!N0LEX-`-Q?COpO`7HyI(z$$ETQ4(VkatGA__#RC}MO&p7j$ zd?oKjNtZQh#=h8N=q7~J!YVWqTY?M6J8)aoX$5#*dh%qedV>8%QQCArMg{S9g{91%+YIXR|YyT zi;@>BBeZimQEejA;fa0zRmr>bj35Jq%HA`Lgy>X#v2z|O8BL;~-Abag7oo}ekWlP1 zt^P1*EAtQg4R9@bb+2o-U`ziW6zJQ%?(2!0?!%;)MAjc1S)iibj{GRRQqn+nz4gAl z+sZaWd+^pyf7%wE5g!T=k34mZS2pLpp1cGcmMkLRKXiVw+Xb>p+WnhL)xKxw zUejmPIlHtEI=L5$=oSizBDNedd!BcpydFQ~+UHeBh)zu}?OMHWg4Zg;_*LS7CxC#QC!+Grj!82fcIoWyR1JBI`f`Q08Sm z!Iv|EG2?giy)@AO#@RT>-ZhvWpi|oB5g6@Izgs9nV%5gk2`xJH<0ZtcSjOaJI`a=| z09~;i#}ivMZM1JFy{QJ&!mVXx%kmYLc@9Vm5@!BwJx6>xyWTG4PWQHx6F`(I)pjr? z1uo1}e5h<heQzL@P1=@ad{Dj&8k(G6!Rr`dfoE zUSY$rcWqH?(8N8s)~SJ<&psu3sm!`5IlhxrUw@P?ig$OCa1^V*I!H^|Xpiz5Yrb%F zuq#Yy1&HjuTyG_V26Kh9S{Fr{>_*Mh5tCvt;e(9zZhLlYc{|;oe2vMCR#37$;j#%9 zr#nV<4WE#Z_1?Ou+HP?B4PwP_(kW_sgN_Y9LX`Hm?l1KMTlG~))Lzk>E^FjK=@Cr^ zAhELgbQVG+qw5I!GY3cCEoo~F@t9LpNVj2TPe6jG6~l7pAem5eHA!jBA!L|PBmAqn41qR3VILnPV zouVpGXuaHog`E^*s{yOs3E}+% zmsq#>b(jw!o zJgVh7?qGRj zOa!fD_$-tkvI~k9MA10zuaP+$v{2UdOf-3L=L!Wd+Ik7vdRS~E0?ajIx z)ib=FFeWgMPpyi0Fu=ElMUIu$Vm__>@mCfFQIW|@^bUVtXM_zkOT>9m(&poLOZ1$^ z(K;7As))&oS{5$H#>I7sge;v&Au@p%Tj}1Ga^KvX;B9Qa4G9Xdpp%9xr@EwFR$e66 z7}T$v%k6e!ktnvz&Y^{6x#tMNJd*#m}n& zNK{wEjE})4&tL_S6iOcm>LyV^Z>`5|T+&~d+-*@rD|Fg-Wc@UBMT*801Qg?wM2yot zNy=p(rN=7aYJrV3#welke72V=du}z7P2`V#l&P7#>V*1UA>}S#d(jXzm43PsjoNf& z$CFR=&2aQq0&!KUau4}*;N)@B=N$d#1qsq)*I-C+R-AXyF!cS?)G5$bPE;B5QhX-z z^)ID%0~HLA;R*&!%mH58`#gsgISvR`yfV(Lu#T;^kL3jtnx`mT=RIBSd9tf~HR7)m z3r_t}PEELn0|Wt4sWQmu?!vtM+0ncdpWZ?fk}*GVY!ai1#N&Iylyy7#8?a2lv#akS z@0}Z$?_?dUbkwbiz_Sct8eIRom$tNUriWTnCjKaPW<*Iha&&s|v+hwDwmOa35Vt3T z6Y2DJH&?fwQlG(d|0vj}NMh0i&uZilQ_lPMCgVA2mS1SR_^ny|o0Cg*O*ot{P+{Q- z#+1ebw1{)9B7KY6D6^q5MBa*#&H0<9(vLP(W#7IMCbD!>vJppGzU<+La~pZML_!l1 zp#K+ugLV~ggMhmo^1&+LYh}TKtCMIJz#Vuq;$_^Lez=kmw5r#R7}~a$rO&J9x^nU^ zGA2zRjb`Z!vwl+rN0)K+ew=>~DM$Y!PLSluBCCj$o8wssY{xzT7|H zt2kjx1Rt3j2l)@s80boi-P%R3Nt4Gxr6TAVli5&1i-ww%1<>Bab#P9NW(vfvFtf#$ z$wI;Rj(H~xu$`tf%r}&B#c{)H@*N=hm;3usvPDLxYNp94P@6TrE^~wERNQ-BPSIGu z(qo6OfPrw*vLUMb;2bkbMtwFy)_SEfdqaIFLWs|e3473mv&F=}=1 zysMM#!1)yGLOq9gzcTaN+0wC50VLOZN*x0=PFpfZi45EzNAa@C1Z0kE-q*@t8OjM~ ztx-@lyeu@Vd@6UuwHlRnE&&b8{O(yAku%z`Dt`LB48X_NRmfzvh8dz>LxXEmRQb|a zsUh`Y#u~dytPn2*1m$pc+z*R zC8Q8>_gzSjNXfm?74U9Ks$uZ5qUr0zrf$%^b8b&QpE&*$0`_QEZ>BNxd8COMuelX{ zfJIiMelY~YUG4Ht){uTzr2%fEDr3I_lD)g2kNo$Q-$b~?V1nzna#WGkKs^i9cY@ut zic9;Jt#FI^fXLFOvf3y0jTqLfsFKsNJpxCYamD#+k6fo zW46cpY&JI1^BqN7xopkHdXgd6tnPA)u2X@`73VVuGMLRoT;=k1we(*6F5OU}qx?KL zze4xCZ98k zs{_>%FX+A#h|Mr!y`q$5A9!IIF|GgBdOx!a>ed$ieM$^dJ}hIo87O@MhAZ{vLLvVr z(vR^gwZ3y}&YJ2H5jN|ode~QU_0^i?IZ4#DCi@gOJ{4%ZVRn$*#%o0AqeQ+^%S7wk z(ssHiEwa-Kf>hY@Yacw$-CI6~cDzgq_%oIB3^>-Yf2Bm%!z?Zh^4Z!8Gy{uJb_sBF z?`2aNb8Z%i`M+g~EbUI`Xew^^Z4c6ilwufAcGRFL^YH$rVQ=5xsbm1!BU~?`jA`Uw zV|$e6i4g_9#TbTsI3hl6>dO8=Uo{sIS~)khzKBS$6e8Eb%(=}jCBZJv*M78-_r!@T zAodUDmQzU#TuJnAN8MK)vPl3vAbGGI|0%XWJWugQrz*o91e7NJK==T|;y; zt0Wa~)AE{eyI0>U(_hOBa@qJsMgDVaBomCe*SShJGcx&+!QGo^VJIqRpw+}Ag(H2k zl_p=ju6}l1cdq{ZTrK`5gZPZ+16Ctmgi?-2n#S~F+MGUZ%wMh%yUD@%3?|M2Or3o8 zMvhYykMd58nu4i9hh2#RZW?*|Yl@j?)6Z+(Y>8J}@q%+jp~`LxX#N@^Mj(lq(-*?X z`q~|~d*!D>4n^?+;^A$J0sELXq!^IDNLgU{kYemsahVzJY}87Lz?W?~=s_}Azxgv6 zJuW;tghLXZH=ScG^$YxASi+~pTe6i#5LiXgIvrgh0oR>GwI z8<^|Jba$1GA4tlnEJ1!*&*`8Qq0a{_Y6Q%-vqvWI$mWpMG{sqo72Lfp;lb^`F+o24 z4!5%nBfCPtEh1?yej!Y+S8Rf!m7CB@RjFoqJoPccmI}TVMaK)dV<75a8JNn8-_N+;WFEu&TjgBQvTFUGknOyL`(U8wKP|x12~C zjLVC!@ldde<(8I)A30+70Nv}Dld6VXO);dIktiz1zk0|w0ltSbpvrLmR|Ex|@LdiA z(ahb-CXg+4zb~n6T!Gbj1ow|s84@@mvVbhCDTNP^cP(YdYLIvFM{q{At8tOqKU%b)%t!BwW0ApW$r~hYIvFn>h3mBGwxz3Yo7a@QSN%fL= z^3jXM2f-~D+l~NlSMJRQ&{alAdMsHwromXWOl&_q;jbNNNpT0C0%pKhWZl?Vhm)aT zag<{&@iFiYht?KyaLJo1HWfAnD?*WH7vOrrOj3y^U8 zRAaeZF-jXoA`0VF`Z&WNON^!O$f#-82uYztm zJs3hBWzHtsRfMp&Tf2lrO|^}ru2clVPL?1c!si2;Qx}EOn|kWAF8)X;gzJxZ|1F^+ z18Z1DHmcUQ#?h0FmJjLa|LEWKW^P)(OF5QjAl}vSrJw5PT(4+AT0!v9?k{rf zBpcq#Pg8u(=i;l->B~F<#cIfv^v<^R*yGvq{>A4d0^$)C0+L%CPMU=V6J9i*at-!# zq}ty}!OyEIQzFJ-$l}_neNGSZHjPRgei}LWrMuhjIZ|QwwT{B@YT}F=sWa|RZdnz1 zukH#mGw@qo`AM=5Wk|EyxpYWbFf`f*G^**zIUX7H_e{R}P?sA}Bq=(^t?0|KW&=d| zB*7w8LUf&6DUkCoQx(F@scRK8$HxWT96_|pRmQ6uebe^l$l|4+?$rQH6>Ag^6l zRY*`rAz1<`<{+EMB_;(J6x49#oXl_;pvR}K0E)5Zit_|0(LpzAnckXTv0BrwkT5Q| zQ9r=$IZdwwyx1grR+?_tF1p&%?pA-@+ci!F@?prk3el^1SZ6uAzcSVL zA^RQLpl{$YHR(b=yy{gVQR6@N+e_YR`#YxiR4GDJP}rlrOdI=U%|^iwgnKzdzpYgw z)pi^)I4ML=?mUHH%H4^=3y3xB|Bsx3RTZFce!cgXaF;9}@s%|Px z`sGr{9cH<*rWW}q@^pKsBmW_XrRGC_&N490-5g$hqJk1fog~{^lsx0J93C9Xp{Qu< zWvO;hk4@&Uo6~eXD~RtNe;^J56y0Ttqwl$*?kpH2I}d6;vCgRn_lhbGGyLm6NbRT- zYy{q{U#;y5tMCDKFqg=I&qp%M<#ZA0F#0CTdQJcGS-LIA6-RrHCW7N}arar(*7U*u{93&L2o>z#ce!a^uJ) z`sTXHL$5=@wnX)&v?sKgqUAI{S5hQ{ZS1R&0AX_rOCLe6tZTr`UfAY!4-a-La5?^f z*7udg?{j*zOeE9im%k?C_iFp_HP;rs%ZQb?&t~xWLK4sr#&(trk$0|6v$6p%hzE&9 zQM?ChL7YSYywXufl>)@+@_eU%v!&47=X!~+cALcNlQEdL0(V>*WOYViZW^dH-QC@> z6i$d9gt3<%`jvri$=AOFQc&u?ZW5WMCKGirX#HCT9oKU356q4RL%aB>S4eoNK3SXHTt$5=TPu!2L5!(^29Ny2TP7 zAHHhviRW5ml4YKVb#*xGcFx-2E7zL=IlM*mlT7PmIiZQ6%XQWkN;b4svCQOEyAoy6 zz3S$!XA=3n>6wj;@6pj=m^zHCB*5@p#q{Vj*m$Xc9jDq{XWD(b{) zSFJ&WqvuzzcCrOU`)5?(EvUKTnVIyBmzgV2t`X_gIN^>4D_wFxNL(ea0N{R|YNYIR z3&u?JOg#o?Ga$TNqnhv)M9q+IIC~ne2rI*gHsF3f=63VJ(`|Mc8Q1Mi#Mg5)b~;ZV zuCGlPBUiOAdmoV?(k%DY!YuM&XAGWlj@B^It-i#ZrN$)RP6S};tw5#Nj9 zB^Io+qbQOfuuGJF?wXPFILv~5!gMsDU^JWXX6(j)}$%2ZgjMWfRzN9jm2+V9&J?B08F(qKZjnzNz0UBdn-Gz~yB=U8#tZx) zzHBKdJ3HUCi9I$$yub>R{d=HU_47GE3b~JIQSb0$Ku*o)KgF(QPD1ESo-*nH=Qf=D z6<+piG3wH5-!Nhb<%1 zac?W>oo|NR?a=_is(OK>_Cp>BNKqT$8P9-(~>6ph?XVdr)hxspNy3KL6!n}ecrIHMrnOO-!b98Qd%r{t-(rf~^EHhF{ z#Oo*htRx5Ot*|0OdnD_kQv}%G03#klX2>6?CQra!_X!>ibf@?k8SW{+6PhDr1{m zE9W&(H9NI-ZyE1yp?f-G-8aNlE}qn=Co!ohzdD};dt^WSSZ>c!b(?w^Esh;!I57LX z>H4A*-M2mgax{maeWEBKe2nTMGQJ}-EMKl@48qZ&>tK9qzcH37Kd}mLy*OYWX0Qw% z7(1FFH{t8?r*gIV|2E*u@O`UzQ#PKUAZM9+z zaz$#-$T<%V!(DieO(S8RZza}VnmoLl;E!`n5*QalKzP>IXMCCdAaiOmx7Ozmz*OQt z@c&>Lu>B{?fSHBi|5yf0Yz+TVGGJ!;|0s!7g5>!3vC>M?AVNuau68EIlBsj9X=WX+ zAoLci;WKDF6{W!-V@$2J6?XYgWg-EQ*0{Wl@FRmXiPTE6q4E{J+_UrMgXiXB>f!U) zlkdcF<|XUqE$hqE`VtNksf+_bqL=}`pOArfH!XXfkpsrB{~sX(hLF?GH!=ws=BIz; zbu0K83{rBz3w#J8?huoE8e~elWRW5OG#aK~C9pj$Z(9o<3>bkv!xp{>l@2^ZzehYo zA0vdmV6h*}{MU#wR;KJ9W`NaF@yiTtXY5#xo&Jb61iJBZ~#!2AWB*ord1ZITjfKQK&!Eoc&eN?PD$b$I)3 z*058b-5~7nyDfu1q)grQP6)ez#z=TY3~q!pP=H0iT^oShj?}vxuti?vTHfSkfETgA zeT28UXUm0Z$ng|b{pvh9=YoTZt0WQB0wnQ*yBrHp1CIt3fa*{N$zi0-WnFGn=qVy2 z`))za3-tgCb7+0{T-rCW{-ufL(qKV?M77TlIx>Tvrb6 z{Mlk+%J_bc;!4OIMgF^I$~wZhb4R#dzSBm5q}3~TvFeUc@lfWz^rSEg7_$Y7?jMb8TDrflLCq$hg7^sZ>r1l3 z_;7rg_`k)UJNBh7`T1Z$AtFa7x0vxtH_}I4V%EUXPw1sfcA`#Le0JC|>X#euc=7d$ zyVnH3jz6;-50Ho+OgivVL1Arz%?~nKu{7Og>h%bNDYH48?PW?3HB5=Yr>Wb_VAWLI z|9DD6bV+0LAAPA0XHME=pzz&z01?s6+mHxpDhmtg=n%9m)3hg8Cz!2mJS}U6UajYD z2{jQpThineBIj_*yt0c&u|`Sa!}H?QpX ztesT)$8K=YR9pafC+DMN9}>O1r>Qp*kUTc$5CT@F7+svMUV&( zv4~pV6Nq~+a=AN4)->*Y$t*#O45wXmnM|DFzskp0J9oSDp`^(ON8Wb}YO zMMv(r^%ze5ExffDol&E4j@Eg(nVI_@hFVs@SHDK4aeKRfj9uP+>>8n$ufv2mn3N<%pvT%fM^{7SXDWomzL40vXZ_h8 zXoSv>4?}2h#L`LA-4h*hGe})mG@t?RSHlonb@d*;8WW zQ|fn9iIilF;qf2R@Y9+`1U^^V#Y`KtoAV!9r2m7xw~UG_TC;X>*Wd&V4#C~sg1fuB zySqCCx8M-m-QC^Yg1g(T9P88H$v67kd;3q1(Tt+1sJ+V=`>D0&oNv9012SHxDe>p8 zm^|)&5Z(Y!41EM^l^^+&>rw~VCkSReWF!|&J4jiK&y*$lRVQ#^H=cIIGOk@sVEh*6 zp(kyiF?N@x-w!8g&@0ab)+(0d9JRa5iOntN^d^PCI-cy3PR@h1VHDLp93V2%GZu9V*JJkGKDqU;Y!d{k~19L9R-8l z;wqnsfV;11)yITPJW7dr4J|4bB$t8AlQRZ{x50wG8KXD!7D2`cZ{(!H7`(wX`n$dhc&4zJla97}BqhrH> zxtJW)-xf>hK1`!nNM{9Zyhp%#xb1_83yFw_!K>+GD9I|N3gZhAG|@FatxYvaA}Mw0 zNNrge3v{5cVu6NpSkjlE*)PQ77A^F}4cDo+KZ8E6s%MKKf<)YeHd6H5l@~o`pqg72 z!q69K-VJ+|=#)Pc5-^X~$hAfYLS7u09YUGS6Yu@?g!uszKR6*WYOWP1Xj|-AFKiqS1sLiMC2b61~pq`qJGH-CDZ2EgKc3RyK!LbdHzvjtO{N2@oZ^w7*)HR#4yFXt!6M4> z4Oz&XmN{7psl{2OnQb7Spm&IH9_vxEF$9|iYdo+EpqM}q&qwMk< z6TvU?@*bK!Ri8&1d;(cu3?5J9avwS!A1v#Jl)PG~Oyj7~0}Uxi=~&x2tap5>+3=DN z9h+A~?=#iSh}tYZzxbX)5B`)*^#YqDTRfkPqS!}StBBHyp4`v4SIFVn*=+Zxq8L(C z!W~OGmaeru!X%fzj4Xfn44)L2zJ(p+h)30up5VbqKTFx%u(ezi&iNyB?)-YLwNk0* zoW0!_k$8>V;`|t{kGa#dw$^EsenA}ejvjA@O1rJZlb-xUIDYmMvrt(>J-&0_XftfW zGTTLnIiE#)GEIs-?6nH!@YCGF`77ITRN|Yj0~I~cE+Y1{q_jyPnFeu{a7%+B8joZ| zbsIg|u%2+CC$^HH5cP#)+3KpXlSjY>SC%mbbf^q&Vl?T+YP&mlF<=^2QF@h%r$_IXnH%GB;&2C##KHjnd$~ ziwb(mQZeZ}e;RWQwaChm?PAM`dpP)#FSH6~XQtm@9~B7GV-Fud`p+VH-VvO3SEBYf zP2bo(k9T{#`SSTpe-_lZp0YpdG25{&m{p9O3bklKzKlmle`{78b^Vt9z#bULP4?7v zGW4l8`f_qUF8*@U{a&#~3tJ?SQZCoIs5WUNCa*I5jC>2RG|P{T3E`2NE49OS3~9Zm z8ue*umM7wy(&o>;F@&ahZ5Ktl;m;8)qiE1=9x?Hk_yH$_?$b5wvw;PtFePTfIP8?! zpXVyTrJmN1s&*sz&yz_X*9lvrfShvSbC>+Rs)A$YeuVP@Ls z7;tKA72Z1%7dn{e9c^cE-ytjahB`Ti)*EV;6IYDO>;x{S&mSZ(P{_Eg-B}JkjvSk1 zbe~qH^(8kA*OH`?9}sP`pU~?|ASEZmsU&F;twZZB-gbNMsa3v)E+}rE1Ub=8?s6)s z<1GlvnZO6?>p_NCbhuYtV@BIpEXQph_&3nUU!pJRt8O=1*<*ZU{IEg)?o_49g5sq8 zexk0Zr!RXh`_aZSw}j&Xq~M)5bS)yIH+Gqkj4e4P`pCv=B*N9&c`UEJ)4YY%JP3r?D6v zoo0GNG@w+7sy!sTpQ+y;xIN|3GC3(c$N%cKo){uwB(ktbY_)MRpiqSfNDVqk_w61; zhlbDP@t<2#ZDTi&-*v@xCKxpg8-)+h-HxWIgcWc?Zeh!JazY|88g<|ZOsPO)U6|3ptHpnO&w#2Z3uDBEV7NH(I7f}YN zXdNhIG;}LZ?}RnA<2OPr83yFRN8OC)E0Eo>7=_3ipGTsirgA^B3`pdiuV7qD36j1f zcDXWah?U9z0Mq?wqgX@Mqie$PK5(Kj)MYj85`y=C3Ku|H3 z_BN9JDwlA$7{OcM70&C^%+a~L-AvexV$Y$7c=l(s=e6S0$*6EoYsFKCyieJm3p}k+ zjfDAQu-iDj4{q|WSGh`dSY*;R55yxT-Da*GvK)Wi zX4L_1SUD6g0&Kc*n`xd*pz+L-Kfg(Y$u3fS<|?Q?$!yl?cq!Pm>XC5wx*w5PT*jE@ zZamNJMNwfrc>a>Tf}-3U<1sS$fe@J$u|?}{U8?^FXxRT18YXt8e;=9zDVsbxq~MEJ zmEC)zUEKcG7!dVHgOkSe6fOZalGhB?SH$lMSp+(1hX2hxY8U zXE5*Av1Q0QCmZ6&^v%J6bV(uV7Z}F}m>j;S<@=!aboKLGgV}NEQ^#d)wJYgSi%MNZ zZuIhP`C}XCjow1Y$6F(CAHnnN=j)ZEl|yo##P#`byn|Hunr!}q@ONLcQT5KM%Txzz zP>pgHryzqmZ8}xGZqsv3b0Y}e)4=mKI{nhbbz6HGwdDuD{uhl^{`%R&6$u4&&n3gv z)byLjJ#ZTlKZ?5`DIfLP60c1r6~51r9%=)q8CIg4fE6!5(77_MD%jVsb>lcg_9PZy zRu0I!aqhs|5^o|4gyYu0DC z_x(~E`z6)N=LT|%9*w4dwULCYC}4_a^;^jkSf#TA8i(2)8E;4qi){aY9wb`FIz?`Y7S>B>fS2e zs;1*_&@|BdDQm3m&Lr)#Yj`8q=Iowu5DRvbK;d?nfkoK(a?(P%V}ba>FDXbNtAKK# zhuDDTkeVS;eS7-lT?w3gg<3R`%o%{hl7oRtbElO3x|>1h1l=XI9^rcQs|+0D#6fVO zF-uH{bxj?oBj_>)G(`fpBSGj8d$ICAqXat~PdL+YQCW=TRl&WfR>ep+j7a4O;YVfWX7kgz1+$WX9MZp$Fxsfp3E!p!XdH z>t9$!t3G!GN^G(Y){AYjisBxS}oRkmS$dQQ5cUsFzf zNZMK31>dP343lvpp3k=PQTg>*ftG~cL-P^SRRD+3w`fj++*GV2S#j$7K~_NPw-SU& zzsX8xkj1r=Zf*xxRw4FDHF@k{(od|`GrB6lceOQ?2L^J4uRgx3DF`MXY83GG# z67F%sai#te-prTZQ;*)es4Syh8qnd@$s65tDUV-2_T!~C*S6h$@rrK?GIw^r}VG|Uq78}9jG~y0o@?K$R-;lZilTbJ*D*EIs3MHv4Z%S znq8;bNbcvCRpreI;s=VC-XSU60&NuCKv1yKuq9AvpnRxoeS08Spfuk| zP(JuL4?bXW&96a_@{nTrqu{xupuUb~P&wEzR%n}p*or2A-7qI|L-n%l;3(Kz?2oS4^>xhjkS0CbL{6!vrnchA3po~_$dj$*#7fnWv~{idJ*~;_ zHx5DzE+m?6y&N7*xgE&2H*hiZHD_g<90bZw3Vy|*2!RZ6VdVYIsS5T z0KMfb@_OdMI&-S@2eTizT;qMixb!--+HD>)8;w?5JLX(a zV3O=b!VBlvxu@H!G9+*J)o~1GphGuO{(b3P)8z~WB__iG^5-h$3HF$6bfF5aB?rK6 zwwl-Juj0-Z7N{wu2|4-9JvyKT5#N}7*v*oDKP5a$lHSqWdo$$|-xFf`JfqT3xr*rg zA)Ly&tSw!X7X&kqHy^HazXj8>ob3{2G@A|4Cbz*W^IhB>LtANC>E3fCsbRAopGDoi zLx1##s&GSjN2d6>!hJ|wItNYmZmwgSy)S68WS;&#Aao!mU@S;q z>@N?#AhJ!WFo^jGv0}-v0#Xn_M>9x#%&04rbZja>#$qugu-W{oaL$o54B|ONz(jYE zU~o}1?#RKjDWjou8FD}edTarX20gaYnV{DIB%&fiwi%%L)`J}yd9*Jqd9+=gY!-Dg zx6S>S5U}L!9rtH;9r`+EdI++fT%(pWa&o&#Ci2?!x7}QnI^CHY?Bkch`dst9Et>H%iB(XblYu9AmGY)TKEtDp zukD`gsw6u9neqGr#>?QifY>+&79Uh5lnCrH(H$Bbp5iVZW@Tp0!B&N0ew+RBX)PjHT`pA`H7nU8cm48@{e>0(|%`Gc@&9#2hSi%b%+u;>hJV0Yx){phQ%dx zjX_m)Y(M<_`LSUmQ1$_m)XaaFSdfTjN-#G>UDKtyMFf18ffyXee(iXUbZoAF9Q@E&? zUou#cyE_SV3U(8U#_V8r#B{H>@00wkKR*}bTa5Xk^jzY~%YaLZaSPfCa1g#DMIoRdPnm>A33^|upRZeQEofr5K>#W0mBj#% zqR`nzlFwX5|0G2@-M#Kg9X3}Xr@0$`OVP!;gJ(SaR-)fhbZD>>K2m#Ri}vcKSoTlM z{A>Hb|B1}R{x38C%gjIQoBu9msA7xN|HKUQAI2G`zc$kR|7Lo^{mVEbB+hobS(%N$ zO}&c8w|jVX6Um*@ieI^!TCvie85EPzzMRYbP>@-`>!M}rl3c(4WSD-nyfUIZdwSWY z{nD_u61QHIZaF)*8$e`}cI{em+V`Agcq+P%1b(mgaB=_elj}}k{QmHnZDBkT^r0Ou zCi-Tb$${Bf!N7Z%b`{ZSm5csrh}|Wqtz_mN3@=#Md%F7|p+<0B@l6k8G=Dvme6z=m{e6;1XS5@^t!hR!h(9gz4-U?|In2$mt3ZLJDrqPC@x``W)emSD}j)G9Z7AS=Gk@usroaUH#Y~akdd~Y$KN*nomy`{iP}L zFTzLxiz3oVo3;7diR_{dJn_DUDXcB{lC?o1_ozW#Zb{1ne;)$(>hahz243=rEje^W zWB@G(spRh^gbi|ncMY@P9`x8vJ>0_G+Y)xQ`2z9*;)RwKlO;bn97hD4huB$(>bjbv z^Q~je&iC z7&WmdQ6Wp7-|ZX8K82R%#n{L78!hezsjFyZrMBC-#{Md&i*GYB%M_ z72?xvBXC~wmq$P+_+p1YLG!N_WPqgLzXO`pQpK`%0sWRZf-r&K&}@1@)BH0uwEqFk zii5|I1gC`0dCOmuf?<|kS_>)-slOxzjr$7-r#$P1>4kWBIBv6vgAzt$3lGEwn}DQ1 z7vK5A_+xBDq0;y-BE@*X?^zj9RP@RCd-JCkP5q{=#J|1{i6EP+U{mu!dXi2mTAXJedHVNupD** zAd=*8AHyH9Zsqb(F613%pbtxeCZoRduyWi2kjegx`?U6J=}?3!`*XRMHItEW03Nry z=$X48?=nx1dP{O0TS${=13Gpa=gpw&S2NT*aK2!X_n)9){liG}-=b*#0~&rpoac+hT~XWrq-fOsp=jp+RnfdM z6tdj0dARG-da0C;cb(TNb(p7bcgL$()$=YI8+ysi9JHHpgTGY0u-=%+<32wbdRX5J z&PuZt+l*H=CfXRMQddus9H76lyp`Ui4s@2!e}QJ#G{wnLkF-|9-mW z^sg?!Un1$ds()feJhlOlu6cvep8ban;OU_)qd0FpPTY2Q+JAdiLN!kO*1-$UAbSgS*xIYKH)DduS<&;$EvaVlSqqL>#?zs{ zXH+iLkSqI{l_EMomoJ@*nCq8#Mpw!Tm+4XnMi@ncG%lgjVVP5oSrLBy8eObwR}~r5 zA7&2#$OvEs2>;y*aQ?d$@V?<_@+T|6;U88&+kdhGihf%GH@m32ufMH;ivOz>Q25&l zfcqCKAQfN*?ES+E2m)9Eb9VOshZW%auT}v2->m@Y-&VlT->d+`zgPjm|GpKF+5Xp5 z`UH?lbI7FW9RB}JrAPmfN?W+QJ&q_WF0)Q^H~%e_zNW-q{fiYaG3bLFnH3I5r8g=T z{shh+Vrh0j*!b6@2mM5QVO=%|~Smsp+#4m95ol>HV|>hiK8x^E9U)JU)a z@#!I^)*{_1PB3!bwwaR?C)g$1n`gqa(pbLq~ z9UeWgL_jn#n3}{pze}9%Yl%m}#{7#rV;cuzFcT21J>WdvU- zt$m17Q*&n_hBQK93!s-J{o0i%O*#1JSQn=MupQ8tn0+CHk=hJ*b9&*yLtLeiUcF*Q zm!MG5Z(jZx&UWupZZ@cqrBl)DG?FCsJnb%59$qj*p&abH0zwX~2)6Xe7kmrIwG(&? z7;NJQa88!FTLfekL=|Bd@YEboQoTAR&|DY87LY9WmqK+z%sD#E-T=`OdClC$L<*Yk zXbhASQ^k6Ofl6)QeP4rX=T^lot8#RyAk2ZLdTD@~n1LXrC#v~=?Nt4mQkI}b*#dUW zCb>;nV?<0N$>Fb3oAq_iok)Y2gW|EkmL>XGTL^rIoyu%Qr;=xrR@mE-WnNxUwD#7R zNfSJ!o*S)5tO`V1LSapDK%|129B4y+kYLj#uf73`MJ(~dmMK13y@6VPN3)#1aINaw z9`u3i7tyOY)j7GJ{$@zDY>+J$!`i+*>UNPF>JE|ZY3zxHIcenrPq5Jxn+}ps)ED5a z?FX)YDU;v)(sMgzbSw3;hTAEO3x*ImxQ=4E6r^5|O1=Xo40g_@p(?A?vLh zvmJ?ZRsG#wJ=%`OdYoQs5Pon=;o|^{wgh2QHtFrc>AsV7`J-d({XyxzvvK)j!|3CM zzg1`k@ zJE|*DF#SeWUGKZE)~%?`_T5$gVvN)kZ-weH-XEZ*|3k6B|5&IW-0wZ{Hl%ym5{A66 zrEMq<^Nix?t{_QGM|tfy5MHjzWOecrp;cqNYB%+Q4d^>Bk#4AJll4xEV6m>?%!6ir z;J3`~M|ihteF9C#-;610^1#%&@3*Ho=$zTPVroa}o$P-doEtR5)aif2ADbE3eX@0p z&?PjiRuALp$oDt9zgX2my@`QnE8uF!|1ou2o}$!vv3pf@wo`|zV^E!FPx3u|yfoC{ zV=>LSZU1RMO`}M2IUm0qW4=_CGE?6Os+ijM6Q8gzHLxlWg73p;AUwV;YHXn6lJAYK zKo&rsL2!Vi;APdyf`Iwpzk(tF%@gUD3J3GU_cC+2CQ|mJxl5$(=&KRt?Z8E0qYJ3^ zYw(Tfvq`i^fg!@eH0b9*0CAs!_-cUKZtdZ~2GSrzAXwGUF#zNFKBx)A40GS)sDWUE zr8C19V;ui9t zZRfi_kG-&+_+zj>&lAMgg8lYb{u*K!QKF+_qt!2@6Z6;xBk*NHS-J=$_Ne$_!npmE zDG*ow4mqvgPr=E5q74@3F%K@4r3#8elrB>yc5bCya}OqNUTfRVT0~=nKK(>(!aAmc zzsEjET}#(jPLtGErNTl=2rJ`5FJ~*{$WNkAoMilF%gB|N@5xd*cp7{W6X*xGs*OC6 zf%cgEGmKxl{|Q^U`0?F*O#Z6Atb6&|js3DN+Q7DUZ85i_eU4vh)N8o!`%43AB}L~C z&xO*yuje~dwzm06taO#Frr;lJ3*Q0)sGg*|B%-~9lQ-vog6>1!V@?bq<6BS^?PDJ9 zEa1#Kt=Yoy+yRK)_w$xy(3b-@cuge z(5?9pOnt)_xc4!w`S_e*Vm7iG={S0%yqnF5_hYqoIT=i3tM2dG2Xk=&o4{zKsdEA#)mk^29r0HXYB)nxtVQC7R#&oG&rSUxcDvoj0hJH9neT_|!!=Kh z*p(>{lM@VK7W{1^4K;#|R92l9JeIMx9me8vKS5U&KhF9Ut9d1-miV7O@q7#UZ9qmC zfkD&I1E-J3>K}b7wY3w2#()$j*2J-pY+@7BUy4*P?F+JphUdOLb`RfWrdPcVlY24& zEQaAw@6Uh`Rj`NL7k}O5OBD{^2OI7XD#+m{h$9#2MMGvleVHhrFY^gm_%guhc#%rg z#5=Qx;{%dcFMJhe3(On|=3KxRf<_6hn)vG_O0i!$cwaGpVJJU5189YR7Jn~EM9MYx z4$1r%i25ry`dbKgQ{-Z)z#N^}3XrRO3SmiUOlbO}E{B4gMTmF#8Af9y6ccFfeg7ss z92AIi!D%&YbF|EY9OdbCtSv0Cv#*Z zU$3H=$+B!G)m?ebj^6T<9ul-&d5@-E#6>q`IPSe?R$jytLYOY6G0s9K+a?{oPZ+h< zp2sdVvazn_O+>u!Qsp*GjJLgv1uhs-+_F=bUdFz*PmYbejG10A8njJH9(x%xTrehh zWT*DLeBIwLDY@j4D0on7Y3jg|2Fn1VtJUq%9@GPPk*pMUaJxW((<-d@93`y{0hF)X zq1o>Wx_9zmKET9Ql?Z>r=TG$#tPKDDL|3uf8c=`PeuK6lSa2UZzycgk8E*JF)_$qM z98k23V%s7X#?OcF_Hq{~Xxw@Xe2dwc>b6UEa6WiqU3h%2YjQt$qeaM%$6 z$cYiw@&KS9hP%8OuLUC*u2|fzR1iyB8>xL;`^u< z-3Oh5r@Zxo6KQln{hSrc&jwMQ>B)~aUJaHH=Yh|MzwP^-MyQt3h6cgLO3O|cK)HlN zhu%ren$W`hMRrqEwH zT+5;Dk09lqAug0&ZYhF)JT(wf2ceRgYsGYC5yzuqe`#_SwUEl$3ZpWhVilvu%3+! zpI5C@u&-vVJQ%Ew6Z`9|?0P^wJ8FT+uKD}Nd%tW?-LL1#>J%gbledyyxRCE6jZez= zd7?h7IFH*d5H-kRP*A5e@MM|X>Rbr$#=gGVu|2OVJgkV8C8d18M1<^K@?+!wc#6rr z5?pN$161nk9X-`;c6tmUF{oDx@9KaW6o0%JANIe_V$;&o;(O3Cjia5Ez6{{sr>`KU zpO1@DQ7q~!DV+?tjQdzrA0(cgIQ>-ImN{Y4faC)Wg{J$&2cp}JOyY~`OGuCx3fFZV zP6R0nRFw+t+d~uXLV=vyl^fdI0uE$bOadwagzjsA0P+n8&DRJV0bYJQKNTFPAT4oa z4S0zBnGz&_g&rsxlS99vKu9PuF-3mv6Q4gk`cMKxWS&y^jy$C_1_cn5gm}tC?woHg zU5H>Hc*wj$z}IJsgpy(OQY#MTWr2k8LQ;)OHIIHj+{}zLK$q|Ml3@gj3279y!PEHRL#<& zZ)*F;*vK-|+$);ap-1M@5MAw}XXz(J@y6Y-qZTtTB9W!PtD}L?8!xIlavV5RgAbg( zOs&xIxWwBoD9h8#m)rN?#!&Da(%a2+gg;3*L(~nPehTXqQ;i91NG!+652QC!IAyjE zoEegWcdPQpl4lVSxU#HE`6shm=EpNRZtuSM40#?Z;Y$ew`Q*3ekdNR^tNhKY`bfq?>s zmfy+I)W)8if>zPY(b5QTso13Nu40}~?y6&*bp9UU29KPel- z|7sUSdp%oQBSQjO5j{%>BN$p)MPXGM5hqJaeLZXI-)}(C)XaeZaQf>T`AVQ{WbXiY zY63kM%zjvX4;oz!g&`J}q0lHI&nAtlx z60orRqfrF`6DvL2ziVloajjZ^9*n-_k*Ma2oxtQX8dQsN-h(I33J(gkCCA?4Dh3wN@HD~z5`ICM5hLD z3Lwr5-zlI2M0!l7PRA@)V%e+OnB(HPg&jsVK$OYW6{ z&z_d~>Gx)6xX@DsGsdw*+r@bL`Ab)KZ1?1luQDXOgZAeGUmN5tHF}#M6X{w4;S{!B ze@N*}BRL?(iQ3{MBbpl10A1~xUk18(fka^C!3anbd;;>A86eG27q|pqz?A!>z$9kA zNkCl$R4E|3SRi7!zG$JT!a&LpL!kNv_P#7X*7D@52%+$VVDv+x`LVEmsiKf}HG{GH z#_A>^bftiBae&Yhz?l*MlIRi0^W}#wi$o@{#sRLTTT;Q+q_JZG+Jv(CVv6euK~2Qc zWq@W|3bZj}FI!jNg^-e1NAt;L>ZS>D#*~Pr$IB{Tje$!xsn3qAE%Wt}XtyXb`{za_ zCa-=r&eAW=ftb-_#+O50J@=l?k9rzRAI?^C($`^gHMCK4*m&VCXde|zmBnzXu6cIb@7GdKI^f=fS*Re&7_-xP% zwp|9``{d(3cDGTgNO+G-Zg3BF;?tCwx4+p;(2kh5bY#d(Ru(Rf+G|OVhU-XvkWWUG zrrG7Yj5emTf7GN>A11$=E7Lr!O1afP(~=nTG4n1Z&MV0!-C+6X{AAgOBb|u&wDNRn zuEo>BSf(ulzf!@X04%M?H-OFtk(ULs_))}e74@F1^U)uR92&-7O3_E#(5C&BCx#E( z|5jU?UUnS>YfRAt2?8?*++m0i%XLn_o?UD506b7#{n}YssoxkHI0Y};yG&ZTOihXI z8jEFna4XQTW-t-PJZ2tMRUTj1=7c9WVxWvrT|(!9Fmz<opiDen}Bg zWIU&vn!iNu)#XO8NcRHHHNOWBEM11}srlyN2gPSr_GAW(4(5rE%P70hSbFi)K9wiM zdu!?xvNT)z?c`$SgWHL@FhTRaIdbqe_N09NP|FAlqQ>zdq2NO&$%wR8v!Z#7!#U$g zkZPB6Wad}L*QhoXX(q%pNF_Lh6T*uZwj@;=7|wYRFr>FR%qLbi*?l*pTgy3@!7-dV z=pal$UpTRZAtkN@ZQSG$0i{7WhS}qkZwLOYAq}l*<6Yq6Z<rV1n`;I20VQwzAEm`Pl+9}0p65dt=`3iORVfR^SYf7te2yFTKplWTGB zz{{&=c0RKOhi)6NNnpDoU$sQ^k^XZ0ecGEA1(>j`KJJe3Y}!<`sI*_Mtj9SQB`{j{ zSU}=2UZ7^VkMFqXyR%5Ey&VioFf|wWzHYm}DXH4A2KDp;#M^~gL04&ucEiQag@Be% z3gzhG1%%@mndVXYJz?X8ZWUeN_ zV}%8DLDW7Wg<+^0qO*FN^6eZi9PyQ1tRArC&EA==I**FT)uXhB3ViO>MfwL2Kb4&*R?Bnp^UIDoKH zs(cb;(`)4`3`zN?d(>)q$)OhmRX!yBwxiSJAc;e<7H9_+`HPhDW3pH<3<{QmL?bGG zZG;RUtxz0T8#@Aas1#P1vmUls?mh`IEaZZp?L^jS?hQf`AT|WaihKTI7!?f=)Zljk z!=%jw$D3y2W+Y!A<1|-uNu}}~^QN;vnvHs7B{)j?9gn>8Rnu3vRM(5f?V^S4Br;rm z{Y+y|*M7i(YNz@}PNQV1pel2(6buHMhnm2eeHt*BVS2)a$E1`1gT@Zm_^LRB-@T{T zM+^?egk%bOH{4{3Av3I@4&&mAEZs7?Qn3~ZA&sLRS{-~#J%oUB1hyNH|}zKpf_Qb=k^?4cC(A0pv#NFLSb-KLR?j)f(P#Ohg5nEV0ssN2J< zpYTN8zUDv_e8MaMUBb%=O<~o_zfLJ_0U`wcUhoA*cFO`zLMVrDFqTCy!ii=+)_Cy1 zG##2c$-1{8&PV%m8L1(KFn_$dpS4k4Va@oCdysfH-w5a_x$>@gg7a!F9l^KaZSxl_Q&m|b+a9DY9nc1e3&ncfNHFY6@(h;p-kF#H(YVzW$= z@gddy(dM(db(8pWR&}E>M?x%Q>vTi*j7D~qpVUhaY0*#{Re%_RC65Hq(iRl0WOWET+p@#;~cBv3&!Cx3s>E!xj6TwVO(WxaK&wmmA!p}ppcy8rQY6`=3`CeQyH;+nB ztwyt4U+q|0U5}7!d7mP1a!sH|3g?tPa^~nR-a7XpPbHj~>E{?f5=4LMB9s&@>^L|1 zk|yAYpa9Dm#p&3i&gJL-rQ7f_Wxb@PEPw*98!kLFUIa!YZtY36|d72C-P_pxdd-YJRjJ@vIgLpS?u}iDsVS&nCq_h<#flZ*$z1T3`*|`HsTw#S3 zFmkE-M6@*JLPqcuseGlD?qubKrX(@5=I$ujm8nH=XGE4@gx+=Smq62ajuq_+5gaR} z2rQB*#_%lV)0`R2Jg~-y>oZL&o;exnGtuVtLQaw>CsA`|VFW93pQ4x0I2KHfG5xtK z%tg?0xQ^6hf9db?*jh2HO~XC`KV2lJN;Uu^3bzU zDzl<*n6sthD1tJp!9B5nrwnTz=aYP;qgrfZtFJ7j51+w&o%Cx&H68*A6r9LxVUuutgk+oN4bs#iA};X zBPMoOU1txOsh&wQiHp2)z@l9n9U3#;yD)%v@4Z*sGGf%H9F%fJ~4*wlEofz4Hk#Al-Hi;t)?F z!&7@4eg9S0t(rU~<#M*P>DhO_FYrU2)}IJ{t0}|k@@)?BHMH}<=23%ZSLZP!`^Mjg z`U#x&$zSJ+MCXcG2P56yX@b>rl*)VjW9!2^@fSCZ9>(GIgM-iDdq{HSMmrnuefIm8 z{_#^P(9>Ovm&;ZI(`@Pwk-gK1NH=m_(G*smU9HiK2YWTNbSr+H8Ft#nlm6361QR{{ zi7YNouIEcsHjg_`$!hf<`bTFWFQ5C5S5aS7(}FooM4LIc24BhE<2ymtC(utMrflWL zA3dF%n0Ix=J5?5Qb~61JlMD7%`z<|&JNNA`_3_zpvO73kZ^HMstWg6j^K&9S2`B>X zD2OLU5qQnSdc(^%9y?dx3BH+X+@IndkMX&@4NDJdhC9W0bv_eE{5o0EKvNAng zA-Fm|JA5O;o<+Oj;W}TN>6b&uzR7+v!;L*C>o;ExE{GUEjq%q3neBuJox6B_I6-q| z+F27Wlm2<_(O}PuKjjU+LXe-$FqO& zg!TOR+Cs@^s>4$IWFuTp-k~hT8BTrKDHN&~wN<8DS;icd|`=5u+5j~bHVO)L;3Oc@QUaCaH63dQuL z4@SC@Xn;rmUTxkYJ_3SRfVWTp$FdWXYY)lG;!dy% zyN_O{>dVRSY@^B0CX~krYp!?+WVI~sd4nlpP7?yFhww^3Uhm;xet8^UnHEZ5n=7XE zn(GFTOS5@74mDPJjZKVRCELrv<>?kRx=&G2NZwt{rV=#$&dY)w&DE912ybSsnc&31 z?9a;+Wv{&$T;&ItEL!O-UUn`4WglGX+br^0 zq|BMpop~&LY$5Nks_e9k2)7w6v!`Em>}%0Udb*h<>+B$?j%J58JT|?G#JjAQ^@J*k zZWSjY+F>@KI!7DI>U@3NG5MOc8G|ud!H%{~vfPV0>7H1b_sR#BWtaLQ;*IxQtD)D| z{$-mfYWgtwjh>8YPrI}@)1I{|9x-XK6nBFKSvh?5a)*F6|XBQ+8a@g~#{ zVj5$MIZgU&o=T%rIl$(Zi73RSN>ejx& z!?!4A-_5DHe=`R8*US8JO-AK}Uq%%#`qH$Kv@7VDMzqjxFibsJcjD+lvRI4Bvgd47Qq1>&J`W+ zikBKIu1?)wBS_~2>$djVBr?_=6mbzsFgu3my>fvX4p46so$gB1!cka&kM<5JUZYL* zxP`N9HW>LqG8jzA?gBl!E?+AlmDnhkusT7YC+-%KvPO&KF$X8L9QD+UIpYwLvsSt0 zehc?g?IrpwP??8y$^q~&mFa++EY%K=VQNSQ;fI?EDR*r=8y<Yrh zV;wm0RN`;@5b$~2B-=ihy05axg3g$(arJy?=kyx`wvbKrF7UAsa4L#Z*1Rv5N_Muk zBt=`&7bE(F(AYrL$r#HHSJ04(!?)rukc<@kOo~dV62oi8^$#u~!#@{q{MFr3l{Yemp%u3_G;$@-pd+AXpx1%{v{Q07`h69KR)s)= zo`8|y_l@#4HjV`J0I!RVK>qhV0P8!`)Bm;|fBz*!puxq?&c;Y5!b&e9#KJ1Tz{oC0 z$0EWi%*4jTB*MhZD#XA;@L%r&cpgb3YZHL?$jHe0Z|4cP)2mdVx|oAkhi<98k?gBD zEC-&(4eS$ojK+~W_&IyLTLWkmtTf6$66Nzl<-_ab1MM#c>N#7LMsX)EnxAgZyf(5P zc1XTFGYWl&*#eU0v)m8})Ys*M7}ERFitv>HR?;7u4s3uQQ!)S<2{=y|0<4=Z1%xmb zegM$j-XC)av{`Z?vBLr!ylY@@X{y#!7V4XCX33Etq;L*qVt_oUjR2%k&L>4bb6HT$ zE_ic(+)H2gDIjcq6jKQ5oTOo$AL*+p--*=EB-8(&u}8`Jg!`@aTlU>(t=_UL{bA;t zpF6H@ue`ea>gheRuYEF_Uz_>WaKGBtnltweb?v2Z_k}h1dWWo@e>N#1yW#A&rPmZ@ zAKCopRb7M#D6`GA!L2WHACE=epZsQ``ya~WEg8CzO#sj9mAyKw;kB1O%r literal 0 HcmV?d00001 diff --git a/Secondo anno/Algebra 1/3. Teoria dei campi/1. Estensioni di campo ed elementi algebrici e trascendenti/main.tex b/Secondo anno/Algebra 1/3. Teoria dei campi/1. Estensioni di campo ed elementi algebrici e trascendenti/main.tex new file mode 100644 index 0000000..e687df6 --- /dev/null +++ b/Secondo anno/Algebra 1/3. Teoria dei campi/1. Estensioni di campo ed elementi algebrici e trascendenti/main.tex @@ -0,0 +1,309 @@ +\documentclass[12pt]{scrartcl} +\usepackage{notes_2023} + +\begin{document} + \title{Estensioni di campo ed elementi algebrici e trascendenti} + \maketitle + + \begin{note} + Una buona introduzione alle estensioni di campo + è già stata fatta nel corso di Aritmetica\footnote{ + Questa parte di teoria è reperibile al + seguente link: \url{https://git.phc.dm.unipi.it/g.videtta/notes/src/branch/main/Primo\%20anno/Aritmetica/Teoria\%20dei\%20campi}. + }, e pertanto + l'esposizione in questo documento dell'argomento sarà + del tutto \textit{straightforward}. \medskip + + + Per $K$, $L$ ed $F$ si intenderanno sempre dei campi. + Se non espressamente detto, si sottintenderà anche + che $K \subseteq L$, $F$, e che $L$ ed $F$ sono + estensioni costruite su $K$. Per $[L : K]$ si + intenderà $\dim_K L$, ossia la dimensione di $L$ + come $K$-spazio vettoriale. + \end{note} \bigskip + + + Lo studio della teoria dei campi è inevitabile quando si + intende studiare la risolubilità delle equazioni, come + ben illustra la teoria di Galois. In particolare, + questa teoria si basa in parte sullo studio delle + estensioni, ossia dei ``sovracampi'', del campo di partenza + che si sta studiando. A questo proposito tornano utili + le seguenti definizioni: + + \begin{definition}[estensione di campo] + Si dice che $L$ è un'estensione di campo di $K$ se + $K \subseteq L$, e si scrive $\faktor{L}{K}$ per + studiare $L$ in riferimento a $K$. Si dice + che $L$ è un'estensione finita se $[L : K]$ è + finito. + \end{definition} + + \begin{definition}[omomorfismo di valutazione] + Sia $\alpha \in K$. Allora si definisce l'\textbf{omomorfismo di valutazione} $\varphi_{\alpha,K} : K[x] \to K[\alpha]$ di $\alpha$ su $K$, + spesso abbreviato come $\varphi_\alpha$ se è + sottinteso che si sta lavorando su $K$, come + l'omomorfismo univocamente determinato dalla + relazione: + \[ p \xmapsto{\varphi_\alpha} p(\alpha). \] + \end{definition} + + \begin{remark} + L'omomorfismo di valutazione è sempre surgettivo e + la preimmagine di un elemento di $K[\alpha]$ è per + esempio lo stesso elemento a cui si è sostituito $x$ + al posto di $\alpha$. + \end{remark} + + \begin{definition} + Sia $\alpha \in K$. Allora si definisce $K(\alpha)$ + come la più piccola estensione di $K$ che contiene + $\alpha$, ossia: + \[ K(\alpha) = \bigcap_{\substack{\faktor{F_i}{K} \text{ campo} \\ \alpha \in F_i}} F_i. \] + \end{definition} + + \begin{definition}[estensione semplice] + Un'estensione $\faktor{L}{K}$ si dice \textbf{semplice} + se esiste $\alpha \in L$ tale per cui $L = K(\alpha)$. + \end{definition} + + \begin{remark} + Come suggerisce la definizione di $K(\alpha)$, se + $\faktor{L}{K}$ è un campo che contiene $\alpha$, + $K(\alpha) \subseteq L$. + \end{remark} + + \begin{definition}[elementi algebrici e trascendenti] + Sia $\alpha \in K$. Allora $\alpha$ si dice \textbf{algebrico su $K$} se $\exists p \in K[x]$ + tale per cui $p(\alpha) = 0$. Se $\alpha$ non è + algebrico, si dice che $\alpha$ è \textbf{trascendente}. + \end{definition} + + \begin{remark} + Se $\alpha \in K$, $\alpha$ è algebrico se e solo + se $\Ker \varphi_\alpha$ è non banale. Analogamente + $\alpha$ è trascendente se e solo se $\Ker \varphi_\alpha$ è banale. + \end{remark} + + \begin{remark} + Se $\alpha \in K$ è algebrico, allora $\Ker \varphi_\alpha$ è generato da un irriducibile dacché + $K[x]$ è un PID. In particolare $K[x] \quot {\Ker \varphi_\alpha}$ è un campo, e dunque, per il Primo + teorema di isomorfismo, lo è anche $K[\alpha]$. + Dal momento che $K[\alpha] \subseteq K(\alpha)$, + allora vale in questo caso che $K(\alpha) = K[\alpha]$. + \end{remark} + + \begin{definition} + Sia $\alpha \in K$ algebrico su $K$. Si definisce il \textbf{polinomio minimo} + $\mu_\alpha \in K[x]$ come il generatore monico di + $\Ker \varphi_\alpha$. Per semplicità si definisce + $\deg_K \alpha$ come il grado di $\mu_\alpha$. + \end{definition} + + \begin{remark} + Se $\alpha \in K$ è algebrico, allora $K[x] \quot{\Ker \varphi_\alpha}$ è uno spazio vettoriale su $K$ di + dimensione $\deg_K \alpha$. In particolare vale allora + che $[K(\alpha) : K] = [K[x] \quot{\Ker \varphi_\alpha} : K] = \deg_K \alpha$. Inoltre $\mu_\alpha$ è irriducibile su $K$ dal momento che $\Ker \varphi_\alpha$ è massimale. + \end{remark} + + \begin{remark} + Se $\alpha \in K$ è trascendente, allora + $\Ker \varphi_\alpha$ è banale e dunque, per il Primo + teorema di isomorfismo, $K[x] \cong K[\alpha]$. + \end{remark} + + La caratterizzazione degli elementi algebrici e trascendenti + si conclude mediante la seguente proposizione: + + \begin{proposition}[caratterizzazione degli elementi algebrici e trascendenti] + Sia $\alpha \in K$. Allora $\alpha$ è algebrico su + $K$ se e solo se $[K(\alpha) : K]$ è finito. + \end{proposition} + + \begin{proof} + Se $\alpha$ è algebrico, allora $[K(\alpha) : K]$ + è pari a $\deg_K \alpha$. Se invece $[K(\alpha) : K]$ + è pari ad $n \in \NN^+$, si considerino $1$, $\alpha$, + \ldots, $\alpha^n$. Dal momento che questi sono + $n+1$ elementi in $K(\alpha)$, devono essere + necessariamente linearmente dipendenti. Pertanto + esistono $a_0$, $a_1$, \ldots, $a_n$ tali per + cui $a_n \alpha^n + \ldots + a_1 \alpha + a_0 = 0$. + Pertanto esiste un polinomio con coefficienti in $K$ + che annulla $\alpha$, e dunque $\alpha$ è algebrico. + \end{proof} + + A partire dalla definizione di elemento algebrico si può + anche definire la nozione di \textit{estensione algebrica}: + + \begin{definition}[estensione algebrica] + Si consideri $\faktor{L}{K}$. Allora si dice che + $L$ è un'\textbf{estensione algebrica} se ogni + elemento di $L$ è algebrico su $K$. + \end{definition} + + Le estensioni finite sono privilegiate in questo senso, + dal momento che sono sempre algebriche, come illustra la: + + \begin{proposition}[estensione finita $\implies$ estensione algebrica] + Sia $L$ un'estensione finita di $K$. Allora $L$ + è un'estensione algebrica di $K$. + \end{proposition} + + \begin{proof} + Sia $\alpha \in L$. Dal momento che $K \subseteq K(\alpha) \subseteq L$, $K(\alpha)$ è un sottospazio + di $L$, che è spazio vettoriale su $K$. Dal momento + che $L$ è un'estensione finita, $[L : K]$ è finito, + e dunque lo è anche $[K(\alpha) : K]$, per cui + $\alpha$ è algebrico, e così $L$. + \end{proof} + + \begin{remark} + Mentre ogni estensione finita è algebrica, non è + vero che ogni estensione algebrica è finita. Per + esempio, + la chiusura algebrica $\overline{\QQ}$ di $\QQ$ non + è finita su $\QQ$. Infatti, per ogni $n \in \NN^+$, + $p_n(x) = x^n - 2$ è irriducibile in $\QQ[x]$ per il criterio + di Eisenstein, e dunque, detta $\alpha$ una radice + di $p_n$, $[\QQ(\alpha) : \QQ] = n$, e quindi, dal + momento che $\QQ(\alpha) \subseteq \overline{\QQ}$, + $[\overline{\QQ} : \QQ] \geq n$. Pertanto il grado + di $\overline{\QQ}$ su $\QQ$ non è finito, benché + $\overline{\QQ}$ sia un'estensione algebrica per + definizione. + \end{remark} + + \begin{remark} + Se $L$ è un'estensione semplice, allora $L$ + è algebrica se e solo se $L$ è un'estensione + finita. + \end{remark} + + Definiamo infine il composto di due estensione $L$, $M$ di $K$ su uno stesso campo $\Omega$: + + \begin{definition}[composto di due estensioni] + Siano $L$, $M \subseteq \Omega$ estensioni di $K$ con + $\Omega$ a sua volta campo. Si definisce allora + il \textbf{composto} $LM$ di $L$ e $M$ come il più + piccolo sottocampo di $\Omega$ che contiene sia + $L$ che $M$. Talvolta si scrive anche $L(M) = LM$. + \end{definition} + + \begin{remark} + Se $L = K(\alpha_1, \ldots, \alpha_m)$ e + $M = K(\beta_1, \ldots, \beta_n)$, allora vale che: + \[ LM = K(\alpha_1, \ldots, \alpha_m, \beta_1, \ldots, + \beta_n). \] + \end{remark} + + \begin{proposition} + Siano $L$ e $M$ due campi tali per cui + $K \subseteq L$, $M$. Allora, se + $[L : K] = m \in \NN^+$ e $[M : K] = n \in \NN^+$, + $LM$ è un'estensione finita di $K$ e $\mcm(m, n) \mid [LM : K]$. + \end{proposition} + + \begin{proof} + Si consideri il seguente diamante di estensioni: + \[\begin{tikzcd}[column sep=scriptsize] + && LM \\ + \\ + L &&&& M \\ + \\ + && K + \arrow["n", no head, from=3-5, to=5-3] + \arrow["m"', no head, from=3-1, to=5-3] + \arrow[no head, from=1-3, to=3-5] + \arrow[no head, from=1-3, to=3-1] + \arrow[no head, from=1-3, to=5-3] + \end{tikzcd}\] + Dal momento che $LM = L(M)$ è un $L$-spazio vettoriale + e $M$ è un'estensione finita di $K$, il grado di $LM$ + su $L$ è finito. Pertanto, applicando il teorema delle + torri algebriche, $m \mid [LM : K]$. Analogamente + $n \mid [LM : K]$, e quindi $\mcm(m, n) \mid [LM : K]$. + \end{proof} + + \begin{proposition} + Sia $L$ un'estensione di campo di $K$. Allora + $A = \{ \alpha \in L \mid \alpha \text{ algebrico su } K \}$ è un campo, e quindi un'estensione algebrica + di $K$. + \end{proposition} + + \begin{proof} + Siano $\alpha$ e $\beta \in A$. Si consideri il + seguente diamante di estensioni: + \[\begin{tikzcd}[column sep=small] + && {K(\alpha, \beta)} \\ + \\ + {K(\alpha)} &&&& {K(\beta)} \\ + \\ + && K + \arrow[no head, from=3-5, to=5-3] + \arrow[no head, from=3-1, to=5-3] + \arrow[no head, from=1-3, to=3-5] + \arrow[no head, from=1-3, to=3-1] + \arrow[no head, from=1-3, to=5-3] + \end{tikzcd}\] + Dal momento che $K(\alpha, \beta) = K(\alpha)K(\beta)$ + e sia $[K(\alpha) : K]$ che $[K(\beta) : K]$ sono + finiti dacché $\alpha$ e $\beta$ sono algebrici, + $K(\alpha, \beta)$ è un'estensione finita di $K$, + ed è dunque un'estensione algebrica. Pertanto + $\alpha \pm \beta$, $\alpha\beta$, $\alpha\inv$ + (se $\alpha \neq 0$) e $\beta\inv$ (se $\beta \neq 0$) sono elementi algebrici di $K$, + e quindi $A$ è un campo, e a maggior ragione un'estensione algebrica di $K$. + \end{proof} + + \begin{proposition} + Se $K \subseteq L \subseteq F$ è una torre di + estensioni e $\faktor{L}{K}$ è algebrica così + come $\faktor{F}{L}$, allora anche + $\faktor{F}{K}$ è algebrica. + \end{proposition} + + \begin{proof} + Sia $f \in F$. Allora, poiché $F$ è + algebrico su $L$, esistono $l_0$, \ldots, + $l_n \in L$ tali per cui, detto + $p(x) = l_n x^n + \ldots + l_1 x + l_0 \in L[x]$, + vale che $p(f) = 0$. In particolare $f$ è + algebrico su $K(l_n, \ldots, l_0)$, e quindi + $K(l_n, \ldots, l_0, f)$ è un'estensione finita + su $K(l_n, \ldots, l_0)$. \medskip + + + Chiaramente $K(l_n, \ldots, l_0)$ è un'estensione + finita su $K$ dal momento che questi due campi sono + i due estremi della seguente torre di estensioni: + \[\begin{tikzcd} + {K(l_n, \ldots, l_0)} \\ + {K(l_{n-1}, \ldots, l_0) } \\ + \vdots \\ + {K(l_0)} \\ + K + \arrow[no head, from=1-1, to=2-1] + \arrow[no head, from=2-1, to=3-1] + \arrow[no head, from=3-1, to=4-1] + \arrow[no head, from=4-1, to=5-1] + \end{tikzcd}\] + Infatti ogni campo della torre è un'estensione + finita del sottocampo corrispondente dal momento + che $\faktor{L}{K}$ è un'estensione algebrica\footnote{ + In particolare questo dimostra che un'estensione + algebrica e finitamente generata è anche + finita. Si può generalizzare il risultato + mostrando che un'estensione è finita se e solo + se finitamente generata da elementi algebrici. + }. \medskip + + + Per il teorema delle torri algebriche, allora + $K(l_n, \ldots, l_0, f)$ è un'estensione finita + di $K$. Dal momento allora che $K(f) \subseteq K(l_n, \ldots, l_0, f)$, anche questa è un'estensione finita, + e quindi $f$ è algebrico, da cui la tesi. + \end{proof} + +\end{document} \ No newline at end of file