feat(algebra1): esempio sulla corrispondenza di Galois

main
parent add484dfa6
commit ad9faf151b

@ -306,10 +306,14 @@
$\QQ$. In particolare vale che:
\[ \mu_\alpha(x) = \prod_{i=0}^1 \prod_{j=0}^1 (x + (-1)^i \sqrt{2} + (-1)^j \sqrt{3}) = x^4 - 10x^2 + 1. \]
In modo analogo si ottengono i polinomi minimi
di $\sqrt{2} + \sqrt{3}$ su $\QQ(\sqrt2)$,
$\QQ(\sqrt3)$ e $\QQ(\sqrt6)$, rispettivamente
$x^2-2\sqrt{2}x-1 = (x-\sqrt{2})^2 - 3$,
$x^2-2\sqrt{3}x-1 = (x-\sqrt{3})^2 - 2$ e
$x^2-(\sqrt{2} + \sqrt{3})^2 = x^2 - 2\sqrt{6} - 5$.
Tutte le informazioni sono infine raccolte nel seguente
diagramma di estensioni: %TODO: terminare esempio
diagramma di estensioni:
\[\begin{tikzcd}[column sep=2.25em]
&& {\overbrace{\mathbb{Q}(\sqrt{2}, \sqrt{3})}^{\mathbb{Q}(\sqrt{2} + \sqrt3)}} \\
\\
@ -326,9 +330,25 @@
\arrow["{x^2-3}", curve={height=-12pt}, no head, from=3-5, to=5-3]
\arrow["{x^2-2}"', curve={height=12pt}, no head, from=3-1, to=5-3]
\arrow["{x^2-6}"'{pos=0.3}, shift left, curve={height=12pt}, no head, from=3-3, to=5-3]
\arrow["{x^2+2\sqrt3\,x+1}", curve={height=-18pt}, no head, from=1-3, to=3-5]
\arrow["{x^2+2\sqrt2\,x-1}"', curve={height=18pt}, no head, from=1-3, to=3-1]
\arrow["{x^2-2\sqrt3\,x+1}", curve={height=-18pt}, no head, from=1-3, to=3-5]
\arrow["{x^2-2\sqrt2\,x-1}"', curve={height=18pt}, no head, from=1-3, to=3-1]
\arrow["{\small x^2-2\sqrt6-5}"'{pos=0.8}, curve={height=12pt}, no head, from=1-3, to=3-3]
\end{tikzcd}\]
Tramite la corrispondenza di Galois abbiamo fatto
corrispondere questo diagramma al seguente diagramma
di gruppi:
\[\begin{tikzcd}
& {\{ \text{Id}_L \equiv \varphi_{00} \}} \\
\\
{\{ \varphi_{00}, \varphi_{01} \}} & {\{ \varphi_{00}, \varphi_{11} \}} & {\{\varphi_{00}, \varphi_{10}\}} \\
\\
& {\{\varphi_{01}, \varphi_{10}, \varphi_{01}, \varphi_{11}\}}
\arrow[no head, from=1-2, to=3-2]
\arrow[no head, from=1-2, to=3-1]
\arrow[no head, from=1-2, to=3-3]
\arrow[no head, from=3-2, to=5-2]
\arrow[no head, from=3-3, to=5-2]
\arrow[no head, from=3-1, to=5-2]
\end{tikzcd}\]
\end{example}
\end{document}
Loading…
Cancel
Save