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During the quarantine dued to the 2019-2020 Coronavirus pandemic,
Isaac Newton came to my mind. In fact, sir Newton was quarantined
as well. In August 1665 his university closed down in order to prevent
the spread of the Great Plague of London. What is remarkable is that
he developed his calculus and physics theories while staying at
home . So my thought was: “Am I able to experiment physics at
home?”. The answer was definitely affirmative.
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Figure 1: the physical model
for an ideal pendulum.

Introduction to the pendulum

A pendulum is a weight linked to a pivot by a string that freely
swings.  It is so interesting and apparently simple that
physicists have been studying it for ages. For example, the
Italian scientist Galileo Galilei designed a pendulum clock in
1641 , although he didn’t succeed in building it. In fact, the
one who built the first pendulum clock is the Dutch physicist
Christiaan Huygens, who did so in 1656 and published his
theory of the pendulum seventeen years later. It is worth
mentioning that its deviation was around a bunch of seconds
a day, which was extremely accurate by that time.  It took
almost 300 years to exceed its accuracy: indeed, in 1921, the
quartz crystal oscillator was invented and replaced the
pendulum.

One of the most studied physical models about the pendulum is the one which interacts with gravity and
assumes no air resistance (see Figure 1). By simply summing up all the information, it is possible to obtain
a flexible system of equations:

mac = |
→
T | − mgcos(θ)

mat = − mgsin(θ)

where m stands for the mass of the weight, while ac and at represent respectively the centripetal and the
tangential acceleration. It is worth noting that the positive horizontal direction is assumed to be opposite to
the direction of the weight and that the vertical one follows the tension. From the second equation it
follows the at = − gsin(θ).

In particular at can be written as θ̈ℓ, where ℓ stands for the length of the linking string. Thus, the second

equation is revealed to be the differential equation θ̈ℓ = − gsin(θ).

On the other hand, sin(θ) can be replaced with its own Maclaurin series, which is θ −
θ3
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Hence, it follows that sin(θ) ≈ θ for very small values of θ in radians. This is actually a direct consequence

of the value of the limit lim
θ→ 0

sin(θ)
θ

 being equal to 1.

Therefore, it is sufficient to resolve the differential equation θ̈ℓ = − gθ. Substituting θ = eλt, we get to

resolve the characteristic equation λ2ℓ = − g, whose complex roots are ± i
g
ℓ .

As a result, the general form for θ(t) is Acos(
g
ℓ t) + Bsin(

g
ℓ t). According to the fact that the initial angular

velocity is zero (i.e. θ̇(0) = 0), B must be equal to zero as well.
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Figure 2: the pendulum
motion over time.

Finally, θ(t) can now be written in the form Acos(
g
ℓ t), which is a function of period T = 2π

ℓ
g , whose

maximum value is the initial amplitude A.

The pendulum viewed graphically

After having found the general equation that describes the pendulum motion for small angles, I created a
simple script in Python using Matplotlib and NumPy:

pendulum_motion.py hosted with ❤ by GitHub

I thereupon executed it and plotted the function θ(t) (see
Figure 2). As we can see, the plot is actually a sinusoid,
which respects all the conditions we assumed while trying to
retrieve a general form for the pendulum equation.

In fact, at t = 0, we get the maximum value of the function
(i.e. the initial amplitude A), but we still get this value if we
increment the time by a multiple of the period T.

What is notable is the fact that the amplitude does not
influence the period of the function, which in the first place
might sound counterintuitive.

The only variable that influences the period is the length of the linking string, while the amplitude defines
the maximum achievable angle.

Then, if we let the amplitude vary (see Figure 3), the value of the period does not change. That is because
if we increase the amplitude, the gravity force makes the weight achieve more speed, which compensates
the variation.
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#!/usr/bin/python

# -*- coding: utf-8 -*-

from matplotlib.animation import FuncAnimation

import matplotlib.pyplot as plt

import numpy as np

A, T = np.pi/20, 1.90345

frames = 150

bg_color = '#FAFBFC'

motion_plot = plt.figure(2)

ax_motion = motion_plot.add_subplot(

111, xlabel="$t$ [sec]", ylabel="$\\theta$ [rad]",

xlim=(0, 4*T), ylim=(-A, A), facecolor=bg_color)

amplitude_plot = plt.figure(3)

ax_amplitude = amplitude_plot.add_subplot(...
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Figure 3: demonstration of the
independence of the period by
letting the amplitude change.

Figure 4: pendulum
velocity over time.

Figure 5: the measurement of
the string of the yo-yo.

The weight does not stop either because of the law of inertia,
which guarantees the continuity of the motion.

As a result of all these combinations of information, it follows
that neither the mass influences the period. Actually, the
mass is insignificant for the whole physical system except for
the tension.

Even the velocity plot (see Figure 4) shares the same period
as the motion one. That is because the first derivative of θ(t)

(i.e. the velocity itself) is equal to −
g
ℓAsin(

g
ℓ t), whose

period is identical to the one of the motion.

At the t = 0, just as we assumed it to be, the velocity is equal
to zero, while the maximum speed is obtained each half of

the period T starting from t =
T
4 , which happens when the

weight is perpendicular to the plane (i.e. θ(t) = 0).

Indeed, the maximum speed is equal to θ̇(
T
4 ) , which can be

expanded to be equivalent to A
2π
T .

Although we’ve found these magnificent results, it must be
remembered that all these formulas tend to work if and only if the air resistance is assumed not to exist
and the amplitude is much less than 1.

The experiment

Having the pendulum motion been explained, I thought it
would be awesome to experiment it in real life. Therefore, I
seeked an object whose motion could be comparable to the
pendulum one.

All I found was a yo-yo, which is pretty similar to a pendulum,
but I didn’t find anything to reduce the air resistance at all.
Then, I took a meterstick and I measured the length of the
string, which was about 90 cm (see Figure 5).

Actually, it is enough: we can already predict the value of the period. I subsequently calculated the period 
T and it turned out to be about 1.90345 s.

I could have weighed the yo-yo, but I did not for a simple reason: it does not matter. In fact, the weight
doesn’t appear anywhere in our equations.

What I did was take my stopwatch and prepare to measure the period of the motion (see Figure 6). After
having taken all the measurements, I calculated the arithmetic mean. It turned out to be approximately 
1.872 s.
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Figure 6: the yo-yo motion
caught during the experiment.

Actually, I was surprised: the difference between the value I
calculated and the one I got by rearranging my
measurements was just 0.03145 s!

Hence, we can conclude that the equations we found are
revealed to be producing correct results.

Although I did not mention it earlier, the physical system
we’ve been analysing during the experiment can be
generalised using the simple harmonic motion equations. It
follows that the pendulum behaviour is approximately the
same as a harmonic oscillator for small angles. This implies
that a pendulum behaves like a spring, which apparently
seems not to be related to it.

You might accuse me of retrieving equations that work just
for a small range of angles, but what hasn’t been said yet is
that, in fact, there does not exist an elementary equation
which describes the pendulum motion for all angles. Even if it
did exist, it didn’t matter for the experiment I performed as I
had not chosen an angle either.

The conclusion is that, even in quarantine, we are all able to
prove simple physical facts, which apparently might seem to be obvious, but are actually described in a
very complex way. Newton, we did it!
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