%-------------------------------------------------------------------- \begin{landscape} \chapter*{Tabella e proprietà delle distribuzioni assolutamente continue} \addcontentsline{toc}{chapter}{Tabella e proprietà delle distribuzioni assolutamente continue} \vskip -0.3in \begin{center} \begin{table}[htb] \scalebox{1.1}{ \begin{tabular}{|l|l|l|l|l|l|} \hline Nome distribuzione & Caso di utilizzo & Parametri & Densità & Funzione di ripartizione & Probabilità \\ \hline \begin{tabular}[c]{@{}l@{}}Distr. uniforme\\ $X \sim U(B)$\end{tabular} & \begin{tabular}[c]{@{}l@{}}Estrazione di un\\ punto reale a caso\\ su $B$ senza preferenze.\end{tabular} & \begin{tabular}[c]{@{}l@{}}$B \in \BB(\RR)$ -- insieme\\ da cui estrarre.\end{tabular} & $f(x) = \frac{1}{m(B)} 1_B(x)$ & $F(x) = \frac{m((-\infty, x] \cap B)}{m(B)}$ & $P(X \in A) = \frac{m(A \cap B)}{m(B)}$ \\ \hline \begin{tabular}[c]{@{}l@{}}Distr. esponenz.\\ $X \sim \Exp(\lambda)$\end{tabular} & \begin{tabular}[c]{@{}l@{}}Processo di Poisson\\ in senso continuo.\end{tabular} & \begin{tabular}[c]{@{}l@{}}$\lambda > 0$ -- parametro\\ di Poisson.\end{tabular} & $f(x) = \lambda e^{-\lambda x} 1_{(0, \infty)} (x)$ & \begin{tabular}[c]{@{}l@{}}$F(x) = 1-e^{-\lambda x}$\\ per $x \geq 0$, $0$ altrimenti.\end{tabular} & \\ \hline \begin{tabular}[c]{@{}l@{}}Distr. gamma\\ $X \sim \Gamma(r, \lambda)$\end{tabular} & \begin{tabular}[c]{@{}l@{}}Estensione della distr.\\ binomiale in senso\\ continuo.\end{tabular} & $r > 0$, $\lambda > 0$. & $f(x) = \frac{\lambda^r}{\Gamma(r)} x^{r-1} e^{-\lambda x} 1_{(0, \infty)}(x)$ & & \\ \hline \begin{tabular}[c]{@{}l@{}}Distr. normale\\ $X \sim N(m, \sigma^2)$\end{tabular} & & \begin{tabular}[c]{@{}l@{}}$m$ -- media.\\ $\sigma^2 > 0$ -- varianza.\end{tabular} & $f(x) = \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\nicefrac{(x-m)^2}{2\sigma^2}}$ & \begin{tabular}[c]{@{}l@{}}$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\nicefrac{t^2}{2}} \dt$\\ per $N(0, 1)$ e si standardizza\\ le altre distr. con il cambio\\ di var. $z = \nicefrac{(x-m)}{\sigma}$.\end{tabular} & \\ \hline \end{tabular} } \end{table} \end{center} Si ricorda che la funzione $\Gamma$ è definita in modo tale che $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} \dt$; si tratta di un'estensione della nozione di fattoriale ai valori reali (infatti, $\Gamma(n+1) = n!$ per $n \in \NN$). % Valgono inoltre le seguenti altre proprietà: % % \small % \begin{itemize} % \item % \end{itemize} \end{landscape}