Linear Algebra notes

Author GABRIEL HEAROT

March 27, 2020

Contents

Chapter 1

Basic Notions.

1.1 Vector spaces

Definition A vector space *V* is an object made of two sets: the set of the vectors, with its elements being denoted by a lowercase bold letter (e.g. **u**), and the set of the scalars, usually denoted by a Greek letter. **u** and **v** usually denote general vectors, while *α* and *β* general scalars.

There are eight properties which vectors hold:

- 1. Commutativity: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u} \ \forall \mathbf{u}, \mathbf{v} \in V$;
- 2. Associativity: $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w}) \ \forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V;$
- 3. Zero vector: there exists a unique vector **0** such that $\mathbf{v} + \mathbf{0} = \mathbf{v} \ \forall \mathbf{v} \in V$;
- 4. Inverse vector: there always exists a vector $-\mathbf{v}$ such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{v} \mathbf{v} = \mathbf{0} \ \forall \mathbf{v} \in V$;
- 5. Neutral scalar for multiplication: there always exists a scalar 1 such that $1\mathbf{v} = \mathbf{v} \ \forall \mathbf{v} \in V$;
- 6. Multiplicative associativity: (*αβ*)**v** = *α*(*β***v**) ∀ **v** ∈ *V* and ∀*α*, *β* which are scalars;
- 7. Distributive property: $\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v} \quad \forall \mathbf{u}, \mathbf{v} \in V$ and $\forall \alpha$ which is scalar;
- 8. Vectorial distributive property: $(α + β)\mathbf{v} = α\mathbf{v} + β\mathbf{v} \ \forall \mathbf{v} \in V$ and $\forall α, β$ which are scalars.

If a vector space is made of scalars which are real numbers, it is called a *real* vector space. Likewise, for complex numbers, it is called a *complex* vector space.

Matrices & polynomials A space $M_{m \times n}$ (sometimes written as $M_{m,n}$) denotes a vectorial space made of $m \times n$ matrices. A space \mathbb{P}_n denotes a vectorial space made of *n* degree polynomials.

 A^T represents the transposed matrix (i.e. a matrix A for which the rows & columns have been inverted).

1.2 Linear combinations

Definition Given a collection of vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \ldots, \mathbf{v}_n$ and a collection of scalars $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \ldots, \alpha_n$, the sum *n* ∑ *p*=1 *αp***v***^p* is called a *linear combination*.

If there exists a unique representation for the *linear combination* of a set of vectors such that \forall **v** \in *V*, **v** = *n* ∑ *p*=1 *αp***v***^p* , these ones are called a *basis*, while their coefficients are called *coordinates*.

A set of vectors is a *basis* if $\mathbf{v} =$ *n* ∑ *p*=1 *xp***v***^p* admits a unique set of solutions.

Standard basis \mathbb{F}^n represents a general vectorial space whose vectors has got *n* coordinates.

The set of vectors $e_1, e_2, e_3, \ldots, e_n$, with e_n being a vector whose coordinates are all 0 except the n-th, which is equal to 1, is the *standard basis* in **F** *n* .

Likewise, the set of polynomial vectors \mathbf{e}_0 , \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 , . . . , \mathbf{e}_n , with $\mathbf{e}_n := x^n$, is the *standard basis* in \mathbb{P}_n .