Note del corso di Geometria 1

Gabriel Antonio Videtta

28 aprile 2023

Indipendenza e applicazioni affini

Fissato un origine O dello spazio affine, si possono sempre considerare due bigezioni:

- La bigezione $i_O: E \to V$ tale che $i(P) = P O \in V$,
- La bigezione $j_O: V \to E$ tale che $j(\underline{v}) = O + \underline{v} \in E$.

Si osserva inoltre che i_O e j_O sono l'una la funzione inversa dell'altra. Dato uno spazio vettoriale V su \mathbb{K} di dimensione n, si può considerare V stesso come uno spazio affine, denotato con le usuali operazioni:

- (a) $\underline{v} + \underline{w}$, dove $\underline{v} \in V$ è inteso come *punto* di V e $\underline{w} \in W$ come il vettore che viene applicato su \underline{w} , coincide con la somma tra \underline{v} e \underline{w} (e analogamente w v).
- (b) Le bigezioni considerate inizialmente sono in particolare due mappe tali che $i_{v_0}(\underline{v}) = \underline{v} \underline{v_0}$ e che $j_{v_0}(\underline{v}) = \underline{v_0} + \underline{v}$.

Definizione (spazio affine standard). Si denota con $\mathcal{A}_n(\mathbb{K})$ lo spazio affine standard costruito sullo spazio vettoriale \mathbb{K}^n . Analogamente si indica con A_V lo spazio affine costruito su uno spazio vettoriale V.

Osservazione.

- ▶ Una combinazione affine di A_V è in particolare una combinazione lineare di V. Infatti, se $\underline{v} = \sum_{i=1}^n \lambda_i \underline{v_i}$ con $\sum_{i=1}^n \lambda_i = 1$, allora, fissato $\underline{v_0} \in V$, $\underline{v} = \underline{v_0} + \sum_{i=1}^n \lambda_i (\underline{v_i} \underline{v_0}) = \underline{v_0} + \sum_{i=1}^n \lambda_i \underline{v_i} \underline{v_0} = \sum_{i=1}^n \lambda_i \underline{v_i}$.
- ▶ Come vi è una bigezione data dal passaggio alle coordinate da V a \mathbb{K}^n , scelta una base \mathcal{B} di V e un punto O di E, vi è anche una bigezione $\varphi_{O,\mathcal{B}}$ da E a $\mathcal{A}_n(\mathbb{K})$ data dalla seguente costruzione:

$$\varphi_{O,\mathcal{B}}(P) = [P - O]_{\mathcal{B}}.$$

Proposizione. Sia $D \subseteq E$. Allora D è un sottospazio affine di $E \iff$ fissato $P_0 \in D$, l'insieme $D_0 = \{P - P_0 \mid P \in D\} \subseteq V$ è un sottospazio vettoriale di V.

Dimostrazione. Si dimostrano le due implicazioni separatamente.

 $(\Longrightarrow) \text{ Siano } \underline{v_1}, ..., \underline{v_k} \in D_0. \text{ Allora, per definizione, esistono } P_1, ..., P_k \in D$ tali che $\underline{v_i} = P_i - P_0 \ \forall \ 1 \leq i \leq k. \ \text{ Siano } \lambda_1, \ ..., \ \lambda_k \in \mathbb{K}. \ \text{ Sia inoltre } P = P_0 + \sum_{i=1}^k \lambda_i \underline{v_i} \in E. \ \text{ Sia infine } O \in D. \ \text{ Allora } P = O + (P_0 - O) + \sum_{i=1}^k \lambda_i \underline{v_i} = O + (P_0 - O) + \sum_{i=1}^k \lambda_i (P_i - O + O - P_0) = O + (P_0 - O) + \sum_{i=1}^k \lambda_i (P_i - O) - \sum_{i=1}^k \lambda_i (P_0 - O) = O + (1 - \sum_{i=1}^k \lambda_i) (P_0 - O) + \sum_{i=1}^k \lambda_i (P_i - O). \ \text{In particolare } P \ \text{è una combinazione affine di } P_1, \ ..., \ P_k \in D, \ \text{e quindi, per ipotesi, appartiene a } D. \ \text{Allora } P - P_0 = \sum_{i=1}^k \lambda_i \underline{v_i} \in D_0. \ \text{Poich\'e allora } D_0 \ \text{è chiuso per combinazioni lineari, } D_0 \ \text{è un sottospazio vettoriale di } V.$

 $\begin{array}{l} (\longleftarrow) \ \mathrm{Sia} \ P = \sum_{i=1}^k \lambda_i P_i \ \mathrm{con} \ \sum_{i=1}^k \lambda_i = 1, \ \mathrm{con} \ P_1, \ ..., \ P_k \in D \ \mathrm{e} \ \lambda_1, \ ..., \\ \lambda_k \in \mathbb{K}. \ \ \mathrm{Allora} \ P - P_0 = \sum_{i=1}^k \lambda_i (P_i - P_0) \in D_0 \ \mathrm{per} \ \mathrm{ipotesi}, \ \mathrm{essendo} \\ \mathrm{combinazione} \ \mathrm{lineare} \ \mathrm{di} \ \mathrm{elementi} \ \mathrm{di} \ D_0. \ \ \mathrm{Pertanto}, \ \mathrm{poich\acute{e}} \ \mathrm{esiste} \ \mathrm{un} \ \mathrm{solo} \\ \mathrm{punto} \ P' \ \mathrm{tale} \ \mathrm{che} \ P' = P_0 + \sum_{i=1}^k \lambda_i (P_i - P_0), \ \mathrm{affinch\acute{e}} \ \sum_{i=1}^k \lambda_i (P_i - P_0) \\ \mathrm{appartenga} \ \mathrm{a} \ D_0, \ \mathrm{deve} \ \mathrm{valere} \ \mathrm{anche} \ \mathrm{che} \ P \in D. \ \mathrm{Si} \ \mathrm{conclude} \ \mathrm{quindi} \ \mathrm{che} \ D \ \grave{\mathrm{e}} \\ \mathrm{un} \ \mathrm{sottospazio} \ \mathrm{affine}, \ \mathrm{essendo} \ \mathrm{chiuso} \ \mathrm{per} \ \mathrm{combinazioni} \ \mathrm{affini}. \end{array}$

Osservazione. Sia D un sottospazio affine di E.

- ▶ Vale la seguente identità $D_0 = \{P Q \mid P, Q \in D\}$. Sia infatti $A = \{P Q \mid P, Q \in D\}$. Chiaramente $D_0 \subseteq A$. Inoltre, se $P Q \in A$, $P Q = (P P_0) (Q P_0)$. Pertanto, essendo P Q combinazione lineari di elementi di D_0 , ed essendo D_0 spazio vettoriale per la proposizione precedente, $P Q \in D_0 \implies A \subseteq D_0$, da cui si conclude che $D_0 = A$.
- ▶ Pertanto D_0 è unico, a prescindere dalla scelta di $P_0 \in D$.
- ▶ Vale che $D = P_0 + D_0$, ossia D è il traslato di D mediante il punto P_0 .

Definizione (direzione di un sottospazio affine). Si definisce $D_0 = \text{Giac}(D) = \{P - Q \mid P, Q \in D\} \subseteq V \text{ come la direzione (o giacitura)}$ del sottospazio affine D.

Definizione (dimensione un sottospazio affine). Dato D sottospazio affine di E, si dice dimensione di D, indicata con dim D, la dimensione della sua direzione D_0 , ossia dim D_0 . In particolare dim $E = \dim V$.

Definizione (sottospazi affini paralleli). Due sottospazi affini si dicono **paralleli** se condividono la stessa direzione.

Osservazione.

- \blacktriangleright I sottospazi affini di dimensione zero sono tutti i punti di E.
- ▶ I sottospazi affini di dimensione uno sono le *rette affini*, mentre quelli di dimensione due sono i *piani affini*.
- ▶ Si dice *iperpiano affine* un sottospazio affine di codimensione 1, ossia di dimensione n-1.

Definizione (punti affinemente indipendenti). Un insieme di punti $P_1, ..., P_k$ di E si dice **affinemente indipendente** se ogni combinazione affine di tali punti è unica. Analogamente un sottoinsieme $S \subseteq E$ si dice affinemente indipendente se ogni suo sottoinsieme finito lo è.

Proposizione. Dati i punti P_1 , ..., $P_k \in E$, sono equivalenti le seguenti affermazioni.

- (i) $P_1, ..., P_k$ sono affinemente indipendenti,
- (ii) $\forall i \in \mathbb{N}^+ \mid 1 \leq i \leq k, P_i \notin Aff(P_1, \dots, P_k), \text{ con } P_i \text{ escluso,}$
- (iii) $\forall i \in \mathbb{N}^+ \mid 1 \leq i \leq k$ l'insieme di vettori $\{P_j P_i \mid 1 \leq j \leq k, j \neq i\}$ è linearmente indipendente,
- (iv) $\exists i \in \mathbb{N}^+ \mid 1 \leq i \leq k$ per il quale l'insieme di vettori $\{P_j P_i \mid 1 \leq j \leq k, j \neq i\}$ è linearmente indipendente.

Dimostrazione. Siano P_1 , ..., P_k affinemente indipendenti. Sia $i \in \mathbb{N}^+ \mid 1 \leq i \leq k$. Allora chiaramente (i) \iff (ii), dacché se P_i appartenesse a $\mathrm{Aff}(P_1,\ldots,P_k)$, con P_i escluso, si violerebbe l'unicità della combinazione affine di P_i , e analogamente se esistessero due combinazioni affini in diversi scalari dello stesso punto si potrebbe un punto P_j con $1 \leq j \leq k$ come combinazione affine degli altri punti.

Siano allora $\lambda_1, ..., \lambda_k \in \mathbb{K}$, con λ_i escluso, tali che:

$$\sum_{\substack{j=1\\j\neq i}}^{n} \lambda_j (P_j - P_i) = \underline{0}.$$

Allora si può riscrivere P_i nel seguente modo:

$$P_i = \left(1 - \sum_{\substack{j=1\\j \neq i}}^n \lambda_j\right) P_i + \sum_{\substack{j=1\\j \neq i}}^n \lambda_j P_j.$$

Dal momento che la scrittura di P_i è unica per ipotesi, $\lambda_j = 0 \ \forall 1 \le j \le k$ con $j \ne i$, e dunque l'insieme di vettori $\{P_j - P_i \mid 1 \le j \le k, j \ne i\}$ è linearmente indipendente, per cui (ii) \Longrightarrow (iii). Analogamente si deduce anche che (iii) \Longrightarrow (i) e che (iii) \Longrightarrow (iv). Pertanto (i) \Longleftrightarrow (ii) \Longleftrightarrow (iii).

Si assuma ora l'ipotesi (iv) e sia $t \in \mathbb{N}^+ \mid 1 \le t \le k$ tale che $t \ne i$. Siano dunque $\lambda_1, ..., \lambda_k$, con λ_t escluso, tale che:

$$\sum_{\substack{j=1\\i\neq t}}^{k} \lambda_j (P_j - P_t) = \underline{0}.$$

Allora si può riscrivere la somma come:

$$\sum_{\substack{j=1\\j\neq t}}^{k} \lambda_j (P_j - P_i) - \sum_{\substack{j=1\\j\neq t}}^{k} \lambda_j (P_t - P_i) = \underline{0},$$

ossia come combinazione lineare dei vettori della forma $P_j - P_i$. Allora, poiché per ipotesi tali vettori sono linearmente indipendenti, vale che:

$$\begin{cases} \lambda_j = 0 & \text{se } j \neq t \text{ e } j \neq i, \\ \sum_{\substack{j=1 \ j \neq t}}^k \lambda_j = 0 & \Longrightarrow \lambda_i = 0. \end{cases}$$

Pertanto l'insieme di vettori $\{P_j - P_t \mid 1 \leq j \leq k, j \neq t\}$ è linearmente indipendente, da cui vale che (iv) \Longrightarrow (iii). Si conclude dunque che (i) \Longleftrightarrow (ii) \Longleftrightarrow (iii) \Longleftrightarrow (iv), ossia la tesi.

Osservazione.

- \blacktriangleright Si osserva che il numero massimo di punti affinemente indipendenti di un sottospazio affine D di dimensione k è k+1, dacché, fissato un punto, vi possono essere al più k vettori linearmente indipendenti.
- \blacktriangleright Un punto di E è sempre affinemente indipendente, dacché la sua unica combinazione affine è sé stesso.

Proposizione. Sia $E = \mathcal{A}_n(\mathbb{K})$. Allora i punti $P_1, ..., P_k$ sono affinemente indipendenti se e solo se i vettori $\hat{P}_1 = \begin{pmatrix} P_1 \\ 1 \end{pmatrix}$, ..., $\hat{P}_k = \begin{pmatrix} P_k \\ 1 \end{pmatrix}$ sono linearmente indipendenti.

Dimostrazione. Si dimostrano le due implicazioni separatamente.

 (\Longrightarrow) Siano $\lambda_1, ..., \lambda_k \in \mathbb{K}$ tali che $\lambda_1 \hat{P}_1 + ... + \lambda_k \hat{P}_k = \underline{0}$. Allora $\sum_{i=1}^k \lambda_i = 0$ e $\lambda_1 P_1 + ... + \lambda_k P_k = 0$.

Pertanto, sapendo che $\lambda_1 = -\lambda_2 + \ldots - \lambda_k$, vale la seguente identità:

$$\lambda_2(P_2 - P_1) + \ldots + \lambda_k(P_k - P_1) = 0.$$

Poiché i punti $P_1, ..., P_k$ sono affinemente indipendenti, per la proposizione precedente, allora i vettori $P_2 - P_1, ..., P_k - P_1$ sono linearmente indipendenti, per cui $\lambda_2 = \cdots = \lambda_k = 0$. Pertanto anche $\lambda_1 = 0$, e quindi i vettori $\hat{P}_1, ..., \hat{P}_k$ sono linearmente indipendenti.

() Siano λ_2 , ..., $\lambda_k \in \mathbb{K}$ tali che $\lambda_2(P_2 - P_1) + \ldots + \lambda_k(P_k - P_1) = 0$. Sia allora $\lambda_1 = -\lambda_2 + \ldots - \lambda_k$. Si osserva dunque che $\lambda_1 + \ldots + \lambda_k = 0$ e che $\lambda_1 P_1 + \ldots + \lambda_k P_k = 0$, da cui si deduce che $\lambda_1 \hat{P}_1 + \ldots + \lambda_k \hat{P}_k = 0$. Dal momento però che \hat{P}_1 , ..., \hat{P}_k sono linearmente indipendenti, $\lambda_2 = \cdots = \lambda_k = 0$, da cui la tesi.

Se si impone $\lambda_i \geq 0$, si definisce che la combinazione è una combinazione convessa. Si definisce baricentro il punto con $\lambda_i = \frac{1}{n}$.

Definizione (inviluppo convesso). Si dice IC(S) di un insieme $S \subseteq E$ l'insieme delle combinazioni convesse di S (finite).

Definizione. Sia E uno spazio affine su V, E' spazio affine su V' (sullo stesso \mathbb{K}) un'applicazione $f: E \to E'$ si dice app. affine se conserva le combinazioni affini $(f(\sum \lambda_i P_i) = \sum \lambda_i f(P_i), \sum \lambda_i = 1)$.

Teorema. Sia $f: E \to E'$ affine. Allora \exists unica app. lineare $g: V \to V'$ lineare tale che valga $f(O + \underline{v}) = f(O) + g(\underline{v})$, per ogni scelta di $O \in E$.

Dimostrazione. Sia $O \in E$. L'applicazione $g_O : V \to V'$ data da $g_O(\underline{v}) = f(O + \underline{v}) - f(O)$. Si dimostra che g_O è lineare.