Note del corso di Geometria 1

Gabriel Antonio Videtta

26 aprile 2023

Azioni di un gruppo e introduzione agli spazi affini

Questo avviso sta ad indicare che questo documento è ancora una bozza e non è da intendersi né completo, né revisionato.

Nota. Nel corso delle lezioni si è impiegata la notazione g.x per indicare l'azione di un gruppo su un dato elemento $x \in X$. Tuttavia si è preferito indicare g.x con $g \cdot x$ nel corso del documento.

Inoltre, con G si indicherà un generico gruppo, e con X un generico insieme, sul quale G agisce, qualora non indicato diversamente.

Definizione (azione di un gruppo su un insieme). Sia G un gruppo e sia X un insieme. Un'azione sinistra, comunemente detta solo **azione**, di G su X è un'applicazione da $G \times X$ in X tale che $(g,x) \mapsto g \cdot x$ e che:

- (i) $e \cdot x = x \ \forall x \in X$.
- (ii) $g \cdot (h \cdot x) = (gh) \cdot x \ \forall x \in X, \ \forall g, h \in G.$

Osservazione.

- ▶ Data un'azione di G su X, si può definire un'applicazione $f_g: X \to X$ tale che, dato $g \in G$, $f_g(x) = g \cdot x$.
- ▶ Tale applicazione f_g è bigettiva, dal momento che $f_{g^{-1}}$ è una sua inversa, sia destra che sinistra. Infatti $(f_g \circ f_{g^{-1}})(x) = g \cdot (g^{-1} \cdot x) = (gg^{-1}) \cdot x = e \cdot x = x$, e così il viceversa.

Definizione. L'azione di un gruppo G su un insieme X si dice **fedele** se l'omomorfismo φ_G da G in S(G), ossia nel gruppo delle bigezioni su G, che associa g a f_q è iniettiva.

Osservazione. Si osserva che dire che un'azione di un gruppo è fedele è equivalente a dire che Ker $\varphi_G = \{e\}$, ossia che $f_g = \text{Id} \iff g = e$.

Esempio. Si possono fare alcuni esempi di azioni classiche su alcuni gruppi.

- (i) S(X) agisce su X in modo tale che $f \cdot x = f(x) \ \forall f \in S(X), x \in X$.
- (ii) G agisce su G stesso tramite l'operazione del gruppo, ossia $g \cdot g' = gg'$ $\forall q, q' \in G$.
- (iii) Data un'azione sinistra di G su X tale che $(g,x)\mapsto g\cdot x$, si può definire naturalmente un'azione destra da $X\times G$ in X in modo tale che $(x,g)\mapsto x\cdot g=g^{-1}\cdot x$. Infatti $x\cdot e=e^{-1}\cdot x=e\cdot x=x$, e $(x\cdot g)\cdot g'=(g^{-1}\cdot x)\cdot g'=g'^{-1}\cdot (g^{-1}\cdot x)=(g'^{-1}g^{-1})\cdot x=(gg')^{-1}\cdot x=x\cdot (gg')$.

Definizione (G-insieme). Se esiste un azione di G su X, si dice che X è un G-insieme.

Definizione (orbita di x). Sia \sim_G la relazione d'equivalenza tale che $x \sim_G y \stackrel{\text{def}}{\iff} \exists g \in G \mid g \cdot x = y$. Allora le classi di equivalenza si dicono **orbite**, ed in particolare si indica l'orbita a cui appartiene un dato $x \in X$ come $\text{Orb}_G(x) = O_x$ (o come Orb(x), quando G è noto), ed è detta *orbita di* x.

Esempio. Si possono individuare facilmente alcune orbite per alcune azioni classiche.

- (i) Se $G = GL(n, \mathbb{K})$ è il gruppo delle matrici invertibili su \mathbb{K} di taglia n rispetto all'operazione di moltiplicazione matriciale, G opera naturalmente su $M(n, \mathbb{K})$ tramite la similitudine, ossia G agisce in modo tale che $P \cdot M = PMP^{-1} \ \forall P \in GL(n, \mathbb{K}), \ M \in M(n, \mathbb{K})$. In particolare, data $M \in M(n, \mathbb{K})$, Orb(M) coincide esattamente con la classe di similitudine di M.
- (ii) Se $G = \operatorname{GL}(n, \mathbb{K})$, G opera naturalmente anche su $\operatorname{Sym}(n, \mathbb{K})$ tramite la congruenza, ossia tramite la mappa $(P, A) \mapsto P^{\top}AP$. L'orbita $\operatorname{Orb}(A)$ è la classe di congruenza delle matrice simmetria $A \in \operatorname{Sym}(n, \mathbb{K})$. Analogamente si può costruire un'azione per le matrici hermitiane.
- (iii) Se $G = O_n$, il gruppo delle matrici ortogonali di taglia n su \mathbb{K} , G opera su \mathbb{R}^n tramite la mappa $O \cdot \underline{v} \mapsto O\underline{v}$. L'orbita $Orb(\underline{v})$ è in particolare la sfera n-dimensionale di raggio ||x||.

Definizione (stabilizzatore di x). Lo **stabilizzatore** di un punto $x \in X$ è l'insieme degli elementi di G che agiscono su x lasciandolo invariato, ossia lo stabilizzatore $\operatorname{Stab}_G(x)$ (scritto semplicemente come $\operatorname{Stab}(x)$ se G è noto) è il sottogruppo di G tale che:

$$Stab_G(X) = \{ g \in G \mid g \cdot x = x \}.$$

Esempio. Sia $H \subseteq G$ un sottogruppo di G e sia X = G/H. Allora X è un G-insieme tramite l'azione $g' \cdot (gH) = g'gH$. In particolare vale che $\operatorname{Stab}(gH) = gH$, e quindi che $\operatorname{Stab}(eH) = H$.

Teorema (di orbita-stabilizzatore). Sia X un G-insieme e sia $x \in X$. Allora esiste un'applicazione bigettiva da $G/\operatorname{Stab}(x)$ a $\operatorname{Orb}(x)$.

Dimostrazione. Sia τ l'applicazione da $G/\operatorname{Stab}(x)$ a $\operatorname{Orb}(x)$ tale che $\tau(g\operatorname{Stab}(x)) = g \cdot x$. Si dimostra innanzitutto che τ è ben definita. Sia infatti $g' = gs \in G$, con $g \in G$ e $s \in \operatorname{Stab}(x)$, allora $\tau(g'\operatorname{Stab}(x)) = g' \cdot x = g \cdot (s \cdot x) = g \cdot x = \tau(g\operatorname{Stab}(x))$, per cui τ è ben definita.

Chiaramente τ è surgettiva: sia infatti $y \in \operatorname{Orb}(x)$, allora $\exists g \in G \mid g \cdot x = y \implies \tau(g\operatorname{Stab}(x)) = g \cdot x = y$. Siano ora $g, g' \in G$ tali che $\tau(g\operatorname{Stab}(x)) = \tau(g'\operatorname{Stab}(x))$, allora $g \cdot x = g' \cdot x \implies (g'g^{-1}) \cdot x = x \implies g'g^{-1} \in \operatorname{Stab}(x)$. Pertanto $g\operatorname{Stab}(x) = g'\operatorname{Stab}(x)$, e τ è allora iniettiva, da cui la tesi. \square

Osservazione. Come conseguenza del teorema di orbita-stabilizzatore, si osserva che $|G/\operatorname{Stab}(x)| = |\operatorname{Orb}(x)|$, se $\operatorname{Orb}(x)$ è finito, e quindi si conclude, per il teorema di Lagrange, che $|G| = |\operatorname{Stab}(x)| |\operatorname{Orb}(x)|$.

Definizione. Si dice che G opera liberamente su X se $\forall x \in X$, l'applicazione da G in Orb(x) tale che $g \mapsto g \cdot x$ è iniettiva, ossia se $Stab(x) = \{e\}$.

Definizione. Si dice che G opera transitivamente su X se $x \sim_G y \ \forall x, y \in X$, cioè se c'è un'unica orbita, che coincide con X. In tal caso si dice che X è **omogeneo** per l'azione di G.

Esempio. Si possono fare alcuni esempi classici di insiemi X omogenei per la propria azione.

(i) O_n opera sulla sfera n-dimensione di \mathbb{R}^n transitivamente. In particolare, si può trovare un'analogia per lo stabilizzatore di una coordinata di un vettore \underline{v} di \mathbb{R}^n . Per esempio, se si vuole fissare il vettore \underline{e}_n , $\forall O \in \operatorname{Stab}(\underline{e}_n)$ deve valere che $O\underline{e}_n = \underline{e}_n$, ossia l'ultima colonna di O

deve essere esattamente $\underline{e_n}$. Dal momento però che O è ortogonale, le sue colonne devono formare una base ortonormale di \mathbb{R}^n , e quindi tutta l'ultima riga di O, eccetto per il suo ultimo elemento, deve essere nulla. Allora O deve essere della seguente forma:

$$O = \begin{pmatrix} A & 0 \\ \hline 0 & 1 \end{pmatrix},$$

dove $A \in M(n-1,\mathbb{R})$. Affinché allora O sia ortogonale, anche A deve esserlo. Pertanto vi è una bigezione tra $Stab(e_n)$ e O_{n-1} .

(ii) Sia $\operatorname{Gr}_k(\mathbb{R}^n) = \{W \subseteq \mathbb{R}^n \mid \dim W = k\}$, detto la Grassmanniana di \mathbb{R}^n di ordine k. O_n opera transitivamente su $\operatorname{Gr}_K(\mathbb{R}^n)$.

Definizione. Si dice che G opera in maniera semplicemente transitiva su X se $\exists x \in X$ tale che l'applicazione da G in X $g \mapsto g \cdot x$ è una bigezione, ossia se G opera transitivamente e liberamente.

Definizione. Un insieme X con un'azione semplicemente transitiva di G è detto un G-insieme omogeneo principale.

- **Esempio.** (i) X = G. L'azione naturale di G su X per moltiplicazione è semplicemente transitivo (per $g, g' \in G$, esiste un unico $h \in G$ tale che g = h.g' = hg'). Quindi X è G-omogeneo principale.
 - (ii) Se X è G-omogeneo principale, l'azione è fedele.
- (iii) Se X è omogeneo per un gruppo G commutativo, allora G agisce fedelmente su $X \implies X$ è un G-insieme omogeneo principale.

Definizione (spazio affine). Sia V uno spazio vettoriale su un campo \mathbb{K} qualsiasi. Allora uno spazio affine E associato a V è un qualunque V-insieme omogeneo principale.

Pertanto, $\forall P,Q \in E$, esiste un unico vettore $\underline{v} \in V$ tale che $Q = \underline{v}.P$, denotato come $Q = P + \underline{v} = \underline{v} + P$. Si osserva che $\underline{v} + (\underline{w} + P) = (\underline{v} + \underline{w}) + P$. Essendo \underline{v} unico, si scrive $\underline{v} = Q - P = \overrightarrow{PQ}$.

Fissato $O \in E$, l'applicazione $\underline{v} \mapsto \underline{v} + O$, $V \to E$ è una bigezione.

Osservazione.

- $P P = \underline{0} \in V, \ P Q = -(Q P), \ (P_3 P_2) + (P_2 P_1) = P_3 P_1.$
- $ightharpoonup O \in E$ l'applicazione $P \mapsto P O$ è una bigezione di E su V.

Siano
$$P_1, ..., P_n \in E. \ \forall \lambda_1, ..., \lambda_k \in \mathbb{K}. \ \forall O \in E$$
 possiamo individuare il punto $P = O + \sum_{i=1}^n \lambda_i (P_i - O).$
$$P = P' = \iff O + \sum_{i=1}^n \lambda_i (P_i - O) = O' + \sum_{i=1}^n \lambda_i (P_i - O') \iff O + \sum_{i=1}^n \lambda_i (O' - O) = O' \iff (\sum \lambda_i)(O' - O) = O' - O \iff \sum \lambda_i = 1.$$

Definizione. Un punto $P \in E$ è combinazione affine dei punti $P_1, ...,$ P_k se $P = O + \sum \lambda_i (P_i - O)$ se $\sum \lambda_i = 1$. Si scriverà, in particolare, che $P = \sum \lambda_i P_i.$

Si chiama retta affine l'insieme dei punti che sono combinazione affine di due punti. Analogamente si fa per un piano e uno spazio.

Definizione. Un sottoinsieme $D \subseteq E$ si dirà sottospazio affine se è chiuso per combinazioni affini (finite).

Definizione. Il sottospazio affine $D \subseteq E$ generato da un sottoinsieme $S \subseteq$ E è l'insieme delle combinazioni affini (finite) di punti di S, detto D = Aff(S).