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Abstract

In the years following its publication in 1998, the PageRank model has been studied deeply
to be extended in fields such as chemistry, biology and social network analysis. The aim of
this project is the implementation of a modified version of the Power method to solve the
PageRank problem with multiple damping factors. The proposed method is based on the
combination of the Power method with the shifted GMRES method.
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1 Introduction

The PageRank model was proposed by Google in a series of papers to evaluate accurately the
most important web-pages from the World Wide Web matching a set of keywords entered by a
user. For search engine rankings, the importance of web-pages is computed from the stationary
probability vector of the random process of a web surfer who keeps visiting a large set of web-
pages connected by hyperlinks. The link structure of the World Wide Web is represented by a
directed graph, the so-called web link graph, and its corresponding adjacency matrix G ∈Nn×n

where n denotes the number of pages and Gi j is nonzero (being 1) only if the jth page has a
hyperlink pointing to the ith page. The transition probability matrix P ∈ Rn×n of the random
process has entries as described in 1.

P (i , j ) =


1∑n

k=1 Gk j
if Gi , j = 0

0 otherwise
(1)

The entire random process needs a unique stationary distribution. To ensure this propriety is
satisfied , the transition matrix P is usually modified to be an irreducible stochastic matrix A
(called the Google matrix) as follows:

A =αP̃ + (1−α)veT (2)

In 2 we have defines a new matrix called P̃ = P + vd T where d ∈ N n×1 is a binary vector tracing
the indices of the damping web pages with no hyperlinks, i.e., d(i ) = 1 if the i-th page ha no
hyperlink, v ∈ Rn×n is a probability vector, e = [1,1, ...,1]T and 0 <α< 1, the so-called damping
factor that represents the probability in the model that the surfer transfer by clicking a hyperlink
rather than other ways. Mathematically, the PageRank model can be formulated as the problem
of finding the positive unit eigenvector x (the so-called PageRank vector) such that

Ax = x, ∥x∥ = 1, x > 0 (3)

or, equivalently, as the solution of the linear system

(I −αP̃ )x = (1−α)v (4)

The authors of the paper [1] emphasize how in the in the past decade or so, considerable re-
search attention has been devoted to the efficient solution of problems 3 4, especially when n
is very large. For moderate values of the damping factor, e.g. for α= 0.85 as initially suggested
by Google for search engine rankings, solution strategies based on the simple Power method
have proved to be very effective. However, when α approaches 1, as is required in some ap-
plications, the convergence rates of classical stationary iterative methods including the Power
method tend to deteriorate sharply, and more robust algorithms need to be used.

In the reference paper that we are using for this project, the authors focus their attention in the
area of PageRank computations with the same network structure but multiple damping factors.
For example, in the Random Alpha PageRank model used in the design of anti-spam mecha-
nism [2], the rankings corresponding to many different damping factors close to 1 need to be
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computed simultaneously. They explain that the problem can be expressed mathematically as
solving a sequence of linear systems

(I −αi P̃ )xi = (1−αi )v αi ∈ (0,1) ∀i ∈ {1,2, ..., s} (5)

As we know, standard PageRank algorithms applied to 5 would solve the s linear systems in-
dependently. Although these solutions can be performed in parallel, the process would still
demand large computational resources for high dimension problems. This consideration mo-
tived the authors to search novel methods with reduced algorithmic and memory complexity,
to afford the solution of larger problems on moderate computing resources. They suggest to
write the PageRank problem with multiple damping factors given at once 5 as a sequence of
shifted linear systems of the form:

(
1

αi
I − P̃ )x(i ) = 1−αi

αi
v ∀i ∈ {1,2, ..., s} 0 <αi < 1 (6)

We know from literature that the Shifted Krylov methods may still suffer from slow convergence
when the damping factor approaches 1, requiring larger search spaces to converge with sat-
isfactory speed. In [1] is suggest that, to overcome this problem, we can combine stationary
iterative methods and shifted Krylov subspace methods. They derive an implementation of the
Power method that solves the PageRank problem with multiple dumpling factors at almost the
same computational time of the standard Power method for solving one single system. They
also demonstrate that this shifted Power method generates collinear residual vectors. Based on
this result, they use the shifted Power iterations to provide smooth initial solutions for running
shifted Krylov subspace methods such as GMRES. Besides, they discuss how to apply seed system
choosing strategy and extrapolation techniques to further speed up the iterative process.

1.1 Overview of the classical PageRank problem

The Power method is considered one of the algorithms of choice for solving either the eigen-
value 3 or the linear system 4 formulation of the PageRank problem, as it was originally used by
Google. Power iterations write as

x(k+1) = Axk =αP̃ x(k) + (1−α)v (7)

The convergence behavior is determined mainly by the ratio between the two largest eigenval-
ues of A. When α gets closer to 1, though, the convergence can slow down significantly.

As stated in [1] The number of iterations required to reduce the initial residual down to a tol-

erance τ, measured as τ = ∥Axk − xk∥ = ∥xk+1 − xk∥ can be estimated as
log10 τ

log10α
. The authors

provide an example: when τ = 10−8 the Power method requires about 175 steps to converge
for α = 0.9 but the iteration count rapidly grows to 1833 for α = 0.99. Therefore, for values of
the damping parameter very close to 1 more robust alternatives to the simple Power algorithm
should be used.
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2 The shifted power method for PageRank computations

In this section presents the extensions of stationary iterative methods for the solution of PageR-
ank problems with multiple damping factors, as presented in [1]. We are interested in knowing
if, for each method, there exists an implementation such that the computational cost of solv-
ing the PageRank problem with multiple damping factor is comparable to that of solving the
ordinary PageRank problem with single damping factor.

2.1 The implementation of the shifted power method

Inspired by the reason why shifted Krylov subspaces can save computational cost, the authors
of [1] investigate whether there are duplications in the calculations of multiple linear systems in
this problem class by the stationary iterative methods, so that the duplications in the computa-
tion can be deleted and used for all systems. It’s some sort of dynamic programming approach.
Firstly, they analyze the Power method applied to the sequence of linear systems in 4. It com-
putes at the i-th iteration approximate solutions xk (i )(1 ≤ i ≤ s) of the form

αk
i P̃ k x(i )

k + (1−αk
i )

k−1∑
j=0

α
j
i P̃ j v (8)

If the s systems in 4 are solved synchronously, that is all x(i )
k are computed only after all previ-

ous approximations x( j )
k−1 are available, then the computation can be rearranged efficiently as

follows:

• at the first iterations

– compute and store µ1 = P̃ x0 and µ2 = v ;

– compute and store x(i )
1 =αiµ1 + (1−αi )µ2;

• at any other subsequent iteration k > 1

– compute and store x(
k i ) := (1−αi )

∑k−2
j=0 α

j
i P̃ j v = x(i )

k−1 −αk−1
i µ1;

– compute and store µ1 = P̃µ1 and µ2 = P̃µ2;

– compute and store x(i )
k =αiµ1 +x(i )

k + (1−αi )αk−1
i µ2.

This implementation requires at most 2 matrix-vector products at each step, which is a signifi-
cant gain compared to the s matrix-vector products required by the standard Power method to
compute x(i )

k+1 , especially when s ≫ 2.

An efficient implementation can compute and store µ= P̃ v − v at the first iteration and store

µ= P̃ k−1(P̃ v − v) = P̃ · (P̃ k−2(P̃ v − v))

At each k-th iteration (k > 1), and finally from each approximate solution as x(i )
k = αk

i µ+ x(i )
k−1.

The residual vector r (i )
k associated with the approximate solution x(i )

k has the following expres-
sion

r (i )
k = Ax(i )

k −x(i )
k = x(i )

k+1 −x(i )
k =αk+1

i P̃ k (P̃ v − v) (9)
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Since in general each of the s linear systems may require a different number of Power iterations
to converge, the s residual norms have to be monitored separately to test the convergence.

Now we can summarize the efficient implementation of the Power method presented in this
section for solving problem 4 in Algorithm 1, and we call it the shifted Power method hereafter.

Algorithm 1 Shifted-Power method for PageRank with multiple damping factors

Require: P̃ , v, τ, maxmv , αi (1 ≤ i ≤ s)
Ensure: mv, x(i ), r (i ) (1 ≤ i ≤ s)

Compute µ= P̃ v − v
Set mv = 1
for i = 1 : s do

Compute r (i ) =αiµ

Compute Res(i ) = ∥r (i )∥
if Res(i ) ≥ τ then

Compute x(i ) = r (i ) + v
end if

end for
while max(Res ≥ τ) and mv ≤ maxmv do

compute µ= P̃µ
mv = mv +1
for i = 1 : s do

if Res(i ) ≥ τ then
Compute r (i ) =αk+1

i µ

Compute Res(i ) = ∥r (i )∥
if Res(i ) ≥ τ then

Compute x(i ) = r (i ) +x(i )

end if
end if

end for
end while

Where mv is an integer that counts the number of matrix-vector products performed by the al-
gorithm. The algorithm stops when either all the residual norms are smaller than the tolerance
τ or the maximum number of matrix-vector products is reached. An implementation of this
algorithm written in Python is available in the github repository [3] of this project.
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