{ "cells": [ { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import networkx as nx\n", "import time\n", "import math\n", "import pandas as pd\n", "import scipy as sp\n", "import plotly.express as px\n", "import plotly.graph_objs as go\n", "from scipy.sparse import *\n", "from scipy import linalg\n", "from scipy.sparse.linalg import norm\n", "from scipy.optimize import least_squares" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's create two graphs from the list of edges downloaded from the Snap database. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "G1 = nx.read_edgelist('../data/web-Stanford.txt', create_using=nx.DiGraph(), nodetype=int)\n", "\n", "# G2 = nx.read_edgelist('../data/web-BerkStan.txt', create_using=nx.DiGraph(), nodetype=int)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Creating the transition probability matrix" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# square matrix of size n x n, where n is the number of nodes in the graph. The matrix is filled with zeros and the (i,j) element is x if the node i is connected to the node j. Where x is 1/(number of nodes connected to i).\n", "\n", "def create_matrix(G):\n", " n = G.number_of_nodes()\n", " P = sp.sparse.lil_matrix((n,n))\n", " for i in G.nodes():\n", " for j in G[i]: #G[i] is the list of nodes connected to i, it's neighbors\n", " P[i-1,j-1] = 1/len(G[i])\n", " return P" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To ensure that the random process has a unique stationary distribution and it will not stagnate, the transition matrix P is usually modified to be an irreducible stochastic matrix A (called the Google matrix) as follows\n", "\n", "$$ A = \\alpha \\tilde{P} + (1-\\alpha)v e^T$$\n", "\n", "Where $\\tilde{P}$ is defined as \n", "\n", "$$ \\tilde{P} = P + v d^T$$\n", "\n", "Where $d \\in \\mathbb{N}^{n \\times 1}$ s a binary vector tracing the indices of dangling web-pages with no hyperlinks, i.e., $d(i ) = 1$ if the `ith` page has no hyperlink, $v \\in \\mathbb{R}^{n \\times 1}$ is a probability vector, $e = [1, 1, . . . , 1]^T$ , and $0 < \\alpha < 1$ is the so-called damping factor that represents the probability in the model that the surfer transfer by clicking a hyperlink rather than other ways" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "n = G1.number_of_nodes()\n", "P = create_matrix(G1) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "the vector `d` solves the dangling nodes problem" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# define d as a nx1 sparse matrix, where n is the number of nodes in the graph. The vector is filled with d(i) = 1 if the i row of the matrix P is filled with zeros, other wise is 0\n", "\n", "# d is the vector of dangling nodes\n", "d = sp.sparse.lil_matrix((n,1))\n", "for i in range(n):\n", " if P[i].sum() == 0:\n", " d[i] = 1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The vector v is a probability vector, the sum of its elements bust be one" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# define v as the probability vector of size n x 1, where n is the number of nodes in the graph. The vector is filled with 1/n\n", "# https://en.wikipedia.org/wiki/Probability_vector\n", "\n", "v = sp.sparse.lil_matrix((n,1))\n", "for i in range(n):\n", " v[i] = 1/n " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we can compute the transition matrix\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "Pt = P + v.dot(d.T)\n", "\n", "# Pt is a sparse matrix too" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# e is a nx1 sparse matrix filled with ones\n", "e = sp.sparse.lil_matrix((1,n))\n", "for i in range(n):\n", " e[0,i] = 1" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# # v*eT is a nxn sparse matrix filled all with 1/n, let's call it B\n", "\n", "# B = sp.sparse.lil_matrix((n,n))\n", "# for i in range(n):\n", "# for j in range(n):\n", "# B[i,j] = 1/n\n", "\n", "# A = alpha*Pt + (1-alpha)*B" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Algorithm 1 Shifted-Power method for PageRank with multiple damping factors:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# pandas dataframe to store the results\n", "df = pd.DataFrame(columns=['alpha', 'iterations', 'tau', 'time'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# this should return mv (the number of iteration needed for the convergence), and two vector called x and r. Where x is the vector of the pagerank and r is the residual vector\n", "\n", "def Algorithm1(Pt, v, tau, max_mv, a: list):\n", " \n", " start_time = time.time()\n", "\n", " u = Pt.dot(v) - v \n", " mv = 1 # number of matrix vector products\n", " r = sp.sparse.lil_matrix((n,1)) \n", " Res = sp.sparse.lil_matrix((len(a),1))\n", " x = sp.sparse.lil_matrix((n,1)) \n", "\n", " for i in range(len(a)):\n", " r = a[i]*(u) \n", " normed_r = norm(r)\n", " Res[i] = normed_r \n", "\n", " if Res[i] > tau:\n", " x = r + v \n", "\n", " while max(Res) > tau and mv < max_mv:\n", " u = Pt*u # should it be the same u of the beginning?\n", " mv += 1 \n", "\n", " for i in range(len(a)):\n", " if Res[i] >= tau: \n", " r = (a[i]**(mv+1))*(u)\n", " Res[i] = norm(r)\n", "\n", " if Res[i] > tau:\n", " x = r + x\n", "\n", " if mv == max_mv:\n", " print(\"The algorithm didn't converge in \", max_mv, \" iterations\")\n", " else:\n", " print(\"The algorithm converged in \", mv, \" iterations\")\n", "\n", " total_time = time.time() - start_time\n", " print(\"The algorithm took \", total_time, \" seconds\")\n", " \n", " return mv, x, r, total_time " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# list of alpha values, from 0.85 to 0.99 with step 0.01\n", "a = []\n", "for i in range(85,100):\n", " a.append(i/100)\n", "\n", "max_mv = 1000\n", "\n", "# run the algorithm for different values of tau from 10^-5 to 10^-9 with step 10^-1\n", "for i in range(5,10):\n", " tau = 10**(-i)\n", " print(\"\\ntau = \", tau)\n", " mv, x, r, total_time = Algorithm1(Pt, v, tau, max_mv, a)\n", " df = df.append({'alpha': a, 'iterations': mv, 'tau': tau, 'time': total_time}, ignore_index=True) \n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# save the results in a csv file\n", "df.to_csv('../data/results/algo1/different_tau.csv', index=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Plotting the results of the algorithm for different values of tau, and fixed alpha" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "x = df['tau'][::-1].tolist()\n", "y = df['iterations'].tolist()\n", "\n", "fig1 = go.Figure(data=go.Scatter(x=x, y=y, mode='lines+markers'), \n", " layout=go.Layout(title='Iterations needed for the convergence', xaxis_title='tau', yaxis_title='iterations'))\n", " \n", "# save the plot in a html file\n", "fig1.write_html(\"../data/results/algo1/taus_over_iterations.html\")\n", "\n", "##### RESULTS OVER TIME #####\n", "\n", "x1 = df['tau'][::-1].tolist()\n", "y1 = df['time'].tolist()\n", "\n", "fig2 = go.Figure(data=go.Scatter(x=x1, y=y1, mode='lines+markers'),\n", " layout=go.Layout(title='Time needed for the convergence', xaxis_title='tau', yaxis_title='time (seconds)'))\n", "\n", "# save the plot in a html file\n", "fig2.write_html(\"../data/results/algo1/taus_over_time.html\")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To view the graph just use the command\n", "\n", "```bash\n", "firefox taus_over_iterations.html \n", "```\n", "or \n", "\n", "```bash\n", "firefox taus_over_time.html\n", "```\n", "\n", "_In the right folder_" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [], "source": [ "def Arnoldi(A, v, m): # defined ad algorithm 2 in the paper\n", " beta = norm(v)\n", " print(\"A\")\n", " v = v/beta\n", " print(\"B\")\n", " h = sp.sparse.lil_matrix((m,m))\n", " print(\"C\")\n", "\n", " for j in range(m):\n", " w = A.dot(v)\n", " print(\"D\")\n", " for i in range(j):\n", " h[i,j] = v.T.dot(w)\n", " print(\"E\")\n", " w = w - h[i,j]*v[i]\n", " print(\"F\")\n", "\n", " h[j+1,j] = norm(w)\n", " print(\"G\")\n", "\n", " if h[j+1,j] == 0:\n", " print(\"The algorithm didn't converge\")\n", " m = j\n", " v[m+1] = 0\n", " break\n", " else:\n", " print(\"H\")\n", " v[j+1] = w**h[j+1,j]\n", " print(\"I\")\n", "\n", " return v, h, m, beta, j" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [], "source": [ "A = sp.sparse.rand(100,100, density=0.5, format='lil')\n", "v = sp.sparse.rand(100,1, density=1, format='lil')\n", "m = 100" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "v, h, m, beta, j = Arnoldi(A, v, m)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def Algo4(Pt, v, m, a: list, tau, maxit: int, x):\n", " \n", " iter = 1\n", " mv = 0\n", " e1 = sp.sparse.lil_matrix((1,n))\n", " e1[0,0] = 1\n", " x = sp.sparse.lil_matrix((len(a),1))\n", " I = sp.sparse.eye(n, n, format='lil')\n", " res = sp.sparse.lil_matrix((len(a),1))\n", " r = sp.sparse.lil_matrix((n,1))\n", " y = sp.sparse.lil_matrix((n,1))\n", "\n", " for i in range(len(a)):\n", " r = ((1-a[i])**a[i])*v - ((1**a[i])*I - Pt).dot(x)\n", " res[i] = a[i]*norm(r)\n", "\n", " def Find_k(res, maxit):\n", " k = 0\n", " for i in range(len(a)):\n", " if res[i] == max(res):\n", " k = i\n", " break\n", " return k\n", "\n", " def Find_gamma(res, a, k):\n", " gamma = sp.sparse.lil_matrix((len(a),1))\n", " for i in range(len(a)):\n", " if i != k:\n", " gamma[i] = (res[i]*a[k])/(res[k]*a[i])\n", " else:\n", " gamma[i] = 0\n", " return gamma\n", "\n", "\n", " while max(res) > tau and iter < maxit:\n", " k = Find_k(res, maxit)\n", " gamma = Find_gamma(res, a, k)\n", " v, h, m, beta, j = Arnoldi((1**a[k])*I - Pt, r, m)\n", " Hbar = sp.sparse.lil_matrix((m+1,m))\n", " Hbar[0:m,0:m] = h\n", " Hbar[m+1,0:m] = e1\n", "\n", " mv += j\n", "\n", " # solve the least squares problem for Hbar*x = beta*e1\n", " y = sp.sparse.linalg.least_squares(Hbar, beta*e1)\n", " res[k] = a[k]*norm(beta*e1 - Hbar*y)\n", " x[k] = x[k] + v*y[k]\n", "\n", " for i in range(len(a)):\n", " if i != k:\n", " if res[i] >= tau:\n", " Hbar[i] = Hbar[k] + ((1-a[i])/a[i] - (1-a[k])/a[k])*I\n", " z = beta*e1 - Hbar*y\n", " y = sp.sparse.linalg.solve(Hbar, gamma*beta*e1)\n", " x = x + v*y\n", " res[i] = a[i]**a[k]*gamma[i]*res[k]\n", " \n", " iter += 1\n", " \n", " return x, res, mv\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3.10.6 64-bit", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.6" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "916dbcbb3f70747c44a77c7bcd40155683ae19c65e1c03b4aa3499c5328201f1" } } }, "nbformat": 4, "nbformat_minor": 2 }