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a b s t r a c t 

Starting from the seminal paper published by Brin and Page in 1998, the PageRank model 

has been extended to many fields far beyond search engine rankings, such as chemistry, 

biology, bioinformatics, social network analysis, to name a few. Due to the large dimen- 

sion of PageRank problems, in the past decade or so, considerable research efforts have 

been devoted to their efficient solution especially for the difficult cases where the damp- 

ing factors are close to 1. However, there exists few research work concerning about the 

solution of the case where several PageRank problems with the same network structure 

and various damping factors need to be solved. In this paper, we generalize the Power 

method to solving the PageRank problem with multiple damping factors. We demonstrate 

that the solution has almost the equative cost of solving the most difficult PageRank sys- 

tem of the sequence, and the residual vectors of the PageRank systems after running this 

method are collinear. Based upon these results, we develop a more efficient method that 

combines this Power method with the shifted GMRES method. For further accelerating the 

solving phase, we present a seed system choosing strategy combined with an extrapola- 

tion technique, and analyze their effect. Numerical experiments demonstrate the potential 

of the proposed iterative solver for accelerating realistic PageRank computations with mul- 

tiple damping factors. 

© 2021 Elsevier Inc. All rights reserved. 

 

 

 

 

1. Introduction 

The PageRank model was proposed by Google in a series of papers [1,4] to evaluate accurately the most important web-

pages from the World Wide Web matching a set of keywords entered by a user. Nowadays, the model is routinely adopted

for the analysis of many scientific problems far beyond Internet applications, for example in computational chemistry [7] , 

biology [2] , bioinformatics [2] , social network analysis [5] , bibliometrics [3] , software debugging [6] and many others [8] .

For search engine rankings, the importance of web-pages is computed from the stationary probability vector of the random 

process of a web surfer who keeps visiting a large set of web-pages connected by hyperlinks. The link structure of the

World Wide Web is represented by a directed graph, the so-called web link graph, and its corresponding adjacency matrix 
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G ∈ N 

n ×n , where n denotes the number of pages and G (i, j) is nonzero (being 1) only if the jth page has a hyperlink pointing

to the i th page. The transition probability matrix P ∈ R 

n ×n of the random process has entries 

P (i, j) = 

{
1 ∑ n 

k =1 G (k, j) 
, if G (i, j) = 1 , 

0 , otherwise . 
(1) 

To ensure that the random process has a unique stationary distribution and it will not stagnate, the transition matrix P is

usually modified to be an irreducible stochastic matrix A (called the Google matrix) as follows 

A = α˜ P + (1 − α) v e T . (2) 

In (2) , we define ˜ P = P + v d T , where d ∈ N 

n ×1 is a binary vector tracing the indices of dangling web-pages with no hy-

perlinks, i.e., d(i ) = 1 if the i th page has no hyperlink, v ∈ R 

n ×1 is a probability vector, e = [1 , 1 , . . . , 1] T , and 0 < α < 1 is

the so-called damping factor that represents the probability in the model that the surfer transfer by clicking a hyperlink 

rather than other ways. Mathematically, the PageRank model can be formulated as the problem of finding the positive unit 

eigenvector x (the so-called PageRank vector) such that 

Ax = x, ‖ x ‖ 1 = 1 , x > 0 , (3) 

or, equivalently, as the solution of the linear system 

(I − α˜ P ) x = (1 − α) v . (4) 

In the past decade or so, considerable research attention has been devoted to the efficient solution of problems (3) - (4) ,

especially when n is very large. For moderate values of the damping factor, e.g. for α = 0 . 85 as initially suggested by Google

for search engine rankings, solution strategies based on the simple Power method have proved to be very effective. How- 

ever, when α approaches 1, as is required in some applications (see e.g. [9] ), the convergence rates of classical stationary

iterative methods including the Power method tend to deteriorate sharply, and more robust algorithms need to be used. The 

development of fast solvers in this area includes extrapolation techniques [10,11] , adaptive methods [12] , multigrid meth- 

ods [13,14] , and inner-outer strategies [15–19] . Another research direction focuses on the analysis of non-stationary iterative 

solvers, such as Krylov subspace methods. For instance, some variants of the Arnoldi algorithm are proposed in [20,21] . Ex-

periments with the full orthogonalization method (FOM) [43] , the generalized minimal residual method (GMRES) [44] and 

the biconjugate gradient stabilized method (BiCGSTAB) [46] for PageRank computations are reported in [22–24,37] . Accord- 

ing to Gleich et al. [25] , Krylov algorithms can be in some cases more than 50% faster than stationary iterative methods

when α is close to 1. More recent work is attempting to combine the simplicity of stationary iterative algorithms and the

robustness of Krylov subspace solvers to compute difficult PageRank problems, see e.g. [26–29] . In this new framework, 

a few preliminary iterations of stationary methods are carried out to eliminate the high frequency components of the er- 

rors, providing a smooth initial solution for a faster Krylov subspace process. The very good potential of this idea has been

demonstrated by solving several realistic PageRank problems very efficiently [26–29] , and it has inspired the work presented 

in this paper. 

One area that is largely unexplored in PageRank computations is the efficient solution of problems with the same net- 

work structure but multiple damping factors. For example, in the Random Alpha PageRank model used in the design of 

anti-spam mechanism [9] , the rankings corresponding to many different damping factors close to 1 need to be computed 

simultaneously. This problem can be expressed mathematically as solving a sequence of linear systems 

(I − αi ̃
 P ) x (i ) = (1 − αi ) v , 0 < αi < 1 , i = 1 , 2 , . . . , s. (5)

Conventional PageRank algorithms applied to (5) would solve the s linear systems independently. Although these solutions 

can be performed in parallel, the process would still demand large computational resources for high dimension problems. 

This consideration motivates the search of novel methods with reduced algorithmic and memory complexity, to afford the 

solution of larger problems on moderate computing resources. 

We can write the PageRank problem with multiple damping factors given at once (5) as a sequence of shifted linear

systems of the form: (
1 

αi 

I − ˜ P 

)
x (i ) = 

1 − αi 

αi 

v , i = 1 , 2 , . . . , s, 0 < αi < 1 . (6) 

Shifted variants of Krylov subspace algorithms can solve the whole sequence (6) simultaneously by using the same Krylov 

basis provided that the initial residual vectors are collinear at the cost of solving the most difficult linear system alone, ow-

ing to the shift-invariance property of the Krylov subspace. It is not difficult to see that when the initial solutions are chosen

to be 0, the residual vectors of systems (6) are collinear. In practice, however, due to memory constraints the dimension of

the search space must be often bounded by a small integer, and the Krylov method may need to be restarted. When this

happens, the collinearity of the residual vectors may be lost and it has to be reinforced after each restart to maintain the

shift-invariance property of the Krylov subspace [45] . 

Shifted Krylov methods may still suffer from slow convergence when the damping factor approaches 1, requiring larger 

search spaces to converge with satisfactory speed, which in turn may lead to unaffordable storage requirements for large- 

scale engineering applications. As an attempt of a possible remedy in this situation, we present a framework that combines 
2 
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shifted stationary iterative methods and shifted Krylov subspace methods. In detail, we derive the implementation of the 

Power method that solves the PageRank problem with multiple damping factors at almost the same computational cost of 

the standard Power method for solving one single system. Furthermore, we demonstrate that this shifted Power method 

generates collinear residual vectors. Based on this result, we use the shifted Power iterations to provide smooth initial solu- 

tions for running shifted Krylov subspace methods such as GMRES. Besides, we discuss how to apply seed system choosing 

strategy and extrapolation techniques to further speed up the iterative process. 

The paper is structured as follows. In Section 2 , we briefly review stationary and Krylov subspace iterative algorithms,

and we show how to combine these two approaches for solving practical PageRank problems. Then, we derive the Power- 

GMRES method [27] . In Section 3 , we adapt stationary iterative methods to the solution of problems with multiple damping

factors. We propose the new shifted Power method that maintains the collinearity of the residual vectors. In Section 4 , we

briefly introduce shifted Krylov subspace methods for solving sequences of shifted linear systems, and we propose the new 

shifted Power-GMRES method for solving PageRank problems with multiple damping factors. We also study the feasibility 

of extrapolation schemes and seed system choosing strategies to accelerate the shifted Power-GMRES iterations. Numerical 

experiments are reported in Section 5 . Finally, we draw the conclusions arising from this work in Section 6 . Note that

MATLAB notation is used throughout the article. 

2. Overview of iterative methods for solving the classical PageRank problem 

The Power method is considered one of the algorithms of choice for solving either the eigenvalue (3) or the linear

system (4) formulation of the PageRank problem, as it was originally used by Google. Power iterations write as 

x k +1 = Ax k = α˜ P x k + (1 − α) v , 

and the convergence behaviour is determined mainly by the ratio between the two largest eigenvalues of A . When α gets

closer to 1, though, the convergence can slow down significantly as established by the following theorems. 

Theorem 2.1 ( [30] ) . Let P be a column-stochastic matrix with eigenvalues { 1 , λ2 , λ3 , . . . , λn } . Then the eigenvalues of A = αP +
(1 − α) v e T , where 0 < α < 1 and v is a vector with non-negative elements satisfying e T v = 1 , are { 1 , αλ2 , αλ3 , . . . , αλn } . 
Theorem 2.2 ( [31] ) . If a column-stochastic matrix ˜ P has at least two irreducible closed subsets (which is the case for the web

hyperlink matrix), then the second eigenvalue of A = αP + (1 − α) v e T is given by α. 

Theorem 2.3 ( [8] ) . Let α, ˜ P and v be the data for a PageRank problem to compute a PageRank vector x . Then the error after k

iterations of the update x k +1 = α˜ P x k + (1 − α) v is as follows: 

1. if x 0 = v , then ‖ x − x k ‖ 1 ≤ ‖ x − v ‖ 1 αk ≤ 2 αk ;
2. if x 0 = 0 , then the error vector x − x k ≥ 0 for all k and ‖ x − x k ‖ 1 = e T (x − x k ) = αk . 

The number of iterations required to reduce the initial residual down to a tolerance τ , measured as τ = ‖ Ax k − x k ‖ =
‖ x k +1 − x k ‖ , can be estimated as 

log 10 
τ

log 10 
α [30] . For example, when τ = 10 −8 the Power method requires about 175 steps to

converge for α = 0 . 9 but the iteration count rapidly grows to 1833 for α = 0 . 99 . Therefore, for values of the damping pa-

rameter very close to 1 more robust alternatives to the simple Power algorithm should be used. 

The Jacobi method does not improve significantly the convergence behaviour of the Power method because a large pro- 

portion of the diagonal elements in 

˜ P are 0, due to the fact that there is almost no page pointing to itself. On the other

hand, the Gauss-Seidel method is always faster than the Jacobi and the Power methods since (I − α˜ P ) is an M-matrix [33] .

However, it is not easy to parallelize. Although the successive over-relaxation (SOR) method is often more efficient than 

Gauss-Seidel for solving general linear systems [34] , this may not be the case for PageRank applications, as shown in [35] .

Overall, Gauss-Seidel may be considered one of the best stationary methods to use in this context. 

Recently, considerable attention has been devoted to inner-outer (IO) iterative schemes of the form 

x k +1 ≈ (I − β˜ P ) 
−1 

((α − β) ̃  P x k + (1 − α) v ) , (7) 

for solving (4) , which are derived from the splitting I − α˜ P = I − β˜ P − (α − β) ̃  P . Here, “≈” means that (I − β˜ P ) 
−1 

((α −
β) ̃  P x k + (1 − α) v ) is formed by an approximate solution y of the inner system 

(I − β˜ P ) y = f, with f = ((α − β) ̃  P x k + (1 − α) v ) . (8) 

Note that algorithm (7) reduces to a stationary iterative algorithm if the inner system is solved by a fixed number of steps of

a stationary solver. Experiments in [15] show that inner-outer iterations can accelerate both the Power and the Gauss-Seidel 

methods for large scale PageRank computations. The inner-outer framework (7) - (8) can accommodate any regular splitting 

of the form I − α˜ P as in the general inner-outer iteration (GIO in short) scheme proposed by Tian et. al. [18] . For any regular

splitting I − α˜ P = M − N, the GIO iteration writes as 

(M − φN) x k +1 = (1 − φ) Nx k + (1 − α) v , 0 < φ < 1 . (9) 

Numerical results presented in [18] demonstrate that GIO iterations can converge faster than the IO iterations. Some variants 

of this idea utilise a few steps of the Power method as a preconditioner for the inner-outer iteration and can be seen as
3 
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forms of multi-step splitting methods. They include the power-inner-outer (PIO) iteration [16] , the multi-step power-inner- 

outer (MPIO) iteration [17] and the relaxed two-step splitting iteration (RTSS) [36] methods. 

The above mentioned nested iterative schemes are also applied to accelerate nonstationary Krylov subspace methods. In 

fact, although Krylov methods are generally significantly more robust than stationary methods, their convergence depends 

heavily on the dimension m of the search space, and they can still be slow or can even stagnate when α is very close to

1. Recently, it has been demonstrated that the robustness of Krylov methods can be enhanced by carrying out a few pre-

liminary inexpensive stationary iterations to dump the high-frequency components of the error. See e.g. the experiments 

reported in [27] with the Power-GMRES method, in [26] with the Power-Arnoldi method, in [28] with the Power-GArnoldi 

method and in [29] the Arnoldi-Inout method. Another class of nonstationary iterative methods includes algebraic multi- 

grid methods (AMGs), see e.g. [13,14] . At each iterative step, AMGs solve a cascade of coarse-level equations obtained by

aggregating sets of degrees of freedom according to different criteria. Such methods are beyond the scope of this paper; 

we point the reader to [13,14] for their application to PageRank problems. Finally, we mention other forms of acceleration, 

such as extrapolation algorithms [10,11,24,38] , blocking or reordering strategies that exploits the structure of the Web link 

graph [39–42] , and ad-hoc preconditioning techniques [24,42] that have been developed in this context. 

Note that all the above-mentioned solution approaches are developed for solving the classical PageRank problem. Their 

application to the case with multiple damping factors is not completely straightforward and requires further analysis. 

3. The shifted power method for PageRank computations 

In this section we consider extensions of stationary iterative methods for the solution of PageRank problems with multi- 

ple damping factors. We look in particular at the Power method, the Gauss-Seidel method, and the GIO iteration scheme. We

are concerned with how these methods can be executed with the highest efficiency for solving such problems, especially 

with the question: for each method, whether there exist an implementation such that the computational cost of solving 

the PageRank problem with multiple damping factor is comparable to that of solving the ordinary PageRank problem with 

single damping factor. This topic needs investigation. 

3.1. The implementation of the shifted power method 

Inspired by the reason why shifted Krylov subspaces can save computational cost, we investigate whether there are 

duplications in the calculations of multiple linear systems in this problem class by the stationary iterative methods, so that 

the duplications in the computation can be deleted, or in other words, the associate operations can be computed only once

and used for all systems. We first analyze the Power method applied to the sequence of linear systems in (5) . It computes

at the k th iteration approximate solutions x (i ) 
k 

(1 ≤ i ≤ s ) of the form 

x (i ) 
k 

= αi ̃
 P x (i ) 
k −1 

+ (1 − αi ) v (10) 

= αi ̃
 P (αi ̃

 P x (i ) 
k −2 

+ (1 − αi ) v ) + (1 − αi ) v (11) 

= α2 
i ̃

 P 2 x (i ) 
k −2 

+ (1 − αi )(v + αi ̃
 P v ) (12) 

= α2 
i ̃

 P 2 (αi ̃
 P x (i ) 
k −3 

+ (1 − αi ) v ) + (1 − αi )(v + αi ̃
 P v ) (13) 

= α3 
i ̃

 P 3 x (i ) 
k −3 

+ (1 − αi )(v + αi ̃
 P v + α2 

i ̃
 P 2 ) (14) 

= · · · (15) 

= αk 
i ̃

 P k x (i ) 
0 

+ (1 − αi ) 
k −1 ∑ 

j=0 

α j 
i ̃

 P j v . (16) 

Then it is clearly that if the same initial guess x (i ) 
0 

= x 0 is used for all the linear systems, the latter iteration formulae will

be simplified as 

x (i ) 
k 

= αk 
i ̃

 P k x 0 + (1 − αi ) 
k −1 ∑ 

j=0 

α j 
i ̃

 P j v . (17) 

If the s systems in (5) are solved synchronously, that is all x (i ) 
k 

’s are computed only after all previous approximations x 
( j) 
k −1 

’s

(1 ≤ j ≤ s ) are available, then the computation can be rearranged efficiently as follows: 
4 
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• at the first iteration, 
• compute and store μ1 = ̃

 P x 0 and μ2 = v ; 
• compute and store x (i ) 

1 
= αi μ1 + (1 − αi ) μ2 (1 ≤ i ≤ s ) ; 

• at any other subsequent iteration k > 1 , 
• compute and store x (i ) 

k 
:= (1 − αi ) 

∑ k −2 
j=0 α

j 
i ̃

 P j v = x (i ) 
k −1 

− αk −1 
i 

μ1 (1 ≤ i ≤ s ) ; 

• compute and store μ1 = ̃

 P μ1 and μ2 = ̃

 P μ2 these two vectors; 

• compute and store x (i ) 
k 

= αk 
i 
μ1 + x (i ) 

k 
+ (1 − αi ) α

k −1 
i 

μ2 (1 ≤ i ≤ s ) . 

This implementation requires at most 2 matrix-vector products at each step, which is a significant gain compared to the 

s matrix-vector products required by the standard Power method to compute x (i ) 
k +1 

, especially when s � 2 . This is close to

the computational cost, i.e. 1 matrix-vector product per iteration, of using the Power method for computing PageRank with 

single damping factor. Furthermore, we will show that the computational cost per iteration can be further reduced. 

Note that, the option to choose any the same initial guess x 0 for the s systems is acceptable since the Power method

converges for every positive initial probability vector [30] . In particular, it can be found that if x 0 = v then the vector ̃  P k −1 v =˜ P k −1 x 0 is available from the (k − 1) th iteration. In this case, only one matrix-vector product ˜ P k x 0 = ̃

 P · ˜ P k −1 x 0 is needed at

the k th iteration. Accordingly, computing all the approximations x (i ) 
k 

(1 ≤ i ≤ s ) has the same computational cost, i.e. 1

matrix-vector product, of solving one linear system in (5) , as we wished. The Power iteration formulae (17) then writes as 

x (k ) 
i 

= αk 
i ̃

 P k v + (1 − αi ) 
k −1 ∑ 

j=0 

α j 
i ̃

 P j v (18) 

= 

k ∑ 

j=1 

α j 
i ̃

 P j v + v −
k ∑ 

j=1 

α j 
i ̃

 P j−1 v (19) 

= 

k ∑ 

j=1 

α j 
i ̃

 P j−1 ( ̃  P v − v ) + v . (20) 

An efficient implementation can compute and store μ = ̃

 P v − v at the first iteration, then compute and store μ = ˜ P k −1 ( ̃  P v − v ) = ̃

 P · ( ̃  P k −2 ( ̃  P v − v )) at each k th (k > 1) iteration, and finally form each approximate solution as x (i ) 
k 

= αk 
i 
μ +

x (i ) 
k −1 

(1 ≤ i ≤ s ) . The residual vector r (i ) 
k 

associated with the approximate solution x (i ) 
k 

has the following expression 

r (i ) 
k 

= Ax (i ) 
k 

− x (i ) 
k 

(21) 

= x (i ) 
k +1 

− x (i ) 
k 

(22) 

= αk +1 
i 

˜ P k ( ̃  P v − v )) . (23) 

Since in general each of the s linear systems may require a different number of Power iterations to converge, the s residual

norms have to be monitored separately to test the convergence. We summarize the efficient implementation of the Power 

method that we presented in this section for solving problem (5) in Algorithm 1 , and we call it the shifted Power method

hereafter. 

3.2. Whether other stationary methods can perform better than the shifted power method? 

Following the same lines of analysis, we can try to derive an efficient implementation of the Gauss-Seidel method for 

solving PageRank problems with multiple damping factors. The Gauss-Seidel method is based on the splitting I − α˜ P = D α −
L α − U α , where D α , −L α , and −U α are the diagonal, the lower triangular and the upper triangular parts of I − α˜ P , respectively.

The iteration formulae of the method writes as 

x k = (D α − L α) −1 [ U αx k −1 + (1 − α) v ] , (24) 

= (D α − L α) −1 U αx k −1 + (D α − L α) −1 (1 − α) v , (25) 

= T G,αx k −1 + b, where T G,α = (D α − L α) −1 U α, b = (D α − L α) −1 (1 − α) v , (26) 

= T k G,αx 0 + 

k −1 ∑ 

j=0 

T j 
G,αb. (27) 
5 
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Algorithm 1 Shifted-Power method for PageRank with multiple damping factors: [ m v , x i , r (i ) 

( i = 1 , · · · , s )] = Shifted-Power( ̃  P , v , τ , max m v , αi (1 ≤ i ≤ s ) ). 

Input: ~˜ P , v , τ , max m v , αi (1 ≤ i ≤ s ) 

Output: m v , x (i ) , r (i ) (1 ≤ i ≤ s ) ; 

1: Compute μ = ̃

 P v − v ; 
2: Set m v = 1 ; 

3: for i = 1 : s do 

4: Compute r (i ) = αi μ; 

5: Compute Res (i ) = ‖ r (i ) ‖ 2 ; 
6: if Res (i ) ≥ τ then 

7: Compute x (i ) = r (i ) + v ; 
8: end if 

9: end for 

10: while max (res ) ≥ τ && m v ≤ max m v do 

11: Compute μ = ̃

 P μ; 

12: Set m v = m v + 1 ; 

13: for i = 1 : s do 

14: if Res (i ) ≥ τ then 

15: Compute r (i ) = αk +1 
i 

μ; 

16: Compute Res (i ) = ‖ r (i ) ‖ 2 ; 
17: if Res (i ) ≥ τ then 

18: Compute x (i ) = r (i ) + x (i ) ; 

19: end if 

20: end if 

21: end for 

22: end while 

 

 

 

 

 

 

 

Although these formulaes write similar to the Power method formulae (17) , one important difference is that T k 
G,αi 

u and

T k 
G,α j 

u 2 are not collinear when αi 	 = α j . This means that (D αi 
− L αi 

) −1 u and (D α j 
− L α j 

) −1 u do not share the same computa-

tional process, and therefore it is not possible to reduce the computational costs by optimizing the implementation in the 

case of multiple damping factors, suggesting that the shifted Power method would be a better option than the Gauss-Seidel 

method for solving the PageRank problem with multiple damping factors, especially when s is large. 

Note that, for PageRank problems, the implementation and the performance of the Jacobi method are similar to those of 

the Power method, and the implementation of the SOR method is similar as that of the Gauss-Seidel method but does not

perform any better than it 3 . Thus, these two methods are not better choices than the Power method for developing efficient

solvers for the PageRank problem with multiple damping factors. 

The last type of stationary methods we consider is the GIO method. Based on the above considerations, the Jacobi, Gauss-

Seidel and SOR splittings are not sensible choices to consider as the outer or inner solver in the GIO method. Hence, in this

study we focus on the GIO method using the Power method as both the outer and the inner solver, similarly to Gleich et al.

[15] . With this choice in mind, the inner-outer scheme with m inner iteration steps, damping factor α and the parameter β
writes as 

x k = βm ˜ P m x k −1 + 

m −1 ∑ 

j=0 

β j ˜ P j ((α − β) ̃  P x k −1 + (1 − α) v ) , (28) 

= (βm ˜ P m + (α − β) T I ̃  P ) x k −1 + (1 − α) T I v , where T I = 

m −1 ∑ 

j=0 

β j ˜ P j , (29) 

= (βm ˜ P m + (α − β) T I ̃  P ) k x 0 + (1 − α) 
k −1 ∑ 

j=0 

(βm ˜ P m + (α − β) T I ̃  P ) j T I v . (30) 

If the initial guess x 0 = v is used, the above formula writes as 

x k = (βm ˜ P m + (α − β) T I ̃  P ) k v + (1 − α) 
k −1 ∑ 

j=0 

(βm ˜ P m + (α − β) T I ̃  P ) j T I v . (31) 
2 Here, u means an arbitrary vector from R 
n ×1 . 

3 Indeed, the best choice of the parameter ω in the SOR method when solving the PageRank problem is ω = 1 , which is just the Gauss-Seidel method 

[35] . 

6 
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We can see that x k belongs to the subspace span { v , ̃  P v , ̃  P 2 v , · · · , ̃  P mk v } , and the damping factors α’s form the coefficients

of the linear combination x k = l 0 v + l 1 ̃
 P v + l 2 ̃

 P 2 v + · · · + l mk ̃
 P mk v . This suggests that the inner-outer formulae to approximate

the solution of the whole sequence of linear systems (5) at the k + 1 th step can be evaluated efficiently as follows: 

• compute and store the m vectors ˜ P (mk +1) v , ̃  P (mk +2) v , · · · , ̃  P (mk + m ) v ; 
• use formula (30) to compute the coefficients of the approximate solution x (i ) 

k +1 
for all the i th systems, then form x (i ) 

k +1 
(1 ≤ i ≤ s ) . 

By this implementation, only m matrix-vector products are needed to construct x (i ) 
k +1 

(1 ≤ i ≤ s ) at the k + 1 th step, lead-

ing to a considerable gain compared to the sequential solution of using the ordinary inner-outer method for systems (5) that

would require ms matrix-vector products. From the memory viewpoint, the procedure above stores the m (k + 1) + 1 vectors

{ v , ̃  P v , ̃  P 2 v , · · · , ̃  P m (k +1) v } of R 

n ×1 , where m (k + 1) is the number of matrix-vector products computed by the first k + 1 iter-

ations of this inner-outer scheme. That is, the memory cost of this inner-outer scheme increases linearly with the number 

of iterations, and it is much larger than the constant memory cost of the shifted Power method. Based on the experiments

presented in [15] , the overall number of matrix-vector products required by the inner-outer method applied to PageRank 

problems is typically not less than 60% of that required by the Power method. Overall, the procedure above is too demanding

memory-wise to be applicable in the case of solving high-dimensional PageRank problems with multiple damping factors. 

We conclude that a general stationary iterative method for solving the PageRank problem (4) , derived from the general

splitting I − αP = M α − N α with iteration formulae 

x k +1 = 

˜ M 

−1 
α N αx k + (1 − α) ̃  M 

−1 
α v , where ˜ M 

−1 
α ≈ M 

−1 
α , 

can be extended efficiently to the case of multiple damping factors when the iteration matrices ˜ M 

−1 
α N α corresponding to 

different values of α are “collinear”, that is when 

˜ M 

−1 
αi 

N αi 
= θ ˜ M 

−1 
α j 

N α j 
( 0 < αi , α j < 1 , θ ∈ R ). The only option satisfying this

condition that we found is the Power method, and this will be the basis for our development in the next section. 

4. Shifted power-GMRES method for computing PageRank problems with multiple dampling factors 

In this section, we combine the simplicity of the shifted Power method with the fast convergent shifted GMRES method 

to produce a robust hybrid solution scheme for solving difficult PageRank problems with multiple damping factors. 

4.1. The shifted power-GMRES method with a seed system choosing strategy 

First, we briefly review the restarted GMRES method (hereafter referred to as GMRES in short), which is a nonsymmetric 

Krylov subspace solver based on the Arnoldi decomposition procedure [43] sketched in Algorithm 2 . Given a matrix A ∈ R 

n ×n 

Algorithm 2 [ V m 

, H m 

, v m +1 , h m +1 ,m 

, β, j ] = Arnold i (A, v 0 , m ) . 

1: Compute β = ‖ v 0 ‖ 2 v 1 = v 0 /β . 

2: for j = 1 : m do 

3: Compute w = A v j . 
4: for i = 1 : j do 

5: Compute h i, j = v T 
i 

w , 

6: Compute w = w − h i, j v i , 
7: end for 

8: Compute h j+1 , j = ‖ w ‖ 2 , 
9: if h j+1 , j = 0 then 

10: Set m = j, v m +1 = 0 , and break, 

11: else 

12: Set v j+1 = w/h j+1 , j , 

13: end if 

14: end for 

and an initial vector v 0 ∈ R 

n ×1 , after m steps Algorithm 2 constructs an orthonormal basis { v 1 , v 2 , . . . , v m 

} of the Krylov

subspace K m 

(A, v 0 ) ≡ span { v 0 , A v 0 , A 

2 v 0 , . . . , A 

m −1 v 0 } . The Arnoldi decomposition can be written as 

AV m 

= V m +1 ̄H m 

(32) 

= V m 

H m 

+ h m +1 ,m 

v m +1 e 
T 
m 

(33) 

with 

V 

T 
m 

AV m 

= H m 

, (34) 
7 



Z.-L. Shen, M. Su, B. Carpentieri et al. Applied Mathematics and Computation 420 (2022) 126799 

 

 

 

 ˜

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where we denote by V m 

= [ v 1 , v 2 , . . . , v m 

] ∈ R 

n ×m the matrix with orthonormal columns v i , by V m +1 = [ V m 

, v m +1 ] , while H m 

=
{ h i, j } ∈ R 

m ×m is an upper Hessenberg matrix, H̄ m 

= [ H m 

; h m +1 ,m 

e T m 

] ∈ R 

(m +1) ×m , and e m 

= [0 , 0 , . . . , 1] T ∈ R 

m ×1 . Starting from

v 0 = b − Ax 0 with an initial guess x 0 , after running m steps of Algorithm 2 the GMRES method computes the approximate

solution 

˜ x of the linear system Ax = b that minimizes the residual norm ‖ b − A ̃

 x ‖ 2 in the space x 0 + K m 

(A, v 0 ) . By writing
 x = x 0 + V m 

y , in the GMRES method the following equation has to be solved for the vector y : 

min ˜ x ∈ x 0 + K m (A, v 0 ) 
‖ b − A ̃

 x ‖ 2 = min 

y ∈ R m ×1 
‖ r 0 − AV m 

y ‖ 2 = min 

y ∈ R m ×1 
‖ βV m +1 e 1 − V m +1 ̄H m 

y ‖ 2 , 

where e 1 = [1 , 0 , . . . , 0] T ∈ R 

(m +1) ×1 . Because V m +1 is an orthonormal transformation, the last equation can be simplified as 

min ˜ x ∈ x 0 + K m (A, v 0 ) 
‖ b − A ̃

 x ‖ 2 = min 

y ∈ R m ×1 
‖ βe 1 − H̄ m 

y ‖ 2 . 

Therefore the computation of y , and hence of ˜ x , reduces to solving the small size least squares problem min y ∈ R m ×1 ‖ βe 1 −
H̄ m 

y ‖ 2 . 
The accuracy of the approximate solution 

˜ x of GMRES depends heavily on the dimension m of the search space. If the

linear system dimension n is very large and the value of m has to be by necessity a small integer because of memory

constraints, the accuracy of ̃  x may be unsatisfactory. In such case, the GMRES method needs to be restarted using ̃  x as the

starting vector for a new cycle of m iterations. The process is repeated until the required accuracy is achieved. The GMRES

method with restart applied to the solution of the PageRank problem is outlined in Algorithm 3 . 

Algorithm 3 Restarted GMRES method for solving the PageRank linear system (I − α˜ P ) x = (1 − α) v . 

Input: ~˜ P , α, v , m , τ , maxit , initial guess x ∈ R 

n ×1 with ‖ x ‖ 1 = 1 ; 

Output: x , Res , m v , iter; 

1: Set m v = 0 ; 

2: for iter = 1 : maxit do 

3: Compute v 0 = (1 − α) v − (I − α˜ P ) x ; 

4: Run Algorithm 2 by [ V m 

, H m 

, v m +1 , h m +1 ,m 

, β, j ]= Arnold i ((I − α˜ P ) , v 0 , m ) ; 

5: m v = m v + j; 

6: Solve the least square problem y = min y ‖ βe 1 − H̄ m 

y ‖ 2 ; 
7: Set Res = ‖ βe 1 − H̄ m 

y ‖ 2 ; 
8: Form the approximate solution: x = x + V m 

y ; 

9: if Res < τ then 

10: break; 

11: end if 

12: end for 

The shifted GMRES method proposed by Frommer and Glassner is an extension of the standard GMRES algorithm that can 

use the same Krylov subspace to solve the whole sequence of shifted linear systems (A + σi I) x i = b i (σi ∈ R , b i ∈ R 

n ×1 , i =
1 , . . . , s ) simultaneously [45] . The core idea of the method is to run standard GMRES on a seed system and to approximate

the other solutions as by products. The theoretical basis is the shift-invariance property of the Krylov subspace, namely 

K m 

(kI + lA, cv ) ≡ K m 

(A, v ) for any k, l, c ∈ R , that enables us to use only one Krylov subspace to solve the whole sequence

at once provided that the initial residual vectors of the shifted linear systems are collinear one another. However, after m

steps of Algorithm 2 the residuals vectors r i m 

(i = 2 , 3 , . . . , s ) of the additional systems and the residual vector r 1 m 

of the seed

system will in general lose the collinearity, and consequently the shift-invariance property of the search space will not be 

maintained, that is K m 

(A + σi I, r 
i 
m 

) 	 = K m 

(A + σ1 I, r 
1 
m 

) , for i = 2 , 3 , . . . , s . This means: upon restarting the GMRES algorithm,

the mutual collinearity of all the residual vectors needs to be enforced explicitly. More precisely, let us assume that the

initial residual vectors are collinear, i.e. r i 
0 

= γ i 
0 
r 1 

0 
(γ i 

0 
∈ R , i = 2 , 3 , . . . , s ) where r i 

0 
is the initial residual vector corresponding

to the i th system. Note the following two facts: 

• the initial residual vectors of the shifted systems are collinear with ( γ i 
0 

= 1 ) when the initial guesses are x i 
0 

= 0 (i =
1 , 2 , . . . , s ) ; 

• if (A + σ1 I) V m 

= V m +1 ̄H 

1 
m 

is the Arnoldi decomposition of the base system, then the decomposition of the i th shifted

system writes as (A + σi I) V m 

= V m +1 ̄H 

i 
m 

with an upper Hessenberg matrix 

H̄ 

i 
m 

= H̄ 

1 
m 

+ (σi − σ1 ) 

⎛ 

⎜ ⎜ ⎝ 

1 

. . . 

1 

0 · · · 0 

⎞ 

⎟ ⎟ ⎠ 

. 

Denoting by x i m 

= x i 
0 

+ V m 

y i m 

the approximate solution of the i th system after an m -steps cycle, we can derive the

collinearity condition to impose on the residual vectors as follows 

r i 0 − (A + σi I) V m 

y i m 

= γ i 
m 

[ r 1 0 − (A + σ1 I) V m 

y 1 m 

] (35) 
8 
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⇐⇒ γ i 
0 r 

1 
0 − (A + σi I) V m 

y i m 

= γ i 
m 

[ r 1 0 − (A + σ1 I) V m 

y 1 m 

] (36) 

⇐⇒ γ i 
0 βV m 

e 1 − (A + σi I) V m 

y i m 

= γ i 
m 

[ r 1 0 − (A + σ1 I) V m 

y 1 m 

] (37) 

⇐⇒ γ i 
0 βV m +1 e 1 − V m +1 ̄H 

i 
m 

y i m 

= γ i 
m 

[ βV m +1 e 1 − V m +1 ̄H 

1 
m 

y 1 m 

] (38) 

γ i 
0 βe 1 = γ i 

m 

[ βe 1 − H̄ 

1 
m 

y 1 m 

] + H̄ 

i 
m 

y i m 

. (39) 

Equation (39) can be converted in matrix form as [
H̄ 

i 
m 

z 
][y i m 

γ i 
m 

]
= γ i 

0 βe 1 , (40) 

where β = ‖ r 1 
0 
‖ 2 , z = βe 1 − H̄ 

1 
m 

y 1 m 

. By solving this small size system, we can obtain vector y i m 

and scalar γ i 
m 

that ensure

the collinearity of the shifted residuals. This is the approach of generating approximate solutions for additional systems 

and maintaining the collinearity of residual vectors in the restarted shifted GMRES method. For more details about this 

procedure, see [45] . 

One computational aspect to consider for the shifted GMRES method is that if some of the additional systems converge 

much more slowly than the seed system, the latter one may need to be solved by far more iterations than it is actually

required. The use of a seed switching technique can remedy the problem, and this is still an open research topic. For this

special problem, we apply a seed choosing strategy that is enough and is introduced as follows. 

In [45] , Frommer and Glassner prove the following result: 

Theorem 4.1 ( [45] ) . Let A be a positive real matrix, i.e. Re (< Ax, x > ) > 0 for all x 	 = 0 , and α > 0 , Ax = b be the seed system,

and (A + αI) x = b be the additional system. Then the restarted shifted GMRES method converges for the seed and the additional

system for every restart value m ∈ N 

+ . In particular, the iterative solutions for the additional system always exist. Moreover, it

holds: 

‖ ̂

 r jm ‖ 2 ≤ ‖ r jm ‖ 2 , 

where r jm and ˆ r jm are the residual vectors of the seed system and the additional system after any jth restart, respectively. 

Theorem 4.1 can be applied to the solution of the PageRank shifted linear system (6) since the coefficient matrices
1 
αi 

I − ˜ P ( i = 1 , · · · , s ) are positive real. Suppose that α1 < α2 < · · · < αs in (6) . If we choose the linear system associated with

the damping factor αs as our seed system, the coefficient matrix of any other i th system can be rewritten as 

(
1 
αi 

− 1 
αs 

)
I +(

1 
αs 

I − ˜ P 
)
. Then, according to Theorem 4.1 , the whole sequence converges and the seed system is the most slowly convergent

of the sequence. Finally, we outline the shifted-GMRES method for solving the PageRank problem with multiple damping 

factors in Algorithm 4 . 

Although the shifted GMRES method can solve the whole sequence (6) at roughly the cost of solving one of its systems,

it will still suffer from slow convergence for value of the damping factor that is most close to 1, especially if the dimension

m of the search space is set equal to a small integer due to memory constraints. Hence, it is attractive to develop some

strategies to accelerate this method for solving this problem class. 

Motivated by the hybrid framework proposed in [26,27,29] , since according to equation (23) the residual vectors of the

shifted Power algorithm remain collinear after every cycle, we propose to carry out a few cheap iterations of the shifted

Power method to reduce the high frequency components of the error associated to the small eigenvalues of the coefficient 

matrix, followed by some steps of the shifted GMRES method to reduce the low frequency components of the errors. By this

strategy, we aim at improving the efficiency of the shifted GMRES method for solving the PageRank problem with multiple 

damping factors including some close to 1. Hereafter, the resulting method will be referred to as the shifted Power-GMRES 

method, and its computational steps are outlined in Algorithm 5 . 

4.2. An Anderson-type extrapolation technique 

Motivated by the extrapolation techniques proposed in [10,11,24,47] , we consider whether the convergence of the shifted 

Power-GMERS method can be further accelerated by applying extrapolation techniques. The above-mentioned extrapola- 

tion techniques form a new approximate solution x̄ i as a linear combination x̄ i = l i x i + l i −1 x i −1 + · · · + l i −k +1 x i −k +1 of k so-

lutions x j (i − k + 1 ≤ j ≤ i ) computed at previous steps, and the coefficients l i , · · · , l i −k +1 ∈ R are specially chosen such

that a more rapid convergence can be achieved. Different extrapolation techniques correspond to different choices of 

0 ≤ l i , · · · , l i −k +1 ≤ 1 . In this study, we follow the idea of the Anderson acceleration [47] to carry out the investigation.
9 
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Algorithm 4 shifted-GMRES method for PageRank with multiple damping factors: [ x i , res i (1 ≤ i ≤ s ) , 

m v ] = shifted-GMRES( ̃  P , v , m , αi , τ , maxit , x i 
0 

(1 ≤ i ≤ s ) ). 

Input: ~˜ P , v , m , αi , τ , maxit , x i 
0 

(1 ≤ i ≤ s ) ; 

Output: x i , res i (1 ≤ i ≤ s ) , m v ; 
1: Set r i 

0 
= 

1 −αi 
αi 

v − ( 1 αi 
I − ˜ P ) x i 

0 
, e 1 = [1 , 0 , . . . , 0] , iter = 1 ; 

2: Set res i = αi ‖ r i 0 ‖ 2 (1 ≤ i ≤ s ) ; 

3: Set m v = 0 ; 

4: while max (res i ) ≥ τ && iter ≤ maxit do 

5: Find k that satisfies res k = max (res i ) ; 

6: Compute γ i = 

res i αk 
res k αi 

for all (i 	 = k ) ; 

7: Run Algorithm 2 by [ V m 

, H̄ 

k 
m 

, v m +1 , ̄h m +1 ,m 

, β, j ]= Arnold i (( 1 
αk 

I − ˜ P ) , r k 
0 
, m ) ; 

8: Set m v = m v + j; 

9: Compute y k , the minimizer of ‖ βe 1 − H̄ 

k 
m 

y k ‖ 2 ; 
10: Compute x k = x k 

0 
+ V m 

y k , res k = αk ‖ βe 1 − V m 

y k ‖ 2 ; 
11: for i = 1 , 2 , · · · , k − 1 , k + 1 , · · · , s do 

12: if res i ≥ τ then 

13: Set H̄ 

i 
m 

= H̄ 

k 
m 

+ ( 
1 −αi 
αi 

− 1 −αk 
αk 

) I m 

; 

14: Solve y i and γ i from 

[
H̄ 

i 
m 

z 
][y i 

γ i 

]
= γ i βe 1 ; 

15: set x i = x i 
0 

+ V m 

y i ; 

16: set r es i = 

αi 
αk 

γ i 
k 
r es k ; 

17: end if 

18: end for 

19: Set x i 
0 

= x i , it er = it er + 1 ; 

20: end while 

Algorithm 5 shifted-Power-GMRES method for PageRank with multiple damping factors: [ x i , res i (1 ≤ i ≤ s ) , 

iter] = shifted-Power-GMRES( ̃  P , v , αi (i = 1 , · · · , s ) , τ , m , maxit p maxit g ). 

Input: ~˜ P , v , αi (i = 1 , · · · , s ) , τ , m , maxit p maxit g ; 

Output: x i , res i (1 ≤ i ≤ s ) , m v ; 
1: Run Algorithm 1 by [ m v p , x i , r i ( i = 1 , · · · , s )]=Shifted-Power( ̃  P , v , τ , maxit p , αi (1 ≤ i ≤ s ) ); 

2: Run Algorithm 4 by [ x i , res i (1 ≤ i ≤ s ) , m v g ]=shifted-GMRES( ̃  P , v , m , αi , τ , maxit g , x 
i (1 ≤ i ≤ s ) ) 

3: Set m v = m v p + m v g ; 

 

 

 

 

 

 

We choose the coefficients l i , · · · , l i −k +1 in a way that x̄ i = l i x i + l i −1 x i −1 + · · · + l i −k +1 x i −k +1 is guaranteed to have the small-

est residual norm ‖ b − A ̄x i ‖ 2 among all the choices. For the PageRank problem, the approximate solution x̄ i must satisfy

‖ ̄x i ‖ 1 = 1 and be non-negative. Therefore, there must be 0 ≤ l i , · · · , l i −k +1 ≤ 1 and 

∑ k −1 
j=0 l i − j = 1 . If s linear systems have

to be solved simultaneously as in the case of multiple damping factors, the extrapolation method needs to be adapted to

ensure the collinearity of all the residual vectors. Supposing that r 
( j) 
i 

= β( j) 
i 

r (1) 
i 

, 1 ≤ j ≤ s where r 
( j) 
i 

denotes the residual

vector of the jth system after the i th iteration, meanwhile the Anderson acceleration applied to the first system yields

x̄ (1) 
i 

= l (1) 
i 

x (1) 
i 

+ l (1) 
i −1 

x (1) 
i −1 

+ · · · + l (1) 
i −k +1 

x (1) 
i −k +1 

, and the corresponding residual vector writes 

r̄ (1) 
i 

= (1 − α1 ) v − (I − α1 P ) ̄x 
(1) 
i 

(41) 

= l (1) 
i 

((1 − α1 ) v − (I − α1 P ) x 
(1) 
i 

) + · · · + l (1) 
i −k +1 

((1 − α1 ) v − (I − α1 P ) x 
(1) 
i −k +1 

) (42) 

= l (1) 
i 

r (1) 
i 

+ l (1) 
i −1 

r (1) 
i −1 

+ · · · + l (1) 
i −k +1 

r (1) 
i −k +1 

. (43) 

Similarly, for the jth system, we have 

r̄ ( j) 
i 

= l ( j) 
i 

r ( j) 
i 

+ l ( j) 
i −1 

r ( j) 
i −1 

+ · · · + l ( j) 
i −k +1 

r ( j) 
i −k +1 

(44) 

= l ( j) 
i 

β( j) 
i 

r (1) 
i 

+ l ( j) 
i −1 

β( j) 
i −1 

r (1) 
i −1 

+ · · · + l ( j) 
i −k +1 

β( j) 
i −k +1 

r (1) 
i −k +1 

. (45) 
10 
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Table 1 

Information of the selected Web matrices. 

Name n nnz den annz r 

web-Stanford 281,903 2,312,497 2 . 91 × 10 −5 8.20 

cnr-2000 325,557 3,216,152 3 . 03 × 10 −5 9.88 

web-NotreDame 325,729 1,497,134 1 . 41 × 10 −5 4.60 

Stanford-Berkeley 683,446 7,583,376 1 . 62 × 10 −5 11.10 

web-BerkStan 685,230 7,600,595 1 . 62 × 10 −5 11.09 

eu-2005 862,664 19,235,140 2 . 58 × 10 −5 22.30 

in-2004 1,382,908 16,917,053 8 . 84 × 10 −6 12.23 

wiki-talk 2,394,385 5,021,410 8 . 76 × 10 −7 2.10 

wikipedia-20060925 2,983,494 37,269,096 4 . 19 × 10 −6 12.49 

wikipedia-20070206 3,566,907 45,030,389 3 . 54 × 10 −6 12.62 

web-edu 9,845,725 57,156,537 5 . 90 × 10 −7 5.81 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

Clearly, the choices l 
( j) 
i 

= 

l 
(1) 
i 

β( j) 
i 

(2 ≤ j ≤ s ) ensure the collinearity condition r̄ 
( j) 
i 

= r̄ (1) 
i 

. However, such choice may result in

∑ k −1 
m =0 l 

( j) 
i −m 

	 = 1 . Hence, we normalize the coefficients as l̄ 
( j) 
i 

= 

l 
( j) 
i ∑ k −1 

m =0 
l 
( j) 
i −m 

(2 ≤ j ≤ s ) , and we set x̄ 
( j) 
i 

= l̄ 
( j) 
i 

x 
( j) 
i 

+ ̄l 
( j) 
i −1 

x 
( j) 
i −1 

+ · · · +

l̄ 
( j) 
i −k +1 

x 
( j) 
i −k +1 

, leading to the residual vectors r̄ 
( j) 
i 

= 

r̄ 
(1) 
i ∑ k −1 

m =0 
l 
( j) 
i −m 

. If the residual norms of the additional systems are smaller than

that of the seed system, that is 0 < β( j) 
i 

< 1 (2 ≤ j ≤ s ) , then we get l 
( j) 
i 

= 

l 
(1) 
i 

β( j) 
i 

> l (1) 
i 

. Thus 
∑ k −1 

m =0 l 
( j) 
i −m 

> 1 , and r̄ 
( j) 
i 

< r̄ (1) 
i 

. 

According to Eq. (23) , the system with the largest value of α (suppose it to be α1 ) will have the largest residual norm

after running the shifted Power method, and thus it will be chosen as the seed system for running the shifted GMRES

method, so there must be 0 < β( j) 
0 

< 1 , 2 ≤ j ≤ s . Meanwhile, according to Theorem 4.1 , the linear systems corresponding to

smaller damping factors α j will converge faster than the seed system. Therefore, we have 0 < β( j) 
i 

< 1 , 2 ≤ j ≤ s for any i th

cycle of the shifted-GMRES procedure, and the convergence rate of the seed system determines the computational cost of 

implementing this method. As a result, we can conclude that: by applying the Anderson extrapolation to the seed system, 

and defining x̄ 
( j) 
i 

= l̄ 
( j) 
i 

x 
( j) 
i 

+ ̄l 
( j) 
i −1 

x 
( j) 
i −1 

+ · · · + ̄l 
( j) 
i −k +1 

x 
( j) 
i −k +1 

for the additional systems, the efficiency of the shifted Power-GMRES 

method is expected to be improved. 

5. Numerical results 

In this section, we test the performance of the proposed shifted Power and shifted Power-GMRES methods, with and 

without the extrapolation acceleration, for solving some selected PageRank problems available at the University of Florida 

matrix repository [48] and at the Laboratory for Web Algorithmics [49–51] . The characteristics of the Web graph matrices 

considered in our experiments are reported in Table 1 , where for each matrix n indicates the dimension, nnz is the number

of nonzero elements, den = nnz/n 2 represents the density, and annz r is the average number of nonzero elements per row.

We set the personalization vector v equal to v = [1 , 1 , · · · , 1] T /n . All our experiments are run in MATLAB R2016a on a 64-bit

Windows 10 computer equipped with a core i7-8550u processor and with 16GB of RAM memory. 

In the PageRank formulation with multiple damping factors, the iterative solution of each i th (i = 1 , 2 , · · · , s ) linear sys-

tem is started from the initial guess x 0 
(i ) = v and it is stopped when either the approximate solution x k 

(i ) satisfies 

‖ (1 − αi ) v − (I − αi ̃
 P x k 

(i ) ) ‖ 2 

‖ x k 
(i ) ‖ 1 

< 10 

−8 , 

or the number of matrix-vector products exceeds 10 0 0 0. 

Example 5.1 

In this experiment, we test the performance of the shifted Power method against the conventional Power method 

for solving PageRank problems with multiple damping factors, namely { α1 = 0 . 85 , α2 = 0 . 86 , · · · , α15 = 0 . 99 }, on the

web-NotreDame , cnr-2000 , web-BerkStan and eu-2005 graph matrices. For each method, in Table 2 , we report on

the numbers of matrix-vector products (denoted by the acronym MV ), the CPU time in seconds (denoted by the acronym

P U) and the speedup factors of the shifted-Power method versus the Power method measured as 

Speedup MV = 

M V power − M V shi f ted power 

MV power 

and 

Speedup CPU = 

C P U power − C P U shi f ted power 

CP U power 
. 
11 
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Table 2 

Comparison results between the Power method and the shifted Power method. 

Methods: Power shifted Power Power for latest Speedup _ 

Problems: MV CPU MV CPU MV CPU MV CPU 

web-Stanford 3739 17.90 1141 8.54 1141 5.36 69.48% 52.29% 

cnr-2000 3491 21.68 1058 10.35 1058 6.72 69.69% 52.26% 

web-NotreDame 3148 14.12 910 7.03 910 4.01 71.09% 50.21% 

Stanford-Berkeley 3571 49.96 1071 23.76 1071 14.91 70.01% 52.44% 

web-BerkStan 3861 54.20 1216 26.56 1216 17.05 68.51% 51.00% 

eu-2005 3089 88.32 892 34.97 892 25.11 71.12% 60.41% 

in-2004 3596 111.05 1094 52.04 1094 33.59 69.58% 54.94% 

wiki-talk 2286 69.97 688 42.18 688 21.20 69.90% 39.72% 

wikipedia-20060925 3364 607.43 912 198.68 912 163.09 72.89% 67.29% 

wikipedia-20070206 2274 522.74 640 175.58 640 145.52 71.86% 66.41% 

web-edu 3159 492.33 942 259.99 942 143.24 70.18% 47.19% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Seen from Table 2 , the number of matrix-vector products and the time cost required by the shifted Power method are

remarkably smaller than those required by the ordinary method for solving each PageRank problem with multiple damping 

factors. The reduction in MV is around 70%, and the reduction in CP U is almost larger than 50%. Note that, this advantage

of the shifted Power method over the ordinary one will be enlarged when computations with more damping factors and 

larger damping factors are needed. Besides, the number of matrix-vector products required by the shifted Power method 

for solving all the linear systems in each problem equals to that of using the ordinary Power method to solve the single

system with largest α. This is consistent with the theoretical analysis. However, the time cost of the shifted Power method

for all systems is larger than that of the Power method for the system with the largest α. This is due to the fact that the

shifted Power method needs implementing additional vector operations such as vector-scalings, vector-addition operations 

and 2-norm computations of vectors. 

Example 5.2 

In this experiment, we compare the numerical behaviours of the shifted Power-GMRES , the shifted Power and the 

shifted GMRES methods, and we analyze the effect of the choice of the restart value m on the shifted Power-GMRES

method for different numbers of shifted Power iterations iter p . The damping factors are still set as { α1 = 0 . 85 , α2 =
0 . 86 , · · · , α15 = 0 . 99 }. Because of the typically huge sizes of PageRank problems, m should be upper bounded by a small

value due to memory constraints. Therefore, in our runs we vary m from 3 to 10. For iter p , we test 5 values: iter p =
50 , 100 , 200 , 400 , 800 . In Fig. 1 , we illustrate the convergence histories of the shifted Power-GMRES method for various

combinations of parameters (m, iter p ) . 

We see that, for a fixed choice of iter p , the number of matrix-vector products and the CPU time generally decrease with

m . For small restart values, such as m = 3 and m = 4 , the number of matrix-vector products changes very slightly with iter p 
in the range 50,10 0,20 0,40 0. For iter p = 80 0 , only one cycle of shifted GMRES is needed because convergence is almost

achieved after only the shifted Power iterations are implemented. Although the smoothing process that dumps the high 

frequency components of the error can be performed more effectively by the shifted GMRES method, especially when m 

is relatively large, it should be considered that one iteration of the shifted GMRES is more costly than one step of the

shifted Power method due to the extra vector operations. Consequently, the overall CPU time can be reduced remarkably 

when m ≤ 4 and 800 ≥ iter p ≥ 400 . On the other hand, when m increases, the shifted GMRES algorithm becomes more

efficient, and the setting 400 ≥ iter p ≥ 200 seems to be an overall good choice. By taking into account the memory costs,

the experiments shown in Fig. 1 suggest the choice m = 8 , iter = 400 as the best parameter-setting to reduce the CPU time

of the shifted Power-GMRES method. Besides, we point out that in a few cases the shifted Power-GMRES and the shifted

GMRES methods cost unusual amounts of time. Also, we observe cases where the shifted GMRES does not converge, while 

the shifted Power-GMRES converges. Overall, we can conclude that the shifted Power-GMRES method is more efficient and 

robust than the shifted GMRES method. 

Example 5.3 

In this experiment, we analyze the acceleration effect produced by the extrapolation technique on the shifted Power- 

GMRES method. For the parameter setting, we set the number of restart steps as m = 8 , and we vary the number of iter-

ations of the shifted Power method as iter p = [50 , 100 , 200 , 400] . Note that, when iter p = 800 , the extrapolation technique

is not used since convergence is achieved after one GMRES cycle. Finally, we vary the window size (the number of previous

iterative solutions being used) of the extrapolation technique in the range l = [3 , 4 , 5] . 

Figure 2 illustrates the number of matrix-vector products and the CPU time required by the extrapolated shifted Power- 

GMRES method for each selected pair of parameters (iter p , l) . 
12 
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Fig. 1. Performances of shifted-Power-GMRES versus various couples of parameter settings (m, iter p ) . 

 

 

 

 

We observe that in our experiments the extrapolation technique is effective for reducing both the number of matrix- 

vector products and the CPU time of the shifted-Power-GMRES method, to a different extent depending on the choice of 

parameters (iter p , l) . For smaller values of iter p , the number of cycles required by shifted GMRES increases, and clearly the

acceleration (reduction in MV and CP U) due to the extrapolation is more evident. The acceleration effect of the extrapolation

depends upon the selected window size l, but the dependence is not clear. For example, on the Stanford-Berkeley 
matrix, the acceleration due to the extrapolation strategy is more remarkable for l = 5 than for l = 3 when iter p = 50 , but

the opposite result is observed when iter p = 100 . Besides, acceleration effect is more remarkable with l = 4 than with l =
3 for the Stanford-Berkeley matrix, while the opposite behaviour is observed for the cnr-2000 matrix. From our 

experiments, we can conclude that the extrapolation technique is computationally more attractive to use when iter p is not 

so large. Although the best choice of l seems to be problem-dependent and its optimal setting requires further investigation, 

Fig. 2 clearly demonstrates the potential of this technique on accelerating the convergence of the shifted Power-GMRES 

method for realistic PageRank computations. 
13 



Z.-L. Shen, M. Su, B. Carpentieri et al. Applied Mathematics and Computation 420 (2022) 126799 

Fig. 2. Performances of shifted-Power-GMRES versus various couples of parameter settings (iter p , l) . 

Table 3 

Comparison results between with & without the extrapolation technique. 

method: shifted-Power-GMRES 

cases: shortest CPU time largest speedup factor 

technique: original extrapolation original extrapolation 

Problems: MV CPU MV CPU MV CPU MV CPU 

web-Stanford 257 3.79 249 3.74 417 5.06 417 4.84 

cnr-2000 297 5.39 203 3.93 297 5.39 203 3.03 

web-NotreDame 457 5.66 277 5.04 557 7.92 277 5.04 

Stanford-Berkeley 297 11.8 235 10.9 459 16.1 235 10.9 

web-BerkStan 425 15.9 425 15.2 441 17.4 353 15.7 

eu-2005 163 10.9 131 9.52 157 12.3 141 10.4 

in-2004 395 32.9 235 23.3 395 32.9 235 23.3 

wiki-talk 72 7.87 50 7.53 72 7.87 50 7.53 

wikipedia-20060925 75 27.7 67 25.5 224 62.3 122 39.6 

wikipedia-20070206 125 53.6 91 40.0 171 63.5 91 40.0 

 

 

 

 

Finally, in Table 3 we present comparative results between the shifted Power-GMRES method with and without using 

the extrapolation strategy. For each test problem, we present comparative figures of results in two scenarios: 1) the fastest 

run (that is, the shortest CPU time); 2) the largest speedup factor produced by the extrapolation technique. 

We can see that the fastest run of shifted Power-GMRES is always further accelerated by using the extrapolation tech- 

nique, with a time cost reduction factor up to 29.18% (appears for the in-2004 problem). The reduction in terms of MV 

is generally more significant than the CP U time saving. For example, on the same problem in-2004 , the MV number is

reduced by 40.51%. This difference can be explained by the additional cost due to the extra vector operations and QR factor-

izations performed by the extrapolation. Considered that our implementation is not totally optimized, we believe that larger 

reductions in terms of CPU time can be produced by the extrapolation technique. Besides, in the best case scenario (experi-

ments with largest CPU time reductions largest speedup factor ), more remarkable reductions brought by the extrapolation 

in terms of both MV and CP U are observed. Overall, these results show the good potential of the proposed extrapolation

technique for accelerating shifted Power-GMRES for solving this problem class. 
14 
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6. Conclusions 

In this paper, we propose a variant of the Power method, called the shifted Power method, that can solve the shifted

linear systems of PageRank problems with multiple damping factors simultaneously, and costs much smaller time than the 

ordinary Power method applied to this problem directly. Different from other stationary iterative methods, the proposed 

algorithm generates collinear residual vectors. For the solution of difficult PageRank problems with damping factors very 

close to 1, this method can be efficiently combined with powerful non-stationary methods such as GMRES. By choosing 

a suitable seed system, the resulting shifted Power-GMRES method has almost the same complexity of the Power-GMRES 

method [27] applied to the seed system alone. Finally, we have derived an Anderson-type extrapolation technique to further 

accelerate the proposed shifted Power-GMRES iterations. Numerical experiments demonstrate the potential of the proposed 

iterative solver and the acceleration techniques to accelerate realistic PageRank computations with multiple damping factors 

effectively. 
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