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Abstract

In the years following its publication in 1998, the PageRank model has been studied deeply to
be extended in fields such as chemistry, biology and social network analysis. The aim of this
project is the implementation of a modified version of the Power method to solve the PageR-
ank problem with multiple damping factors. The proposed method is based on the combina-
tion of the Power method with the shifted GMRES method.
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1 Introduction

The PageRank model was proposed by Google in a series of papers to evaluate accurately the most
important web-pages from the World Wide Web matching a set of keywords entered by a user. For
search engine rankings, the importance of web-pages is computed from the stationary probability
vector of the random process of a web surfer who keeps visiting a large set of web-pages connected
by hyperlinks. The link structure of the World Wide Web is represented by a directed graph, the
so-called web link graph, and its corresponding adjacency matrix G ∈ Nn×n where n denotes the
number of pages and Gi j is nonzero (being 1) only if the jth page has a hyperlink pointing to the ith
page. The transition probability matrix P ∈ Rn×n of the random process has entries as described
in 1.

P (i , j ) =


1∑n

k=1 Gk j
if Gi , j = 0

0 otherwise
(1)

The entire random process needs a unique stationary distribution. To ensure this propriety is sat-
isfied , the transition matrix P is usually modified to be an irreducible stochastic matrix A (called
the Google matrix) as follows:

A =αP̃ + (1−α)veT (2)

In 2 we have defined a new matrix called P̃ = P + vd T where d ∈ N n×1 is a binary vector tracing
the indices of the damping web pages with no hyperlinks, i.e., d(i ) = 1 if the i-th page has no
hyperlink, v ∈ Rn×n is a probability vector, e = [1,1, ...,1]T and 0 < α < 1, the so-called damping
factor that represents the probability in the model that the surfer transfer by clicking a hyperlink
rather than other ways. Mathematically, the PageRank model can be formulated as the problem of
finding the positive unit eigenvector x (the so-called PageRank vector) such that

Ax = x, ∥x∥ = 1, x > 0 (3)

or, equivalently, as the solution of the linear system

(I −αP̃ )x = (1−α)v (4)

The authors of the paper [1] emphasize how in the in the past decade or so, considerable research
attention has been devoted to the efficient solution of problems 3 4, especially when n is very
large. For moderate values of the damping factor, e.g. for α= 0.85 as initially suggested by Google
for search engine rankings, solution strategies based on the simple Power method have proved to
be very effective. However, when α approaches 1, as is required in some applications, the conver-
gence rates of classical stationary iterative methods including the Power method tend to deterio-
rate sharply, and more robust algorithms need to be used.

In the reference paper that we are using for this project, the authors focus their attention in the
area of PageRank computations with the same network structure but multiple damping factors.
For example, in the Random Alpha PageRank model used in the design of anti-spam mechanism
[2], the rankings corresponding to many different damping factors close to 1 need to be computed
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simultaneously. They explain that the problem can be expressed mathematically as solving a se-
quence of linear systems

(I −αi P̃ )xi = (1−αi )v αi ∈ (0,1) ∀i ∈ {1,2, ..., s} (5)

As we know, standard PageRank algorithms applied to 5 would solve the s linear systems inde-
pendently. Although these solutions can be performed in parallel, the process would still demand
large computational resources for high dimension problems. This consideration motived the au-
thors to search novel methods with reduced algorithmic and memory complexity, to afford the
solution of larger problems on moderate computing resources. They suggest to write the PageR-
ank problem with multiple damping factors given at once 5 as a sequence of shifted linear systems
of the form: ( 1

αi
I − P̃

)
x(i ) = 1−αi

αi
v ∀i ∈ {1,2, ..., s} 0 <αi < 1 (6)

We know from literature that the Shifted Krylov methods may still suffer from slow convergence
when the damping factor approaches 1, requiring larger search spaces to converge with satis-
factory speed. In [1] is suggest that, to overcome this problem, we can combine stationary it-
erative methods and shifted Krylov subspace methods. They derive an implementation of the
Power method that solves the PageRank problem with multiple dumpling factors at almost the
same computational time of the standard Power method for solving one single system. They also
demonstrate that this shifted Power method generates collinear residual vectors. Based on this
result, they use the shifted Power iterations to provide smooth initial solutions for running shifted
Krylov subspace methods such as GMRES. Besides, they discuss how to apply seed system choosing
strategy and extrapolation techniques to further speed up the iterative process.

1.1 Overview of the classical PageRank problem

The Power method is considered one of the algorithms of choice for solving either the eigenvalue
3 or the linear system 4 formulation of the PageRank problem, as it was originally used by Google.
Power iterations write as

x(k+1) = Axk =αP̃ x(k) + (1−α)v (7)

The convergence behavior is determined mainly by the ratio between the two largest eigenvalues
of A. When α gets closer to 1, though, the convergence can slow down significantly.

As stated in [1] The number of iterations required to reduce the initial residual down to a tolerance

τ, measured as τ = ∥Axk − xk∥ = ∥xk+1 − xk∥ can be estimated as
log10 τ

log10α
. The authors provide an

example: when τ= 10−8 the Power method requires about 175 steps to converge forα= 0.9 but the
iteration count rapidly grows to 1833 for α= 0.99. Therefore, for values of the damping parameter
very close to 1 more robust alternatives to the simple Power algorithm should be used.
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2 The shifted power method for PageRank computations

In this section we’ll see the extensions of stationary iterative methods for the solution of PageRank
problems with multiple damping factors, as presented in [1]. We are interested in knowing if,
for each method, there exists an implementation such that the computational cost of solving the
PageRank problem with multiple damping factor is comparable to that of solving the ordinary
PageRank problem with single damping factor.

2.1 The implementation of the shifted power method

Inspired by the reason why shifted Krylov subspaces can save computational cost, the authors of
[1] investigate whether there are duplications in the calculations of multiple linear systems in this
problem class by the stationary iterative methods, so that the duplications in the computation can
be deleted and used for all systems. It’s some sort of dynamic programming approach. Firstly, they
analyze the Power method applied to the sequence of linear systems in 4. It computes at the k-th
iteration approximate solutions x(i )

k (1 ≤ i ≤ s) of the form

x(i )
k =αk

i P̃ k x(i )
k + (1−αk

i )
k−1∑
j=0

α
j
i P̃ j v (8)

If the s systems in 4 are solved synchronously, this means that all the x(i )
k are computed only after

all previous approximations x( j )
k−1 are available. We can now rearrange the computation efficiently

as reported in [1]:

• at the first iterations

– compute and store µ1 = P̃ x0 and µ2 = v ;

– compute and store x(i )
1 =αiµ1 + (1−αi )µ2;

• at any other subsequent iteration k > 1

– compute and store x(i )
k := (1−αi )

∑k−2
j=0 α

j
i P̃ j v = x(i )

k−1 −αk−1
i µ1;

– compute and store µ1 = P̃µ1 and µ2 = P̃µ2;

– compute and store x(i )
k =αiµ1 +x(i )

k + (1−αi )αk−1
i µ2.

This implementation requires at most 2 matrix-vector products at each step, which is a signifi-
cant gain compared to the s matrix-vector products required by the standard Power method to
compute x(i )

k+1 , especially when s ≫ 2.

This was of course still a theoretical explanation. An efficient implementation can be written to
compute and store µ= P̃ v − v at the first iteration and then store

µ= P̃ k−1(P̃ v − v) = P̃ · (P̃ k−2(P̃ v − v))

at each k-th iteration (k > 1), and then from each approximate solution as x(i )
k = αk

i µ+ x(i )
k−1. The

residual vector r (i )
k associated with the approximate solution x(i )

k has the following expression

r (i )
k = Ax(i )

k −x(i )
k = x(i )

k+1 −x(i )
k =αk+1

i P̃ k (P̃ v − v) (9)
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Since in general each of the s linear systems may require a different number of Power iterations to
converge, the s residual norms have to be monitored separately to test the convergence.

Now we can summarize the efficient implementation of the Power method presented in this sec-
tion for solving problem 4 in Algorithm 1, as reported in [1]. From now on, we’ll refer to this im-
plementation as the Shifted-Power method.

Algorithm 1 Shifted-Power method for PageRank with multiple damping factors

Require: P̃ , v, τ, maxmv , αi (1 ≤ i ≤ s)
Ensure: mv, x(i ), r (i ) (1 ≤ i ≤ s)

Compute µ= P̃ v − v
Set mv = 1
for i = 1 : s do

Compute r (i ) =αiµ

Compute Res(i ) = ∥r (i )∥
if Res(i ) ≥ τ then

Compute x(i ) = r (i ) + v
end if

end for
while max(Res ≥ τ) and mv ≤ maxmv do

compute µ= P̃µ
mv = mv +1
for i = 1 : s do

if Res(i ) ≥ τ then
Compute r (i ) =αk+1

i µ

Compute Res(i ) = ∥r (i )∥
if Res(i ) ≥ τ then

Compute x(i ) = r (i ) +x(i )

end if
end if

end for
end while

Where mv is an integer that counts the number of matrix-vector products performed by the algo-
rithm. The algorithm stops when either all the residual norms are smaller than the tolerance τ or
the maximum number of matrix-vector products is reached. An implementation of this algorithm
written in Python is available in the github repository of this project.
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3 Shifted power-GMRES method

In this section we’ll cover the approach that the authors in [1] used to combine the shifted power
method with the fast shifted GMRES method to create an hybrid algorithm for solving complex
PageRank problems with multiple damping factors.

3.1 Restarted GMRES method

The Restarted GMRES method (hereafter referred to as GMRES in short) is a non-symmetric Krylov
subspace solver based on the Arnoldi decomposition procedure, that the authors sketch in the
following algorithm

Algorithm 2 Arnoldi
Require: A, v0,m
Ensure: Vm , Hm , vm+1,hm+1,m ,β, j

1: Compute β= ∥v0∥
2: v1 = v0/β
3: for j = 1 : m do
4: Compute w = Av j

5: for i = 1 : j do
6: Compute hi , j = vT

i w
7: Compute w = w −hi , j vi

8: end for
9: h j+1, j = ∥wi∥

10: if h j+1, j = 0 then
11: m = j ,
12: vm+1 = 0
13: break
14: else
15: v j+1 = w/h j+1, j

16: end if
17: end for

Where A ∈ Rn×n and v0 ∈ Rn×1 is the initial vector. After m iterations, the Arnoldi procedure pro-
duces the orthogonal basis Vm = [v1, . . . , vm] and the upper Hessenberg matrix Hm ∈ Rm×m , and
the residual vector vm+1 ∈Rn×1 and the residual norm hm+1,m ∈R. Starting from v0 = b− Ax0 with
an initial guess x0, after running m steps of the algorithm 2, the GMRES method produces the ap-
proximate solution x̃ of the linear system Ax = b that minimizes the residual norm ∥b−Ax∥ in the
Krylov subspace of dimension m.

We know that the accuracy of the approximate solution x̃ of GMRES depends heavily on the di-
mension m of the search space. The authors in [1] propose to use the GMRES method as a pre-
conditioner for the shifted power method presented in the previous section. The core idea of the
method is to run standard GMRES on a seed system and to approximate the other solutions as by
products. The theoretical basis is the shift-invariance property of the Krylov subspace that enables
us to use only one Krylov subspace for all the shifted systems, provided that the residual vectors
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are collinear to one other. The algorithm proposed by the authors is presented in Algorithm 3.

Algorithm 3 Shifted GMRES

Require: P̃ , v,m,αi ,maxi t , xi
0 (1 ≤ i ≤ s)

Ensure: xi ,r esi (1 ≤ i ≤ s),mv

1: Set i
0 = 1−αi

αi
v −

(
1
αi

I − P̃
)
xi

0, iter = 1
2: Set r esi =αi∥v∥ (1 ≤ i ≤ s)
3: Set mv = 0
4: while max(r esi ) ≥ τ && i ter ≤ maxi t do
5: Find k that satisfies r esk = max(r esi )
6: Compute γi = r esiαk

r eskαi
for all i ̸= k

7: Run Arnoldi by [Vm , H̄ k
m , vm+1, h̄m+1,m ,β, j ] = Ar noldi ( 1

αk
I − P̃ ,r k

0 ,m)
8: Set mv = mv + j
9: Compute yk , the minimizer of ∥βe1 − H̄ k

m yk∥2

10: Compute xk = xk
0 +Vm yk

11: Compute r esk =αk∥βe1 − H̄ k
m yk∥

12: for i = 1, 2, . . . , k-1, k+1, . . . , s do
13: if r esi ≥ τ then
14: Set H̄ i

m = H̄ k
m +

(
1−αi
αi

− 1−αk
αk

)
Im

15: Solve yi and γi from
[
H̄ i

m z
][

y i

γi

]
= γiβe1

16: Set xi = xi
0 +Vm y i

17: Set r esi = αi
αk
γi

k r esk

18: end if
19: end for
20: Set i ter = i ter +1
21: Set xi

0 = xi

22: end while

Where z = βe1 −H 1
m y1

m . In line 15, by solving this small size system, we can obtain the vector y i
m

and scalar γi
m that ensures the collinearity of the shifted results.

Problems: The implementation of this algorithm has been very problematic. The key of this al-
gorithm is the use of the seed choosing strategy described in [1]. However, during my tests, after the
second iteration, the k value remains the same and the r es vector does not change. This leads ob-
viously to a stall situation, where the program runs without updating the values until it reaches the
maximum number of iterations allowed. This problem is still under investigation. I have provided
anyway a notebook in the github repository with the code of the algorithm for completeness, even
if it’s still not working. I think that the problem is related to some misunderstanding of the algo-
rithm provided in the pseudo-code, but I have not been able to find it yet. For this reason, there
won’t be any tests results for this algorithm in the following section.

7



4 Numerical experiments

In this experiment, we test the performance of the shifted Power method against the conven-
tional Power method for solving PageRank problems with multiple damping factors, namely {α1 =
0.85, α2 = 0.86, ... , α15 = 0.99} on the web-stanford and web-BerkStandatasets. The web-stanford
dataset is a directed graph with |V | = 281,903 nodes and |E | = 1,810,314 edges, and the web-BerkStan
dataset is a directed graph with |V | = 1,013,320 nodes and |E | = 5,308,054 edges. The datasets are
available at http://snap.stanford.edu/data/web-Stanford.html and http://snap.stanford.
edu/data/web-BerkStan.html respectively. The datasets are stored in the .txt edge-list format.
The characteristics of the datasets are summarized in Table 1.

Dataset Nodes Edges Density
web-Stanford 281,903 2,312,497 2.9099×10−5

web-BerkStan 685,230 7,600,595 1.6187×10−5

Table 1: Summary of the datasets used in the experiments.

The personalization vector v has been set to v = [1,1, ...,1]T /n. All the experiments are run in
Python 3.10 on a 64-bit Arch Linux machine with an AMD Ryzen™ 5 2600 Processor and 16 GB of
RAM.

4.1 Technical details

GitHub repository of this project

https://github.com/lukefleed/ShfitedPowGMRES

In the project github repository we can find an algo.py file where all the functions used in the
experiments are implemented. The algo.py file contains the following functions:

load_data This function loads the datasets from the .txt edge-list format and returns a net-
workx graph object. It takes as input a literal, the options are web-stanford and web-BerkStan.

pagerank This function computes the PageRank vector of a given graph. It takes as input the
following parameters:

• G: a networkx graph object.

• alpha: Damping parameter for PageRank, default=0.85.

• personalization: The "personalization vector" consisting of a dictionary with a key some
subset of graph nodes and personalization value each of those. At least one personalization
value must be non-zero. If not specified, a nodes personalization value will 1/N where N is
the number of nodes in G.

• max_iter: The maximum number of iterations in power method eigenvalue solver. Default
is 200.
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• nstart: Starting value of PageRank iteration for each node. Default is None.

• tol: Error tolerance used to check convergence in power method solver. Default is 10−6.

• weight: Edge data key corresponding to the edge weight. If None, then uniform weights
are assumed. Default is None.

• dangling: The outedges to be assigned to any "dangling" nodes, i.e., nodes without any
outedges. The dict key is the node the outedge points to and the dict value is the weight of
that outedge. By default, dangling nodes are given outedges according to the personaliza-
tion vector (uniform if not specified).

This function is strongly based on the pagerank_scipy function of the networkx library.

shifted_pow_pagerank : This is the implementation of the algorithm 1 with the difference that I
am using the l1 norm since the l2 norm is still not implemented for sparse matrices in SciPy.

There are is also another function called pagerank_numpy. The eigenvector calculation uses NumPy’s
interface to the LAPACK eigenvalue solvers. This will be the fastest and most accurate for small
graphs. Unfortunately, the eigenvector calculation is not stable for large graphs. Therefore, the
pagerank_numpy function is not used in the experiments.

4.2 Convergence results for the Shifted Power method

In the PageRank formulation with multiple damping factors, the iterative solution of each i − th
linear system is started from the initial guess x(i )

0 = v and it’s stopped when either the solution x(i )
k

satisfies
∥(1−αi )v − (I −αi P̃ x(i )

k ∥2

∥x(i )
k ∥2

< 10−6

or the number of matrix-vector products exceeds 200.

In this experiment we test the performance of the shifted Power method against the conventional
Power method for solving PageRank problems with multiple damping factors.

Dataset Method CPU Time (s) mv
web-Stanford Power 71.7 70
web-Stanford Shifted Power 665.4 56

web-BerkStan Power 202.1 49
web-BerkStan Shifted Power 1342.9 73

Table 2: Summary of the experiments.

The results presented on table 2 are a bit in contrast compared to what the paper [1] reports. In
their experiment the CPU time of the shifted power method is lower then the one of the standard
power method. However, in our experiments the CPU time of the shifted power method is far
higher then the one of the standard power method. Furthermore, theoretically, the number of
matrix-vector products should be lower for the shifted power method, in particular it should be
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equal to the one of the standard PageRank algorithm with the biggest damping factor. However, in
our experiments the number of matrix-vector products is higher for the shifted power method for
the dataset web-BerkStan and lower for the dataset web-Stanford.

The reasons to those differences in results may be a lot. I think that the most plausible reason is
the difference in programming language and implementation, combined with a possibility of mis-
understanding of the pseudo-code presented in [1]. My standard PageRank function is a slightly
modified version of the network library function pagerank_scipy, so I suppose that is better opti-
mized in comparison to the shifted power method implementation that I wrote. Also, the network
Web-BerkStan is very different from the web-stanford one. The adjacency matrix relative to the
first one, has a lot of rows full of zeros in comparison to the second one (4744 vs 172). This might
effect negatively the shifted power method for this specific cases of networks with a lot of dangling
nodes.
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