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Abstract

Starting from the seminal paper published by Brin and Page in 1998, the PageRank model
has been extended to many fields far beyond search engine rankings, such as chemistry, bi-
ology, bioinformatics, social network analysis, to name a few. Due to the large dimension of
PageRank problems, in the past decade or so, considerable research efforts have been de-
voted to their efficient solution especially for the difficult cases where the damping factors
are close to 1. However, there exists few research work concerning about the solution of the
case where several PageRank problems with the same network structure and various damp-
ing factors need to be solved. In this paper, we generalize the Power method to solving the
PageRank problem with multiple damping factors. We demonstrate that the solution has
almost the equative cost of solving the most difficult PageRank system of the sequence, and
the residual vectors of the PageRank systems after running this method are collinear. Based
upon these results, we develop a more efficient method that combines this Power method
with the shifted GMRES method. For further accelerating the solving phase, we present
a seed system choosing strategy combined with an extrapolation technique, and analyze
their effect. Numerical experiments demonstrate the potential of the proposed iterative
solver for accelerating realistic PageRank computations with multiple damping factors.
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1 Introduction

The PageRank model was proposed by Google in a series of papers to evaluate accurately the
most important web-pages from the World Wide Web matching a set of keywords entered by a
user. Nowadays, the model is routinely adopted for the analysis of many scientific problems far
beyond Internet applications, for example in computational chemistry, biology, bioinformatics,
social network analysis, bibliometrics, software debugging and many others. For search engine
rankings, the importance of web-pages is computed from the stationary probability vector of
the random process of a web surfer who keeps visiting a large set of web-pages connected by
hyperlinks. The link structure of the World Wide Web is represented by a directed graph, the
so-called web link graph, and its corresponding adjacency matrix G ∈ Nn×n where n denotes
the number of pages and Gi j is nonzero (being 1) only if the jth page has a hyperlink pointing
to the ith page. The transition probability matrix P ∈Rn×n of the random process has entries

P (i , j ) =


1∑n

k=1 Gk j
if Gi , j = 0

0 otherwise
(1)

To ensure that the random process has a unique stationary distribution and it will not stagnate,
the transition matrix P is usually modified to be an irreducible stochastic matrix A (called the
Google matrix) as follows

A =αP̃ + (1−α)veT (2)

In 2 we define P̃ = P +vd T where d ∈ N n×1 is a binary vector tracing the indices of the damping
web pages with no hyperlinks, i.e., d(i ) = 1 if the ith page ha no hyperlink, v ∈ Rn×n is a prob-
ability vector, e = [1,1, ...,1]T and 0 < α < 1, the so-called damping factor that represents the
probability in the model that the surfer transfer by clicking a hyperlink rather than other ways.
Mathematically, the PageRank model can be formulated as the problem of finding the positive
unit eigenvector x (the so-called PageRank vector) such that

Ax = x, ∥x∥ = 1, x > 0 (3)

or, equivalently, as the solution of the linear system

(I −αP̃ )x = (1−α)v (4)

In the past decade or so, considerable research attention has been devoted to the efficient so-
lution of problems 3 4, especially when n is very large. For moderate values of the damping
factor, e.g. for α = 0.85 as initially suggested by Google for search engine rankings, solution
strategies based on the simple Power method have proved to be very effective. However, when
α approaches 1, as is required in some applications, the convergence rates of classical station-
ary iterative methods including the Power method tend to deteriorate sharply, and more robust
algorithms need to be used.

One area that is largely unexplored in PageRank computations is the efficient solution of prob-
lems with the same network structure but multiple damping factors. For example, in the Ran-
dom Alpha PageRank model used in the design of anti-spam mechanism [1], the rankings cor-
responding to many different damping factors close to 1 need to be computed simultaneously.
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This problem can be expressed mathematically as solving a sequence of linear systems

(I −αi P̃ )xi = (1−αi )v αi ∈ (0,1) ∀i ∈ {1,2, ..., s}S (5)

Conventional PageRank algorithms applied to 5 would solve the s linear systems independently.
Although these solutions can be performed in parallel, the process would still demand large
computational resources for high dimension problems. This consideration motivates the search
of novel methods with reduced algorithmic and memory complexity, to afford the solution of
larger problems on moderate computing resources. We can write the PageRank problem with
multiple damping factors given at once (5) as a sequence of shifted linear systems of the form:

(
1

αi
I − P̃ )x(i ) = 1−αi

αi
v ∀i ∈ {1,2, ..., s} 0 <αi < 1 (6)

Shifted Krylov methods may still suffer from slow convergence when the damping factor ap-
proaches 1, requiring larger search spaces to converge with satisfactory speed, which in turn
may lead to unaffordable storage requirements for large-scale engineering applications. As an
attempt of a possible remedy in this situation, we present a framework that combines. shifted
stationary iterative methods and shifted Krylov subspace methods. In detail, we derive the im-
plementation of the Power method that solves the PageRank problem with multiple damping
factors at almost the same computational cost of the standard Power method for solving one
single system. Furthermore, we demonstrate that this shifted Power method generates collinear
residual vectors. Based on this result, we use the shifted Power iterations to provide smooth ini-
tial solutions for running shifted Krylov subspace methods such as GMRES. Besides, we discuss
how to apply seed system choosing strategy and extrapolation techniques to further speed up
the iterative process.

1.1 Overview of the classical PageRank problem

The Power method is considered one of the algorithms of choice for solving either the eigen-
value 3 or the linear system 4 formulation of the PageRank problem, as it was originally used by
Google. Power iterations write as

x(k+1) = Axk =αP̃ x(k) + (1−α)v (7)

The convergence behavior is determined mainly by the ratio between the two largest eigenval-
ues of A. When α gets closer to 1, though, the convergence can slow down significantly.

As stated in [2] The number of iterations required to reduce the initial residual down to a toler-

ance τ, measured as τ= ∥Axk −xk∥ = ∥xk+1−xk∥ can be estimated as
log10 τ

log10α
. For example, when

τ = 10−8 the Power method requires about 175 steps to converge for α = 0.9 but the iteration
count rapidly grows to 1833 for α = 0.99. Therefore, for values of the damping parameter very
close to 1 more robust alternatives to the simple Power algorithm should be used.
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2 The shifted power method for PageRank computations

In this section we consider extensions of stationary iterative methods for the solution of PageR-
ank problems with multiple damping factors. We look in particular at the Power method, the
Gauss-Seidel method, and the GIO iteration scheme. We are concerned with how these meth-
ods can be executed with the highest efficiency for solving such problems, especially with the
question: for each method, whether there exist an implementation such that the computational
cost of solving the PageRank problem with multiple damping factor is comparable to that of
solving the ordinary PageRank problem with single damping factor.

2.1 The implementation of the shifted power method

Inspired by the reason why shifted Krylov subspaces can save computational cost, we investi-
gate whether there are duplications in the calculations of multiple linear systems in this prob-
lem class by the stationary iterative methods, so that the duplications in the computation can
be deleted, or in other words, the associate operations can be computed only once and used for
all systems. We first analyze the Power method applied to the sequence of linear systems in 4.
It computes at the kth iteration approximate solutions xk (i )(1 ≤ i ≤ s) of the form

αk
i P̃ k x(i )

k + (1−αk
i )

k−1∑
j=0

α
j
i P̃ j v (8)

If the s systems in 4 are solved synchronously, that is all x(i )
k are computed only after all previous

approximations x( j )k−1 are available, then the computation can be rearranged efficiently as
follows:

• at the first iterations

– compute and store µ1 = P̃ x0 and µ2 = v ;

– compute and store x(
1i ) =αiµ1 + (1−αi )µ2;

• at any other subsequent iteration k > 1

– compute and store x(
k i ) := (1−αi )

∑k−2
j=0 α

j
i P̃ j v = x(i )

k−1 −αk−1
i µ1;

– compute and store µ1 = P̃µ1 and µ2 = P̃µ2;

– compute and store x(i )
k =αiµ1 +x(i )

k + (1−αi )αk−1
i µ2.

This implementation requires at most 2 matrix-vector products at each step, which is a signif-
icant gain compared to the s matrix-vector products required by the standard Power method
to compute x(i )

k+1 , especially when s ≫ 2. This is close to the computational cost, i.e. 1 matrix-
vector product per iteration, of using the Power method for computing PageRank with single
damping factor.

An efficient implementation can compute and storeµ= P̃ v−v at the first iteration and storeµ=
P̃ k−1(P̃ v−v) = P̃ ·(P̃ k−2(P̃ v−v)) at each kth iteration (k > 1), and finally from each approximate
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solution as x(i )
k =αk

i µ+ x(i )
k−1. The residual vector r (i )

k associated with the approximate solution

x(i )
k has the following expression

r (i )
k = Ax(i )

k −x(i )
k = x(i )

k+1 −x(i )
k =αk+1

i P̃ k (P̃ v − v) (9)

Since in general each of the s linear systems may require a different number of Power iterations
to converge, the s residual norms have to be monitored separately to test the convergence. We
summarize the efficient implementation of the Power method that we presented in this section
for solving problem 4 in Algorithm 1, and we call it the shifted Power method hereafter.

Algorithm 1 Shifted-Power method for PageRank with multiple damping factors

Require: P̃ , v, τ, maxmv , αi (1 ≤ i ≤ s)
Ensure: mv, x(i ), r (i ) (1 ≤ i ≤ s)

Compute µ= P̃ v − v
Set mv = 1
for i = 1 : s do

Compute r (i ) =αiµ

Compute Res(i ) = ∥r (i )∥
if Res(i ) ≥ τ then

Compute x(i ) = r (i ) + v
end if

end for
while max(Res ≥ τ) and mv ≤ maxmv do

compute µ= P̃µ
mv = mv +1
for i = 1 : s do

if Res(i ) ≥ τ then
Compute r (i ) =αk+1

i µ

Compute Res(i ) = ∥r (i )∥
if Res(i ) ≥ τ then

Compute x(i ) = r (i ) +x(i )

end if
end if

end for
end while

Where mv is an integer that counts the number of matrix-vector products performed by the al-
gorithm. The algorithm stops when either all the residual norms are smaller than the tolerance
τ or the maximum number of matrix-vector products is reached.

5



References

[1] Paul G. Constantine and David F. Gleich. Random alpha pagerank. Internet Mathematics,
6(2), 1 2009.

[2] Zhao-Li Shen, Meng Su, Bruno Carpentieri, and Chun Wen. Shifted power-gmres method
accelerated by extrapolation for solving pagerank with multiple damping factors. Applied
Mathematics and Computation, 420:126799, 2022.

6


	Introduction
	Overview of the classical PageRank problem

	The shifted power method for PageRank computations
	The implementation of the shifted power method


