Shifted Power-GMRES method for solving PageRank with
multiple damping factors

Luca Lombardo

Abstract

In the years following its publication in 1998, the PageRank model has been studied deeply to
be extended to different forms and applications. The aim of this project is the implementa-
tion of a modified version of the Power method to solve the PageRank problem with multiple
damping factors as proposed in [I]. At the end, will be proposed an algorithm to solve the
PageRank problem with multiple damping factors using the Shifted Power-GMRES method.
This last one, has not been fully implemented yet, so the numerical results are not presented.

Contents

(LIntroduction| 2
[1.1 Overview of the classical PageRank problem| 3

2 The shifted power method for PageRank computations| 4
[2.1 The implementation of the shifted power method|. 4

[3 Shifted power-GMRES method| 6
3.1 Restarted GMRES method| e e 6

[4 Numerical experiments| 9
M1 Technicaldetailsl 9
[4.2 Convergence results for the Shifted Power method| 10

1 Introduction

The PageRank algorithm is a method developed by Google to determine the relevance of web
pages to specific keywords. It is used to rank search results based on the importance of the pages,
as determined by the probability that a web surfer will visit them. The algorithm works by repre-
senting the links between web pages as a directed graph, with each page represented by a vertex
and each link represented by an edge. The importance of a page is then determined by the num-
ber of links pointing to it and the importance of the pages that link to it. The PageRank algorithm
is based on the idea that a page is more likely to be important if it is linked to by other important
pages, and it is represented mathematically by a transition probability matrix P € R"*"*, which can
be calculated using the formula in equation [1} where we consider its adjacency matrix G € N"*",
where n is the number of pages and G;; is nonzero (being 1) only if the j-th page has a hyperlink
pointing to the i-th page.

1
——— ifG;;=0
P(i, j) ={ L=y Grj 1)
0 otherwise

The entire random process needs a unique stationary distribution. To ensure this propriety is
satisfied, the transition matrix P is usually modified to be an irreducible stochastic matrix A (called
the Google matrix) as follows:

A=aP+(1-a)vel (2)

In2] we have defined a new matrix called P = P + vd” where d € N"*! is a binary vector tracing
the indices of the damping web pages with no hyperlinks, i.e., d(i) = 1 if the i-th page has no
hyperlink, v € R"*" is a probability vector, e = [1,1,...,1]7 and 0 < a < 1, the so-called damping
factor that represents the probability in the model that the surfer transfer by clicking a hyperlink
rather than other ways. Mathematically, the PageRank model can be formulated as the problem of
finding the positive unit eigenvector x (the so-called PageRank vector) such that

Ax=x, |xI=1, x>0 3)
equivalently, the problem of finding the solution of the linear system
(I-aP)x=(1-a)v 4)

In recent years, there has been a lot of interest in finding efficient ways to solve problems [3|and
especially when the number of variables (denoted by n) is very large. For moderate values of
the damping factor (e.g., a = 0.85, as suggested by Google for search engine rankings), the Power
method has proven to be a reliable solution. However, when the damping factor gets closer to 1,
which is necessary in some cases, traditional iterative methods like the Power method may not
work as well and more robust algorithms may be required. This point is emphasized in the paper

(1.

In the reference paper that we are using for this project, the authors focus their attention in the
area of PageRank computations with the same network structure but multiple damping factors.
For example, in the Random Alpha PageRank model used in the design of anti-spam mechanism

[2], the rankings corresponding to many different damping factors close to 1 need to be computed
simultaneously. They explain that the problem can be expressed mathematically as solving a se-
quence of linear systems

(I-a;P)xi=(1-a)v a;€(0,1) Vie{l,2,..s} (5)

Traditionally, PageRank algorithms applied to problem |5 would involve solving multiple linear
systems independently. While this process can be parallelized to some extent, it can still be com-
putationally intensive for high-dimensional problems. In an effort to find more efficient methods
with lower algorithmic and memory complexity, the authors of the paper searched for alternative
approaches that would allow them to solve larger problems with moderate computing resources.
They proposed expressing the PageRank problem with multiple damping factors given in [5/as a
series of shifted linear systems, in the form described in the following equation. This approach
aims to reduce the computational demands of the problem.

Lo 5o 1-a :
(—I—P)x - v Vie{l,2,...s) O<a;<l)
a;

a;

It has been previously noted in the literature that the Shifted Krylov methods may have slow con-
vergence when the damping factor gets close to 1, requiring a larger search space to achieve sat-
isfactory speed. In order to address this issue, the authors of [I] suggest combining stationary
iterative methods with shifted Krylov subspace methods. They present an implementation of the
Power method that can solve the PageRank problem with multiple damping factors in approxi-
mately the same amount of time as the standard Power method for solving a single system. They
also show that this shifted Power method generates collinear residual vectors. Based on this result,
they use the shifted Power iterations to provide smooth initial solutions for running shifted Krylov
subspace methods such as GMRES. In addition, they discuss how techniques such as seed system
choosing and extrapolation can be used to further accelerate the iterative process.

1.1 Overview of the classical PageRank problem

The Power method is a popular algorithm for solving either the eigenvalue problem in equation[]
or the linear system in equation[4] which were originally used to calculate PageRank by Google. It
works by iteratively applying the matrix A to an initial estimate of the solution, using the following
formula:

X(ks1) = Axg = aPxgy + (1 —a)v (7

The convergence behavior is determined mainly by the ratio between the two largest eigenvalues
of A. When «a gets closer to 1, though, the convergence can slow down significantly.

As stated in [1I] The number of iterations required to reduce the initial residual down to a tolerance

. log, T .
T, measured as 7 = || Axy — x|l = || Xx+1 — Xk |l can be estimated as %. The authors provide an
10

example: when 7 = 108 the Power method requires about 175 steps to converge for & = 0.9 but the
iteration count rapidly grows to 1833 for a = 0.99. Therefore, for values of the damping parameter
very close to 1 more robust alternatives to the simple Power algorithm should be used.

2 The shifted power method for PageRank computations

This section presents the adaptations of stationary iterative methods for solving PageRank prob-
lems with multiple damping factors, as described in [1]]. The goal is to determine if there are imple-
mentations of these methods that have a computational cost similar to that of solving a standard
PageRank problem with a single damping factor when applied to the problem with multiple damp-
ing factors. In other words, we want to know if these methods are efficient for solving PageRank
problems with multiple damping factors.

2.1 The implementation of the shifted power method

The authors of [I] were motivated by the idea that shifted Krylov subspaces can save computa-
tional cost by reducing duplications in the calculations of multiple linear systems. They therefore
sought to determine if there were similar opportunities for optimization in the case of stationary
iterative methods applied to the PageRank problem with multiple damping factors. To do this,
they used a dynamic programming approach, in which they analyzed the Power method applied
to the sequence of linear systems in equation {4f This method computes approximate solutions
x,(ci) (1<i < s) at the k'" iteration of the form:

. ~ . k=1 2 s
X =afPFxP+1-ab) Y alPly 8)
Jj=0
If the s systems in are solved synchronously, this means that all the x;f) are computed only after
. L)
all previous approximations x;.",

as reported in [1]:

are available. We can now rearrange the computation efficiently

¢ at the first iterations

- compute and store 1 = Pxo and U2 = U;

— compute and store xi") =aiu + (1 —a;)u;

* at any other subsequent iteration k > 1

— compute and store xﬁj) =1-a;) Z?;g afﬁf v= x;jll - af‘lul;
- compute and store p; = 15,ul and yp = 15#2;

- compute and store xgci) =a;u; + x;f) +(1- ai)af‘lpz.

This implementation requires at most 2 matrix-vector products at each step, which is a signifi-
cant gain compared to the s matrix-vector products required by the standard Power method to

compute x;c’il , especially when s > 2.

This was of course still a theoretical explanation. An efficient implementation can be written to
compute and store p = Pv — v at the first iteration and then store

p=PYPv—v)=P-(P*2Pv-)

at each k-th iteration (k > 1), and then from each approximate solution as xg) = af U+ x,(clzl. The

residual vector r](ci) associated with the approximate solution x;j) has the following expression

() _ A @) _) _) _) k+lpk 5,
T —Axk X =X X =a; P*(Pv—-v) 9
Since in general each of the s linear systems may require a different number of Power iterations to

converge, the s residual norms have to be monitored separately to test the convergence.

Now we can summarize the efficient implementation of the Power method presented in this sec-
tion for solving problem [4]in Algorithm (I} as reported in [1]. From now on, we'll refer to this im-
plementation as the Shifted- Power method.

Algorithm 1 Shifted-Power method for PageRank with multiple damping factors

Require: P, v, 7, max,,,, a; (1<i<s)
Ensure: muv, x(i), r® 1l<i<ys)
Compute = Pv—v
Setmv=1
fori=1:sdo
Compute r'? = a;u
Compute Res(i) = [|r?|
if Res(i) = 7 then
Compute x =r® 4 p
end if
end for
while max(Res = 1) and mv < max,,, do
compute = Pu
mv=mv+1
fori=1:sdo
if Res(i) = 7 then
Compute r = af“u.
Compute Res(i) = |||
if Res(i) = 7 then
Compute x9 = r® 4 x®
end if
end if
end for
end while

The algorithm stops when either all the residual norms (a measure of how close the current es-
timate is to the true solution) are smaller than a specified tolerance 7, or when the maximum
number of matrix-vector products (multiplication of a matrix by a vector) has been reached. The
integer mv counts the number of matrix-vector products performed by the algorithm. An imple-
mentation of this algorithm, written in Python, is available in the corresponding github repository
for the project.

3 Shifted power-GMRES method

This section discusses the approach used by the authors of [I] to combine the shifted power
method with the fast shifted GMRES method to create a hybrid algorithm for solving complex PageR-
ank problems with multiple damping factors. The goal of this combination is to create an efficient
and reliable algorithm for solving these types of problems. The details of this approach and how it
was implemented are described in the cited paper.

3.1 Restarted GMRES method

The Restarted GMRES method (hereafter referred to as GMRES in short) is a non-symmetric Krylov
subspace solver based on the Arnoldi decomposition procedure, that the authors sketch in algo-
rithm 2]

Algorithm 2 Arnoldi
Require: A, vy, m
Ensure: Vi, Hy, Vins1, Bins1,m, B> J
1: Compute = | vyl
2: v =1y/ P
3: forj=1:mdo
4: Compute w = Av;

5 fori=1:jdo

6 Compute h; j = vl w
7: Compute w = w - h; jv;
8 end for

9 hju,j=lwill

10: ifhj;1,;=0then

11: m=j,

12: Um+1 =0

13: break

14: else

15: Viy1 = w/hj+1,j

16: end if

17: end for

The Arnoldi procedure, which is used as the basis for the GMRES method, involves iteratively con-
structing an orthogonal basis V;;, = [vy,..., V] and an upper Hessenberg matrix H,, € R™*™ from
an initial vector vy € R"*! and a matrix A € R™"*. After m iterations, it also produces a residual
vector v,,+1 € R”*! and a residual norm hpm+1,m € R. The GMRES method then uses these to ap-
proximate the solution X of the linear system Ax = b that minimizes the residual norm ||b — Ax||
in the Krylov subspace of dimension m. To do this, it starts with an initial guess xp and a residual
vector vy = b, and runs m steps of the Arnoldi procedure outlined in algorithm[2]

The modified GMRES algorithm represents an extension of the classical GMRES method, allowing
for the solution of a series of shifted linear systems using the same Krylov subspace.

(A+o;Dxj=b (0;eR b;eR™ i=...5)

The central concept behind the shifted GMRES method is the utilization of the standard GM-
RES algorithm on a seed system, with the solutions to the other systems being approximated as
byproducts. This approach is made possible through the shift-invariance property of the Krylov
subspace, which allows for the utilization of a single Krylov subspace to solve the entire sequence
of systems provided that the initial residual vectors of the shifted linear systems are collinear
with one another. However, after a certain number of steps of the Arnoldi algorithm, the resid-
ual vectors of the additional systems and the residual vector of the seed system will typically lose
collinearity, resulting in the loss of the shift-invariance property of the search space.

Hm(A+ail,rl)# Hm(A+orLr)) i=23,...,s

This implies that the mutual collinearity of all the residual vectors must be enforced explicitly
upon restarting the GMRES algorithm. Specifically, if we assume that the initial residual vectors are
collinear, meaning ré = yé r(} fori=2,3,...,s where ré is the initial residual vector corresponding
to the i-th system and y(i) € R, then the shift-invariance property of the Krylov subspace can be
maintained.

Algorithm 3 Shifted GMRES

Require: P, v, m,a,-,maxit,xé 1l<i<ys)
Ensure: x',res; (1<i<s),mv
1: Set) = 1a“’ v—(I- P)xo, iter=1
2: Setres; = a;|vl (1 <i<ys)
3: Setmv=0
4: while max(res;) =7 && iter < maxitdo
5: Find k that satisfies res; = max(res;)
Compute y’ = oo foralli # k

6
7. RunArnoldi by [V,,, HS, vyi1, Bms1,m, By j1 = Arnoldi(aikl—ls,réc,m)
8
9

Setmv=mv+j
: Compute yi, the minimizer of || e; — H’,flykllg
10: Compute x* = x(’)C + Vi yk

11: Compute resi = aillfe; — k ykll
12: fori=1,2,...,k-1,k+1,...,sdo
13: if res; = 7 then

i 17k 1-a; 1
14 Set], = Hf, + (158 - L),

i

15: Solve y; and y; from [H}, z] il] =y!Be;
16: Set x' = xé +Viny!
17: Set res; = Z—;Y;Cresk
18: end if

19: end for

20: Setiter=iter+1
21: Set xé =x!

22: end while

Where z = fe; — H), y} . In line 15, by solving this small size system, we can obtain the vector y!,
and scalar v}, that ensures the collinearity of the shifted results.

Problems: There have been significant issues with the implementation of the shifted GMRES al-
gorithm. A key component of the algorithm is the use of the seed choosing strategy outlined in [1].
However, during testing, it was observed that after the second iteration, the value of k remained
constant and the res vector did not change, resulting in a stall situation where the program runs
without updating values until the maximum number of iterations is reached. The cause of this
problem is currently under investigation. Although a notebook containing the code for the algo-
rithm has been included in the GitHub repository for completeness, it is not functional at this time.
It is believed that the issue may be related to a misunderstanding of the algorithm as presented in
the pseudo-code, but this has not yet been determined. As a result, there will be no test results for
this algorithm in the following section.

4 Numerical experiments

This experiment aims to compare the performance of the shifted Power method to the tradi-
tional Power method in solving PageRank problems involving multiple damping factors, specif-
ically a; =0.85,a2 =0.86,...,a15 = 0.99, on the web-stanford and web-BerkStan datasets. The
web-stanford dataset consists of a directed graph with |V| = 281,903 nodes and |E| = 1,810,314
edges, while the web-BerkStan dataset is a directed graph with |V| = 1,013,320 nodes and |E| =
5,308,054 edges. These datasets can be found athttp://snap.stanford.edu/data/web-Stanford.
html and http://snap.stanford.edu/data/web-BerkStan.html respectively and are stored
in the . txt edge-list format. A summary of the characteristics of the datasets is provided in Table

!

Dataset Nodes Edges Density
web-Stanford | 281,903 | 2,312,497 | 2.9099 x 10~°
web-BerkStan | 685,230 | 7,600,595 | 1.6187 x 10~°

Table 1: Summary of the datasets used in the experiments.
In this study, the personalization vector v was setto v = [1,1,...,1] Tin. All experiments were con-

ducted using Python 3.10 on a 64-bit Arch Linux machine equipped with an AMD Ryzen™ 5 2600
Processor and 16 GB of RAM.

4.1 Technical details

{ GitHub repository of this project 1

{ https://github.com/lukefleed/ShfitedPowGMRES J

In the GitHub repository for this project, there is an algo. py file which contains the implemen-
tation of all the functions used in the experiments. The algo . py file includes the following func-
tions:

load_data This function loads datasets from the .txt edge-list format and returns a networkx
graph object. It takes a string as input, with the options being web-stanford and web-BerkStan.

pagerank Returns the PageRank of the nodes in the graph. It takes as input the following param-
eters:

* G: anetworkx graph object.
e alpha: Damping parameter for PageRank, default=0.85.

* personalization: The "personalization vector" consisting of a dictionary with a key some
subset of graph nodes and personalization value each of those. At least one personalization
value must be non-zero. If not specified, a nodes personalization value will 1/N where N is
the number of nodes in G.

http://snap.stanford.edu/data/web-Stanford.html
http://snap.stanford.edu/data/web-Stanford.html
http://snap.stanford.edu/data/web-BerkStan.html
https://github.com/lukefleed/ShfitedPowGMRES

* max_iter: The maximum number of iterations in power method eigenvalue solver. Default
is 200.

* nstart: Starting value of PageRank iteration for each node. Default is None.
* tol: Error tolerance used to check convergence in power method solver. Default is 107°.

» weight: Edge data key corresponding to the edge weight. If None, then uniform weights
are assumed. Default is None.

* dangling: The outedges to be assigned to any "dangling" nodes, i.e., nodes without any
outedges. The dict key is the node the outedge points to and the dict value is the weight of
that outedge. By default, dangling nodes are given outedges according to the personaliza-
tion vector (uniform if not specified).

This function is strongly based on the pagerank_scipy function of the networkx library.

shifted_pow_pagerank : This is the implementation of algorithm[I|with the modification of us-
ing the /1 norm instead of the /2 norm, which is not yet implemented for sparse matrices in SciPy.

There is also another function called pagerank_numpy which utilizes NumPy’s interface to the
LAPACK eigenvalue solvers for the calculation of the eigenvector. This method is the fastest and
most accurate for small graphs. However, the eigenvector calculation is not stable for large graphs,
so the pagerank_numpy function is not used in the experiments.

4.2 Convergence results for the Shifted Power method

In the PageRank formulation involving multiple damping factors, the iterative solution of each i-
th linear system is initialized with the initial guess x(()” = v and is terminated when the solution xg)
meets the following criteria:

||(1_ai)V_(I_aipx§:)“2 6
<10

1512

or the number of matrix-vector products exceeds 200.

In this experiment, the performance of the shifted Power method is compared to that of the tradi-
tional Power method in solving PageRank problems with multiple damping factors.

Dataset Method CPU Time (s) | mv
web-Stanford Power 71.7 70
web-Stanford | Shifted Power 665.4 56
web-BerkStan Power 202.1 49
web-BerkStan | Shifted Power 1342.9 73

Table 2: Summary of the experiments.

10

The results presented in Table [2| differ somewhat from those reported in the study by Shen et al.
(1], where the CPU time of the shifted Power method was found to be lower than that of the stan-
dard Power method. In contrast, our experiments showed that the CPU time of the shifted Power
method was significantly higher than that of the standard Power method. Additionally, it is theo-
retically expected that the number of matrix-vector products should be lower for the shifted Power
method, specifically equal to that of the standard PageRank algorithm with the highest damping
factor. However, our experiments found that the number of matrix-vector products was higher for
the shifted Power method on the web-BerkStan dataset and lower on the web-Stanford dataset.

There could be various reasons for the discrepancies in the results. One potential explanation is
the difference in programming language and implementation, as well as the possibility of a mis-
understanding of the pseudo-code provided in [I]. It is also possible that the standard PageRank
function, which is a slightly modified version of the network library function pagerank_scipy,
is better optimized compared to the implementation of the shifted Power method written for this
study. Additionally, the Web-BerkStan network is quite different from the web-stanford network,
with the adjacency matrix for the former containing many rows with a large number of zeros com-
pared to the latter (4744 vs 172). This could potentially have a negative impact on the performance
of the shifted Power method for networks with a significant number of dangling nodes.

11

References

[1] Zhao-Li Shen, Meng Su, Bruno Carpentieri, and Chun Wen. Shifted power-gmres method ac-

celerated by extrapolation for solving pagerank with multiple damping factors. Applied Math-
ematics and Computation, 420:126799, 2022.

[2] Paul G. Constantine and David E Gleich. Random alpha pagerank. Internet Mathematics, 6(2),
12009.

12

	Introduction
	Overview of the classical PageRank problem

	The shifted power method for PageRank computations
	The implementation of the shifted power method

	Shifted power-GMRES method
	Restarted GMRES method

	Numerical experiments
	Technical details
	Convergence results for the Shifted Power method

