{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import time\n", "import numpy as np\n", "import scipy as sp\n", "import pandas as pd\n", "import networkx as nx" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Arnoldi \n", "\n", "This is a copy of the algorithm defined and tested in the notebook `arnoldi.ipynb`. It's an implementation of the Algorithm 2 from the paper. It's needed during the computation of the shifted GMRES algorithm that we are trying to implement here." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "def Arnoldi(A,v0,m):\n", " v = v0\n", " beta = np.linalg.norm(v)\n", " v = v/beta\n", " H = sp.sparse.lil_matrix((m+1,m)) \n", " V = sp.sparse.lil_matrix((A.shape[0],m+1))\n", " V[:,0] = v # each column of V is a vector v\n", "\n", " for j in range(m):\n", " w = A @ v \n", " for i in range(j):\n", " H[i,j] = v.T @ w # tmp is a 1x1 matrix, so it's O(1) in memory\n", " w = w - H[i,j]*v \n", " \n", " H[j+1,j] = np.linalg.norm(w)\n", "\n", " if H[j+1,j] == 0:\n", " # print(\"Arnoldi breakdown\")\n", " m = j\n", " v = 0\n", " break\n", " else:\n", " if j < m-1:\n", " v = w/H[j+1,j]\n", " V[:,j+1] = v\n", "\n", " return V, H, beta, j " ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# Algorithm 4 testing\n", "\n", "This algorithm is based on the \"Algorithm 4\" of the paper, the pseudocode provided by the authors is the following \n", "\n", "![](https://i.imgur.com/H92fru7.png)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Auxiliary function" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "def compute_gamma(res, a, k): # function to compute gamma\n", " gamma = np.ones(len(a))\n", " for i in range(len(a)):\n", " if i != k:\n", " gamma[i] = (res[i]*a[k])/(res[k]*a[i])\n", "\n", " return gamma" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Auxiliary function to compute the $\\tilde P$ matrix described in the reference paper" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "def google_matrix_sparse(G, alpha=0.85, personalization=None, nodelist=None, weight=\"weight\", dangling=None) -> np.matrix:\n", "\n", " if nodelist is None:\n", " nodelist = list(G)\n", "\n", " A = nx.to_scipy_sparse_array(G, nodelist=nodelist, weight=weight, format=\"lil\", dtype=int)\n", "\n", " N = len(G)\n", " if N == 0:\n", " return np.asmatrix(A)\n", "\n", " # Personalization vector\n", " if personalization is None:\n", " p = np.repeat(1.0 / N, N)\n", " p = sp.sparse.lil_array(p)\n", " else:\n", " p = np.array([personalization.get(n, 0) for n in nodelist], dtype=float)\n", " if p.sum() == 0:\n", " raise ZeroDivisionError\n", " p /= p.sum()\n", "\n", " # Dangling nodes\n", " if dangling is None:\n", " dangling_weights = np.ones(N, dtype=int)\n", " dangling_weights = sp.sparse.lil_array(dangling_weights, dtype=int)\n", " else:\n", " # Convert the dangling dictionary into an array in nodelist order\n", " dangling_weights = np.array([dangling.get(n, 0) for n in nodelist], dtype=float)\n", " dangling_weights /= dangling_weights.sum()\n", "\n", " # replace rows with all zeros with dangling_weights\n", " A[[A.sum(axis=1)==0],:] = dangling_weights\n", "\n", " # Normalize rows\n", " row_sums = A.sum(axis=1) # row sums\n", " r_inv = np.power(row_sums.astype(float), -1).flatten() # inverse of row sums\n", " r_inv[np.isinf(r_inv)] = 0.0 # replace inf with 0\n", " R = sp.sparse.diags(r_inv) # create diagonal matrix\n", " A = R.dot(A) \n", "\n", " return A, p.T" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`Algorithm 4` described in the reference paper " ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "def Algo4(Pt, v, m, a: list, tau, maxit: int, x):\n", "\n", " mv, iter = 0, 1 # mv is the number of matrix-vector products, iter is the number of iterations\n", " \n", " # initialize x as a random sparse matrix. Each col is the pagerank vector for a different alpha\n", " x = sp.sparse.lil_matrix((Pt.shape[0], len(a)))\n", "\n", " # initialize the identity matrix of size Pt.shape\n", " I = sp.sparse.eye(Pt.shape[0], Pt.shape[1], format='lil')\n", "\n", " # compute the residual vector, it is a matrix of size (n, len(a)). Each col is the residual vector for a different alpha. \n", " r = sp.sparse.lil_matrix((Pt.shape[0], len(a)))\n", " res = np.zeros(len(a))\n", "\n", " # compute the residual vector and the norm of each col in the vector res\n", " for i in range(len(a)):\n", " r[:,[i]] = ((1 - a[i])/a[i])*v - ((1/a[i])*I - Pt).dot(x[:,[i]])\n", " res[i] = sp.sparse.linalg.norm(r[:,[i]], ord='fro') # frobenius norm since l2 norm is not defined for sparse matrices in scipy\n", "\n", " for _ in range(maxit):\n", " err = np.absolute(np.max(res)) # check if we have converged\n", " if err < tau:\n", " print(\"Computation ended successfully in \", iter, \" iterations and \", mv, \" matrix-vector products.\")\n", " return x, iter, mv\n", "\n", " print(\"\\niter = \", iter)\n", " print(\"res: \", res)\n", " print(\"err = \", err)\n", "\n", " # find k as the index of the largest residual\n", " k = int(np.argmax(res))\n", " print(\"k = \", k)\n", "\n", " # compute gamma as defined in the paper\n", " gamma = compute_gamma(res, a, k)\n", " \n", " # Run Arnoldi\n", " r_k = r[:,[k]].toarray() # r_k is the residual vector for alpha_k\n", " V, H, beta, j = Arnoldi((1/a[k])*I - Pt, r_k, m) # run Arnoldi\n", " H = H[:-1,:] # remove the last row of H\n", " V = V[:,:-1] # remove the last col of V\n", " mv = mv + j # update the number of matrix-vector products\n", "\n", " H_e1 = np.zeros(H.shape[0]) \n", " H_e1[0] = 1 # canonical vector e1 of size H.shape[0]\n", "\n", " # compute y as the minimizer of || beta*e1 - Hy ||_2 using the least squares method\n", " y = sp.sparse.lil_matrix((H.shape[1],len(a))) \n", "\n", " # we only need the k-th col of y in this iteration\n", " y[:,[k]] = sp.sparse.linalg.lsqr(H, beta*H_e1)[0]\n", "\n", " # # Update x\n", " x_new = x\n", " x_new[:,[k]] = x[:,[k]] + V @ y[:,[k]]\n", "\n", " V_e1 = np.zeros(V.shape[0])\n", " V_e1[0] = 1 \n", " V_e1 = sp.sparse.lil_matrix(V_e1) # canonical vector e1 of size V.shape[0]\n", "\n", " # Update res[k]\n", " res[k] = a[k]* (sp.sparse.linalg.norm(beta*V_e1.T - V @ y[:,[k]]))\n", "\n", " # multi shift\n", " for i in range(len(a)):\n", " if i != k and res[i] >= tau:\n", " if res[i] >= tau:\n", " \n", " H = H + ((1-a[i])/a[i] - (1-a[k])/a[k])*sp.sparse.eye(H.shape[0], H.shape[1], format='lil')\n", "\n", " # Compute z as described in the paper\n", " z1 = H_e1.T*beta\n", " z1 = z1.reshape(z1.shape[0],1)\n", " z2 = H @ y[:,[1]]\n", " z2 = z2.reshape(z2.shape[0],1)\n", " z = z1 - z2\n", "\n", " # Solve the linear system for A and b\n", " A = sp.sparse.hstack([H, z])\n", " b = (beta*H_e1)\n", "\n", " to_split = sp.sparse.linalg.lsqr(A, b.reshape(b.shape[0],1))[0]\n", " \n", " # the last element of to_split is the last element of gamma[i], the other elements are the elements of y[:[i]]\n", " y[:,[i]] = to_split[:-1]\n", " gamma[i] = to_split[-1]\n", "\n", " # update x\n", " x_new[:,i] = x[:,i] + V @ y[:,[i]]\n", "\n", " # update res[i]\n", " res[i] = (a[i]/a[k])*gamma[i]*res[k]\n", "\n", " else:\n", " if res[i] < tau:\n", " print(\"res[\", i, \"] is smaller than tau = \", tau, \" at iteration \", iter)\n", "\n", " iter += 1\n", " x = x_new\n", "\n", " raise Exception('Maximum number of iterations reached')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Random Numerical Test Case on a small-world random graph" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "G = nx.watts_strogatz_graph(1000, 4, 0.1)\n", "Pt, v = google_matrix_sparse(G)\n", "# a = [0.85, 0.86, 0.87, 0.88, 0.89, 0.90, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99]\n", "a = [0.85, 0.90, 0.95, 0.99]\n", "n = len(G.nodes)\n", "x = sp.sparse.random(n, len(a), density=0.1, format='lil')" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "iter = 1\n", "res: [0.00558049 0.00351364 0.00166436 0.00031942]\n", "err = 0.005580489988532435\n", "k = 0\n", "\n", "iter = 2\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 3\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 4\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 5\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 6\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 7\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 8\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 9\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 10\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 11\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 12\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 13\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 14\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 15\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 16\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 17\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 18\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 19\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 20\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 21\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 22\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 23\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 24\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 25\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 26\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 27\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 28\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 29\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 30\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 31\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 32\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 33\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 34\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 35\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 36\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 37\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 38\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 39\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 40\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 41\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 42\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 43\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 44\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 45\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 46\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 47\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 48\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 49\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 50\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 51\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 52\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 53\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 54\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 55\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 56\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 57\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 58\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 59\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 60\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 61\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 62\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 63\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 64\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 65\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 66\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 67\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 68\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 69\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 70\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 71\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 72\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 73\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 74\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 75\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 76\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 77\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 78\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 79\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 80\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 81\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 82\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 83\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 84\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 85\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 86\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 87\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 88\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 89\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 90\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 91\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 92\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 93\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 94\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 95\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 96\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 97\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 98\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 99\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n", "\n", "iter = 100\n", "res: [ 6.30826211e-03 1.27202498e-07 -1.07175457e-08 -1.83681405e-08]\n", "err = 0.006308262114154177\n", "k = 0\n" ] }, { "ename": "Exception", "evalue": "Maximum number of iterations reached", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mException\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[7], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m x, \u001b[38;5;28miter\u001b[39m, mv \u001b[38;5;241m=\u001b[39m \u001b[43mAlgo4\u001b[49m\u001b[43m(\u001b[49m\u001b[43mPt\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mv\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m100\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43ma\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m1e-6\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m100\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mx\u001b[49m\u001b[43m)\u001b[49m\n", "Cell \u001b[0;32mIn[5], line 101\u001b[0m, in \u001b[0;36mAlgo4\u001b[0;34m(Pt, v, m, a, tau, maxit, x)\u001b[0m\n\u001b[1;32m 98\u001b[0m \u001b[38;5;28miter\u001b[39m \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n\u001b[1;32m 99\u001b[0m x \u001b[38;5;241m=\u001b[39m x_new\n\u001b[0;32m--> 101\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mMaximum number of iterations reached\u001b[39m\u001b[38;5;124m'\u001b[39m)\n", "\u001b[0;31mException\u001b[0m: Maximum number of iterations reached" ] } ], "source": [ "x, iter, mv = Algo4(Pt, v, 100, a, 1e-6, 100, x)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3.10.8 64-bit", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.9" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "e7370f93d1d0cde622a1f8e1c04877d8463912d04d973331ad4851f04de6915a" } } }, "nbformat": 4, "nbformat_minor": 2 }