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Abstract

Starting from the seminal paper published by Brin and Page in 1998, the PageRank
model has been extended to many fields far beyond search engine rankings, such as
chemistry, biology, bioinformatics, social network analysis, to name a few. Due to
the large dimension of PageRank problems, in the past decade or so, considerable
research efforts have been devoted to their efficient solution especially for the difficult
cases where the damping factors are close to 1. However, there exists few research
work concerning about the solution of the case where several PageRank problems with
the same network structure and various damping factors need to be solved. In this
paper, we generalize the Power method to solving the PageRank problem with multiple
damping factors. We demonstrate that the solution has almost the equative cost of
solving the most difficult PageRank system of the sequence, and the residual vectors
of the PageRank systems after running this method are collinear. Based upon these
results, we develop a more efficient method that combines this Power method with
the shifted GMRES method. For further accelerating the solving phase, we present a
seed system choosing strategy combined with an extrapolation technique, and analyze
their effect. Numerical experiments demonstrate the potential of the proposed iterative
solver for accelerating realistic PageRank computations with multiple damping factors.
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1 Introduction

The PageRank model was proposed by Google in a series of papers to evaluate accurately the
most important web-pages from the World Wide Web matching a set of keywords entered
by a user. Nowadays, the model is routinely adopted for the analysis of many scientific
problems far beyond Internet applications, for example in computational chemistry, biology,
bioinformatics, social network analysis, bibliometrics, software debugging and many others.
For search engine rankings, the importance of web-pages is computed from the stationary
probability vector of the random process of a web surfer who keeps visiting a large set of web-
pages connected by hyperlinks. The link structure of the World Wide Web is represented
by a directed graph, the so-called web link graph, and its corresponding adjacency matrix
G ∈ Nn×n where n denotes the number of pages and Gij is nonzero (being 1) only if the jth
page has a hyperlink pointing to the ith page. The transition probability matrix P ∈ Rn×n

of the random process has entries

P (i, j) =


1∑n

k=1Gkj

if Gi,j = 0

0 otherwise
(1)

To ensure that the random process has a unique stationary distribution and it will not
stagnate, the transition matrix P is usually modified to be an irreducible stochastic matrix
A (called the Google matrix) as follows

A = αP̃ + (1− α)veT (2)

In 2 we define P̃ = P + vdT where d ∈ Nn×1 is a binary vector tracing the indices of the
damping web pages with no hyperlinks, i.e., d(i) = 1 if the ith page ha no hyperlink, v ∈ Rn×n

is a probability vector, e = [1, 1, ..., 1]T and 0 < α < 1, the so-called damping factor that
represents the probability in the model that the surfer transfer by clicking a hyperlink rather
than other ways. Mathematically, the PageRank model can be formulated as the problem
of finding the positive unit eigenvector x (the so-called PageRank vector) such that

Ax = x, ∥x∥ = 1, x > 0 (3)

or, equivalently, as the solution of the linear system

(I − αP̃ )x = (1− α)v (4)

In the past decade or so, considerable research attention has been devoted to the efficient
solution of problems 3 4, especially when n is very large. For moderate values of the damping
factor, e.g. for α = 0.85 as initially suggested by Google for search engine rankings, solution
strategies based on the simple Power method have proved to be very effective. However,
when α approaches 1, as is required in some applications, the convergence rates of classical
stationary iterative methods including the Power method tend to deteriorate sharply, and
more robust algorithms need to be used.

One area that is largely unexplored in PageRank computations is the efficient solution
of problems with the same network structure but multiple damping factors. For example,
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in the Random Alpha PageRank model used in the design of anti-spam mechanism [1], the
rankings corresponding to many different damping factors close to 1 need to be computed
simultaneously. This problem can be expressed mathematically as solving a sequence of
linear systems

(I − αiP̃ )xi = (1− αi)v αi ∈ (0, 1) ∀i ∈ {1, 2, ..., s}S (5)

Conventional PageRank algorithms applied to 5 would solve the s linear systems indepen-
dently. Although these solutions can be performed in parallel, the process would still demand
large computational resources for high dimension problems. This consideration motivates
the search of novel methods with reduced algorithmic and memory complexity, to afford the
solution of larger problems on moderate computing resources. We can write the PageRank
problem with multiple damping factors given at once (5) as a sequence of shifted linear
systems of the form:

(
1

αi

I − P̃ )x(i) =
1− αi

αi

v ∀i ∈ {1, 2, ..., s} 0 < αi < 1 (6)

Shifted Krylov methods may still suffer from slow convergence when the damping factor
approaches 1, requiring larger search spaces to converge with satisfactory speed, which in turn
may lead to unaffordable storage requirements for large-scale engineering applications. As an
attempt of a possible remedy in this situation, we present a framework that combines. shifted
stationary iterative methods and shifted Krylov subspace methods. In detail, we derive
the implementation of the Power method that solves the PageRank problem with multiple
damping factors at almost the same computational cost of the standard Power method for
solving one single system. Furthermore, we demonstrate that this shifted Power method
generates collinear residual vectors. Based on this result, we use the shifted Power iterations
to provide smooth initial solutions for running shifted Krylov subspace methods such as
GMRES. Besides, we discuss how to apply seed system choosing strategy and extrapolation
techniques to further speed up the iterative process.

1.1 Overview of the classical PageRank problem

The Power method is considered one of the algorithms of choice for solving either the eigen-
value 3 or the linear system 4 formulation of the PageRank problem, as it was originally
used by Google. Power iterations write as

x(k+1) = Axk = αP̃x(k) + (1− α)v (7)

The convergence behavior is determined mainly by the ratio between the two largest eigen-
values of A. When α gets closer to 1, though, the convergence can slow down significantly.

As stated in [2] The number of iterations required to reduce the initial residual down to a
tolerance τ , measured as τ = ∥Axk − xk∥ = ∥xk+1 − xk∥ can be estimated as log1 0τ

log1 0α
. For

example, when τ = 10−8 the Power method requires about 175 steps to converge for α = 0.9
but the iteration count rapidly grows to 1833 for α = 0.99. Therefore, for values of the
damping parameter very close to 1 more robust alternatives to the simple Power algorithm
should be used.
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2 The shifted power method for PageRank computa-

tions

In this section we consider extensions of stationary iterative methods for the solution of
PageRank problems with multiple damping factors. We look in particular at the Power
method, the Gauss-Seidel method, and the GIO iteration scheme. We are concerned with
how these methods can be executed with the highest efficiency for solving such problems,
especially with the question: for each method, whether there exist an implementation such
that the computational cost of solving the PageRank problem with multiple damping factor
is comparable to that of solving the ordinary PageRank problem with single damping factor.

2.1 The implementation of the shifted power method

Inspired by the reason why shifted Krylov subspaces can save computational cost, we inves-
tigate whether there are duplications in the calculations of multiple linear systems in this
problem class by the stationary iterative methods, so that the duplications in the computa-
tion can be deleted, or in other words, the associate operations can be computed only once
and used for all systems. We first analyze the Power method applied to the sequence of
linear systems in 4. It computes at the kth iteration approximate solutions xk(i)(1 ≤ i ≤ s)
of the form

αk
i P̃

kx
(i)
k + (1− αk

i )
k−1∑
j=0

αj
i P̃

jv (8)

If the s systems in 4 are solved synchronously, that is all x
(i)
k are computed only after

all previous approximations x(j)k−1 are available, then the computation can be rearranged
efficiently as follows:

• at the first iterations

– compute and store µ1 = P̃ x0 and µ2 = v;

– compute and store x
(
1i) = αiµ1 + (1− αi)µ2;

• at any other subsequent iteration k > 1

– compute and store x
(
ki) := (1− αi)

∑k−2
j=0 α

j
i P̃

jv = x
(i)
k−1 − αk−1

i µ1;

– compute and store µ1 = P̃ µ1 and µ2 = P̃ µ2;

– compute and store x
(i)
k = αiµ1 + x

(i)
k + (1− αi)α

k−1
i µ2.

This implementation requires at most 2 matrix-vector products at each step, which is a
significant gain compared to the s matrix-vector products required by the standard Power
method to compute x

(i)
k+1 , especially when s ≫ 2. This is close to the computational cost, i.e.

1 matrix-vector product per iteration, of using the Power method for computing PageRank
with single damping factor.
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An efficient implementation can compute and store µ = P̃ v − v at the first iteration and
store µ = P̃ k−1(P̃ v− v) = P̃ · (P̃ k−2(P̃ v− v)) at each kth iteration (k > 1), and finally from

each approximate solution as x
(i)
k = αk

i µ+ x
(i)
k−1. The residual vector r

(i)
k associated with the

approximate solution x
(i)
k has the following expression

r
(i)
k = Ax

(i)
k − x

(i)
k = x

(i)
k+1 − x

(i)
k = αk+1

i P̃ k(P̃ v − v) (9)

Since in general each of the s linear systems may require a different number of Power itera-
tions to converge, the s residual norms have to be monitored separately to test the conver-
gence. We summarize the efficient implementation of the Power method that we presented
in this section for solving problem 4 in Algorithm 1, and we call it the shifted Power method
hereafter.

Algorithm 1 Shifted-Power method for PageRank with multiple damping factors

Require: P̃ , v, τ, maxmv, αi (1 ≤ i ≤ s)
Ensure: mv, x(i), r(i) (1 ≤ i ≤ s)
Compute µ = P̃ v − v
Set mv = 1
for doi = 1 : s

Compute r(i) = αiµ
Compute Res(i) = ∥r(i)∥
if Res(i) ≥ τ then

Compute x(i) = r(i) + v
end if

end for
while max(Res ≥ τ) and mv ≤ maxmv do

compute µ = P̃ µ
mv = mv + 1
for i = 1 : s do

if Res(i) ≥ τ then
Compute r(i) = αk+1

i µ
Compute Res(i) = ∥r(i)∥
if Res(i) ≥ τ then

Compute x(i) = r(i) + x(i)

end if
end if

end for
end while

Where mv is an integer that counts the number of matrix-vector products performed by
the algorithm. The algorithm stops when either all the residual norms are smaller than the
tolerance τ or the maximum number of matrix-vector products is reached.
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