You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

214 lines
5.5 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import networkx as nx\n",
"import time\n",
"import math\n",
"import pandas as pd\n",
"import scipy as sp\n",
"import plotly.express as px\n",
"import plotly.graph_objs as go\n",
"from scipy.sparse import *\n",
"from scipy import linalg\n",
"from scipy.sparse.linalg import norm\n",
"from scipy.optimize import least_squares"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Algorithm 2 testing"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"# def Arnoldi(A, v, m): \n",
"# beta = norm(v)\n",
"# v = v/beta # dimension of v is n x 1\n",
"# H = sp.sparse.lil_matrix((m,m)) # dimension of H is m x m \n",
"# V = sp.sparse.lil_matrix((A.shape[0],m))\n",
"# V[:,0] = v # each column of V is a vector v\n",
"\n",
"# for j in range(m):\n",
"# print(\"j = \", j)\n",
"# w = A @ v \n",
"# for i in range(j):\n",
"# tmp = v.T @ w \n",
"# H[i,j] = tmp[0,0]\n",
"# w = w - H[i,j]*v \n",
" \n",
"# H[j,j-1] = norm(w) \n",
"\n",
"# if H[j,j-1] == 0: \n",
"# print(\"Arnoldi breakdown\")\n",
"# m = j\n",
"# v = 0\n",
"# break\n",
"# else:\n",
"# if j < m-1:\n",
"# v = w/H[j,j-1]\n",
"# # for i in range(A.shape[0]):\n",
"# # V[i,j+1] = v[i,0]\n",
"# V[:,j+1] = v\n",
"\n",
"# print(j, \" iterations completed\")\n",
"# print(\"V = \", V.shape)\n",
"# print(\"H = \", H.shape)\n",
"# print(\"v = \", v.shape)\n",
"# print(\"beta = \", beta)\n",
"\n",
"# return V, H, v, beta, j"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Defined as Algorithm 2 in the paper. It's needed since it's called by Algorithm 4"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"def Arnoldi(A,v0,m):\n",
" v = v0\n",
" beta = norm(v)\n",
" v = v/beta\n",
" H = sp.sparse.lil_matrix((m+1,m)) \n",
" V = sp.sparse.lil_matrix((A.shape[0],m+1))\n",
" V[:,0] = v # each column of V is a vector v\n",
"\n",
" for j in range(m):\n",
" # print(\"j = \", j)\n",
" w = A @ v \n",
" for i in range(j):\n",
" tmp = v.T @ w # tmp is a 1x1 matrix, so it's O(1) in memory\n",
" H[i,j] = tmp[0,0] \n",
" w = w - H[i,j]*v \n",
" \n",
" H[j+1,j] = norm(w)\n",
"\n",
" if H[j+1,j] == 0:\n",
" print(\"Arnoldi breakdown\")\n",
" m = j\n",
" v = 0\n",
" break\n",
" else:\n",
" if j < m-1:\n",
" v = w/H[j+1,j]\n",
" V[:,j+1] = v\n",
"\n",
" print(j, \" iterations completed\")\n",
" print(\"V = \", V.shape)\n",
" print(\"H = \", H.shape)\n",
" print(\"v = \", v.shape)\n",
" print(\"beta = \", beta)\n",
"\n",
" return V, H, v, beta, j \n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Creating a small test case"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"m = 100\n",
"n = 110\n",
"A = sp.sparse.rand(n,n, density=0.1, format='lil')\n",
"# generate a probability vector, with all the entries as 1/n\n",
"v = sp.sparse.lil_matrix((n,1))\n",
"for i in range(n):\n",
" v[i] = 1/n"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"99 iterations completed\n",
"V = (110, 101)\n",
"H = (101, 100)\n",
"v = (110, 1)\n",
"beta = 0.09534625892455922\n"
]
},
{
"data": {
"text/plain": [
"(<110x101 sparse matrix of type '<class 'numpy.float64'>'\n",
" \twith 11000 stored elements in List of Lists format>,\n",
" <101x100 sparse matrix of type '<class 'numpy.float64'>'\n",
" \twith 4879 stored elements in List of Lists format>,\n",
" <110x1 sparse matrix of type '<class 'numpy.float64'>'\n",
" \twith 110 stored elements in Compressed Sparse Row format>,\n",
" 0.09534625892455922,\n",
" 99)"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Arnoldi(A,v,m)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.10.6 64-bit",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "916dbcbb3f70747c44a77c7bcd40155683ae19c65e1c03b4aa3499c5328201f1"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}