|
|
|
@ -1,9 +1,12 @@
|
|
|
|
|
#!/usr/bin/env python3
|
|
|
|
|
import requests
|
|
|
|
|
import pandas as pd
|
|
|
|
|
import numpy as np
|
|
|
|
|
import os
|
|
|
|
|
import csv
|
|
|
|
|
|
|
|
|
|
MIN_MOVIES = 42 # Only keep relations for actors that have made more than this many movies
|
|
|
|
|
|
|
|
|
|
def download_url(url):
|
|
|
|
|
print("Downloading:", url)
|
|
|
|
|
file_name_start_pos = url.rfind("/") + 1
|
|
|
|
@ -35,8 +38,6 @@ df_attori = pd.read_csv(
|
|
|
|
|
dtype={'primaryName': 'U', 'primaryProfession': 'U'},
|
|
|
|
|
converters={'nconst': lambda x: int(x.lstrip("nm0"))})
|
|
|
|
|
df_attori.query('primaryProfession.str.contains("actor") or primaryProfession.str.contains("actress")', inplace=True)
|
|
|
|
|
df_attori.to_csv('data/Attori.txt', sep='\t', quoting=csv.QUOTE_NONE, escapechar='\\', columns=['nconst', 'primaryName'], header=False, index=False)
|
|
|
|
|
del df_attori # Free memory
|
|
|
|
|
|
|
|
|
|
print("Filtering films...")
|
|
|
|
|
df_film = pd.read_csv(
|
|
|
|
@ -46,9 +47,7 @@ df_film = pd.read_csv(
|
|
|
|
|
converters={'tconst': lambda x: int(x.lstrip("t0")), 'isAdult': lambda x: x != "0"})
|
|
|
|
|
df_film.query('not isAdult and titleType in ["movie", "tvSeries", "tvMovie", "tvMiniSeries"]',
|
|
|
|
|
inplace=True)
|
|
|
|
|
df_film.to_csv('data/FilmFiltrati.txt', sep='\t', quoting=csv.QUOTE_NONE, escapechar='\\', columns=['tconst', 'primaryTitle'], header=False, index=False)
|
|
|
|
|
filtered_tconsts = df_film["tconst"].to_list()
|
|
|
|
|
del df_film # Free memory
|
|
|
|
|
|
|
|
|
|
print("Filtering relations...")
|
|
|
|
|
df_relazioni = pd.read_csv(
|
|
|
|
@ -57,4 +56,22 @@ df_relazioni = pd.read_csv(
|
|
|
|
|
dtype={'category': 'U'},
|
|
|
|
|
converters={'nconst': lambda x: int(x.lstrip("nm0")), 'tconst': lambda x: int(x.lstrip("t0"))})
|
|
|
|
|
df_relazioni.query('(category == "actor" or category == "actress") and tconst in @filtered_tconsts', inplace=True)
|
|
|
|
|
# Returns an array of unique actor ids (nconsts) and an array of how many times they appear (counts) => the number of movies they appear in
|
|
|
|
|
nconsts, counts = np.unique(df_relazioni["nconst"].to_numpy(), return_counts=True)
|
|
|
|
|
filtered_nconsts = nconsts[counts>=MIN_MOVIES]
|
|
|
|
|
df_relazioni.query("nconst in @filtered_nconsts", inplace=True)
|
|
|
|
|
|
|
|
|
|
# Now select only films and actors that have at lest a relation
|
|
|
|
|
print("Re-filtering actors...")
|
|
|
|
|
nconsts_with_relations = df_relazioni["nconst"].unique()
|
|
|
|
|
df_attori.query("nconst in @nconsts_with_relations", inplace=True)
|
|
|
|
|
print("Re-filtering films...")
|
|
|
|
|
tconsts_with_relations = df_relazioni["tconst"].unique()
|
|
|
|
|
df_film.query("tconst in @tconsts_with_relations", inplace=True)
|
|
|
|
|
|
|
|
|
|
# Write the filtered files
|
|
|
|
|
df_attori.to_csv('data/Attori.txt', sep='\t', quoting=csv.QUOTE_NONE, escapechar='\\', columns=['nconst', 'primaryName'], header=False, index=False)
|
|
|
|
|
df_film.to_csv('data/FilmFiltrati.txt', sep='\t', quoting=csv.QUOTE_NONE, escapechar='\\', columns=['tconst', 'primaryTitle'], header=False, index=False)
|
|
|
|
|
df_relazioni.to_csv('data/Relazioni.txt', sep='\t', quoting=csv.QUOTE_NONE, escapechar='\\', columns=['tconst', 'nconst'], header=False, index=False)
|
|
|
|
|
|
|
|
|
|
# Takes about 1 min 30 s
|
|
|
|
|