Computing top-k Closeness Centrality Faster in
Unweighted Graphs

Luca Lombardo

Abstract
TO DO!

Contents

1__Introductionl
L1 The Problem|

12 The algorithm)|
2.1 The lower bound techniquel

1 Introduction

A graph G = (V, E) is a pair of a sets. Where V' = {v1,...,v,} is the set nodes,
and E CV xV, E ={(v;,v;),...} is the set of edges (with |E| =m < n?).

In this paper we discuss the problem of identifying the most central nodes in
a network using the measure of closeness centrality. Given a connected graph,
the closeness centrality of a node v € V is defined as the reciprocal of the sum
of the length of the shortest paths between the node and all other nodes in the
graph. Normalizing we obtain the following formula:

n—1
c(v) = W (1)
weV

where n is the cardinality of V' and d(v,w) is the distance between v,w € V.
This is a very powerful tool for the analysis of a network: it ranks each node
telling us the most efficient ones in spreading information through all the other
nodes in the graph. As mentioned before, the denominator of this definition
give us the length of the shortest path between two nodes. This means that for
a node to be central, the average number of links needed to reach another node
has to be low. The goal of this paper is to computer the k vertices with the
higher closeness centrality.

As case study we are using the collaboration graph of the actors in the Internet
Movie Database (IMDB). On this data we define an undirected graph G = (V, E)
where

e the vertex V are the actor and the actress

e the non oriented edges in E links the actors and the actresses if they played
together in a movie.

1.1 The Problem

We are dealing with a web-scale network: any brute force algorithm would re-
quire years to end. The main difficulty is caused by the computation of distance
d(v,w). This is a well know problem: All Pairs Shortest Paths or APSP prob-
lem.

We can solve the APSP problem either using the fast matrix multiplication or,
as I did, implementing a breath-first-search (BFS) method. There are several
reason to prefer this second approach over the first one in this type of problems.

A graph is a data structure and we can describe it in different ways. Choosing
one over another can have an enormous impact on performance. In this case,
we need to remember the type of graph that we are dealing with: a very big and

sparse one. The fast matrix multiplication requires to consider our graph as an
n X n matrix where the position (i, j) is zero if the nodes 7, j are not linked, 1
(or a generic number if weighted) otherwise. This method requires O(n?) space
in memory, that is an enormous quantity on a web-scale graph. Furthermore
the time complexity is O(n?3™logn)} [Zwick 2002; Williams 2012]

Using the BFS method the space complexity is O(n+m), which is a very lower
value compared to the previous method. In terms of time, the complexity is
O(nm). Unfortunately, this is not enough to compute all the distances in a
reasonable time. It is also been proven that this method can not be improved.
In this paper I will propose an exact algorithm to compute the top-k nodes
with the higher closeness centrality. I will also discuss an interesting and original
relation between the physics of the visualized graph and the nodes with different
centrality values.

2 The algorithm

In a connected graph, given a node v € V| we can define the its farness as

1 1

T =75 = 701 X dww) (2)

where ¢(v) is the closeness centrality defined in . Since we are working
with a disconnected graph, a natural generalization of this formula is

1
Jc(v)zizr(v)i_1 Zd(v,w) (3)

weV

where r(v) = |R(v)| is the cardinality of the set of reachable nodes from v.
To avoid any problem during the computation, this formula still needs to be
modified. Let’s assume the nodes v that we are considering has just a link at
distance 1 with another node w with out-degree 0. If we consider the formula
we will get a false result: v would appear to be very central, even if it’s obvi-
ously very peripheral. To avoid this problem, we can generalize the formula
normalizing as suggested in [Lin 1976; Wasserman and Faust 1994; Boldi
and Vigna 2013; 2014; Olsen et al. 2014]

fo) = "L S aww) (1)

_ 2
(7‘(1}) 1) weR(v)

With the convention that is a case of % we set the closeness of v to 0

2.1 The lower bound technique

During the computation of the farness, for each node, we have to compute the
distance from that node and all the other one reachable from it. Since we are
dealing with millions of nodes, it’s not possibile in a reasonable time. In order
to compute only the top-k most central node we need to find a way to avoid
computing BFS for nodes that won’t be in the top-k.

The idea is to keep track of a lower bound on the farness for each node that
we will compute. This will allow us to kill the BFS operation before reaches
the end if the lower bound tell us that the node will not be in the top-k. More
precisely:

e The algorithm will compute the farness of the first £ nodes, saving them
in a vector top-actors. From now on, this vector will be full

e Then, for all the next vertices, it defines a lower bound

n—1

m(odil + ng - d) (5)

where o4 is the partial sum in at the level of exploration d. The lower
bound is updated every time that we change level of exploration during
the BFS. In this way, if at a change of level the lower bound of the vertex
that we are considering is bigger than the k — th element of top-actors,
we can kill the BFS. The reason behind that is very simple: the vector
top-actors is populated with the top-k nodes in order and the farness is
inversely proportional to the closeness centrality. So if at that level the
lower bound is already bigger than the last element of the vector, there is
no need to compute the other level of the BFS since it will not be added
in top-actors anyway.

The it’s a worst case scenario, and makes it perfect for a lower bound.
If we are at the level d of exploration, we have already computed the sum
in up to the level d — 1. Then we need consider in our computation of
the sum the current level of exploration: the worst case gives us that it’s
linked to all the nodes at distance d. We also put r(v) = n, in the case
that our graph is strongly connected and all vertices are reachable form v

SCRIVERE PSEUDOCODICE

3 The IMDB Case Study

The algorithm shown before can be applied to any dataset on which is possibile
to build a graph on. In this case we are considering tha data taken from the
Internet Movie Database (IMDB).

3.1 Data Structure

All the data used can be downloaded here: https://datasets.imdbws.com/

In particolar we're interest in 3 files
e title.basics.tsv
e title.principals.tsv
e name.basics.tsv

Let’s have a closer look to this 3 files:

title.basics.tsv.gz

Contains the following information for titles:
e tconst (string) - alphanumeric unique identifier of the title

e titleType (string) — the type/format of the title (e.g. movie, short,
tvseries, tvepisode, video, etc)

e primaryTitle (string) — the more popular title / the title used by the
filmmakers on promotional materials at the point of release

e originalTitle (string) - original title, in the original language
e isAdult (boolean) - 0: non-adult title; 1: adult title

e startYear (YYYY) — represents the release year of a title. In the case of
TV Series, it is the series start year

e endYear (YYYY) — TV Series end year.
e runtimeMinutes — primary runtime of the title, in minutes

e genres (string array) — includes up to three genres associated with the
title

https://datasets.imdbws.com/

title.principals.tsv.gz
Contains the principal cast/crew for titles:
e tconst (string) - alphanumeric unique identifier of the title

e ordering (integer) — a number to uniquely identify rows for a given titleId

nconst (string) - alphanumeric unique identifier of the name/person

e category (string) - the category of job that person was in

job (string) - the specific job title if applicable

e characters (string) - the name of the character played if applicable

name.basics.tsv.gz

Contains the following information for names:
e nconst (string) - alphanumeric unique identifier of the name/person
e primaryName (string)— name by which the person is most often credited

e birthYear —in YYYY format

deathYear — in YYYY format if applicable
e primaryProfession (array of strings)— the top-3 professions of the person

e knownForTitles (array of tconsts) — titles the person is known for

3.2 Filtering

This is a crucial section for the algorithm in this particolar case study. This
raw data contains a huge amount of un-useful information that will just have
a negative impact on the performance during the computation. We are going
to see in detail all the modification made for each file. All this operation have
been implemented using python and the pandas library.

3.2.1 name.basics.tsv

For this file we only need the following columns
e nconst
e primaryTitle
e primaryProfession

Since all the actors starts with the string nm0 we can remove it to clean the
output. Furthermore a lot of actors/actresses do more than one job (director
etc..). To avoid excluding important actors we consider all the ones that have
the string actor/actress in their profession. In this way, both someone who
is classified as actor or as actor, director is taken into consideration.

Then we can generate the final filtered file Attori.txt that has only two
columns: nconst and primaryName

3.2.2 title.basics.tsv

For this file we only need the following columns
e tconst
e primaryTitle

isAdult

titleType

Since all the movies starts with the string tO we can remove it to clean the out-
put. In this case, we also want to remove all the movies for adults. This part
can be optional if we are interest only in the closeness and harmonic centrality.
Even if the actors and actresses of the adult industry use to make a lot of movies
together, this won’t alter the centrality result. As we know, an higher closeness
centrality can be seen as the ability of a node to spread efficiently information in
the network. Including the adult industry would lead to the creation of a very
dense and isolated neighborhood. But none of those nodes will have an higher
closeness centrality because they only spread information in their community.
This phenomenon will be discussed more deeply in the analysis of the graph

visualized.

We can also notice that there is a lot of junk in IMDb. To avoid dealing with
un-useful data, we are considering all the non-adult movies in this whitelist

® movie
e tvSeries
e tvMovie

e tvMiniSeries

The reason to only consider this categories is purely to optimize the performance
during the computation. On IMDDb each episode is listed as a single element:
to remove them without loosing the most important relations, we only consider
the category tvSeries. This category list a TV-Series as a single element, not
divided in multiple episodes. In this way we will loose some of the relations
with minor actors that may appear in just a few episodes. But we will have
preserved the relations between the protagonists of the show.

Then we can generate the final filtered file FilmFiltrati.txt that has only
two columns: tconst and primaryTitle

3.2.3 title.principals.tsv

For this file we only need the following columns

e tconst
e nconst

e category

As before, we clean the output removing unnecessary strings. Then we create an
array of unique actor ids (nconst) and an array of how may times they appear
(counts). This will give us the number of movies they appear in. And here it
comes the core of this filtering.

Let’s define a constant MINMOVIES. This integer is the minimum number of
movies that an actor needs to have made in his carrier to be considered in this
graph. The reason to do that it’s purely computational. If an actor/actress
has less then a reasonable number of movies made in his carrier, there is an
high probability that he/she has an important role in our graph during the
computation of the centralities.

10

	Introduction
	The Problem

	The algorithm
	The lower bound technique

	The IMDB Case Study
	Data Structure
	Filtering
	name.basics.tsv
	title.basics.tsv
	title.principals.tsv

