#!/usr/bin/env python3 import requests import pandas as pd import numpy as np import os import csv MIN_MOVIES = 42 # Only keep relations for actors that have made more than this many movies #-----------------DOWNLOAD .GZ FILES FROM IMDB DATABASE-----------------# def download_url(url): print("Downloading:", url) file_name_start_pos = url.rfind("/") + 1 file_name = url[file_name_start_pos:] if os.path.isfile(file_name): print("Already downloaded: skipping") return r = requests.get(url, stream=True) r.raise_for_status() with open(file_name, 'wb') as f: for chunk in r.iter_content(chunk_size=4096): f.write(chunk) return url urls = ["https://datasets.imdbws.com/name.basics.tsv.gz", "https://datasets.imdbws.com/title.principals.tsv.gz", "https://datasets.imdbws.com/title.basics.tsv.gz"] for url in urls: download_url(url) os.makedirs("data", exist_ok=True) # Generate (recursively) folders, ignores the comand if they already exists print("Filtering actors...") df_attori = pd.read_csv( 'name.basics.tsv.gz', sep='\t', compression='gzip', usecols=['nconst', 'primaryName', 'primaryProfession'], # Considering only this columns dtype={'primaryName': 'U', 'primaryProfession': 'U'}, # Both are unsigned integers converters={'nconst': lambda x: int(x.lstrip("nm0"))}) # All actors starts with nm0, we are just cleaning the output df_attori.query('primaryProfession.str.contains("actor") or primaryProfession.str.contains("actress")', inplace=True) # A lot of actors/actresses do more than one job (director etc..), with this comand I take all the names that have the string "actor" or "actress" in their profession. In this way both someone who is classified as "actor" or as "actor, director" are taken into consideration print("Filtering films...") df_film = pd.read_csv( 'title.basics.tsv.gz', sep='\t', compression='gzip', usecols=['tconst', 'primaryTitle', 'isAdult', 'titleType'], # Considering only this columns dtype={'primaryTitle': 'U', 'titleType': 'U'}, # Both are unsigned integers converters={'tconst': lambda x: int(x.lstrip("t0")), 'isAdult': lambda x: x != "0"}) # # All movies starts with t0, we are just cleaning the output. Then remove all adult movies df_film.query('not isAdult and titleType in ["movie", "tvSeries", "tvMovie", "tvMiniSeries"]', inplace=True) # There are a lot of junk categories considered in IMDb, we are considering all the non Adult movies in this whitelist filtered_tconsts = df_film["tconst"].to_list() print("Filtering relations...") df_relazioni = pd.read_csv( 'title.principals.tsv.gz', sep='\t', compression='gzip', usecols=['tconst', 'nconst','category'], # Considering only this columns dtype={'category': 'U'}, # Unsigned integer converters={'nconst': lambda x: int(x.lstrip("nm0")), 'tconst': lambda x: int(x.lstrip("t0"))}) # Cleaning df_relazioni.query('(category == "actor" or category == "actress") and tconst in @filtered_tconsts', inplace=True) # Returns an array of unique actor ids (nconsts) and an array of how many times they appear (counts) => the number of movies they appear in nconsts, counts = np.unique(df_relazioni["nconst"].to_numpy(), return_counts=True) filtered_nconsts = nconsts[counts>=MIN_MOVIES] df_relazioni.query("nconst in @filtered_nconsts", inplace=True) # Now select only films and actors that have at lest a relation print("Re-filtering actors...") nconsts_with_relations = df_relazioni["nconst"].unique() df_attori.query("nconst in @nconsts_with_relations", inplace=True) print("Re-filtering films...") tconsts_with_relations = df_relazioni["tconst"].unique() df_film.query("tconst in @tconsts_with_relations", inplace=True) # Write the filtered files df_attori.to_csv('data/Attori.txt', sep='\t', quoting=csv.QUOTE_NONE, escapechar='\\', columns=['nconst', 'primaryName'], header=False, index=False) df_film.to_csv('data/FilmFiltrati.txt', sep='\t', quoting=csv.QUOTE_NONE, escapechar='\\', columns=['tconst', 'primaryTitle'], header=False, index=False) df_relazioni.to_csv('data/Relazioni.txt', sep='\t', quoting=csv.QUOTE_NONE, escapechar='\\', columns=['tconst', 'nconst'], header=False, index=False) # Takes about 1 min 30 s with MIN_MOVIES = 42