
An exact and fast algorithm for computing top-k

closeness centrality

Luca Lombardo

Univeristy of Pisa - Department of Mathematics

Abstract

Understanding and investigating social structures is essential in the
modern world. Through the use of networks and graph theory we can
find the most central elements in a community. In particolar, given a
connected graph G = (V,E), the closeness centrality of a vertex v is
defined as n−1∑

w∈V d(v,w)
. This measure can be seen as the efficiency of a

node to pass information through all the other nodes in the graph. In this
paper we will discuss and algorithm and its result for finding the top-k
most central elements in web-scale graphs. As a case study, we are going
to use the IMDB collaboration network, building two completely different
graphs and analyzing their proprieties.

1

Contents

1 Introduction 3
1.1 The Problem . 3

2 The algorithm 5
2.1 The lower bound technique . 5

3 The IMDB Case Study 7
3.1 Data Structure . 7
3.2 Filtering . 9

3.2.1 name.basics.tsv . 9
3.2.2 title.basics.tsv . 9
3.2.3 title.principals.tsv . 10
3.2.4 title.ratings.tsv . 11

4 An overview of the code 12
4.1 Data structures . 12

5 Analysis of the results 15
5.1 Actors graph . 15

5.1.1 Time of execution . 15
5.1.2 Discrepancy of the results 15

5.2 Movies Graphs . 18

6 Visualization of the graphs 20
6.1 Actors Graph . 20

2

1 Introduction

A graph G = (V,E) is a pair of a sets. Where V = {v1, ..., vn} is the set nodes,
and E ⊆ V × V, E = {(vi, vj), ...} is the set of edges (with |E| = m ≤ n2).

In this paper we discuss the problem of identifying the most central nodes in
a network using the measure of closeness centrality. Given a connected graph,
the closeness centrality of a node v ∈ V is defined as the reciprocal of the sum
of the length of the shortest paths between the node and all other nodes in the
graph. Normalizing we obtain the following formula:

c(v) =
n− 1∑

w∈V
d(v, w)

(1)

where n is the cardinality of V and d(v, w) is the distance between v, w ∈ V .
This is a very powerful tool for the analysis of a network: it ranks each node
telling us the most efficient ones in spreading information through all the other
nodes in the graph. As mentioned before, the denominator of this definition
give us the length of the shortest path between two nodes. This means that for
a node to be central, the average number of links needed to reach another node
has to be low. The goal of this paper is to computer the k vertices with the
higher closeness centrality.

As case study we are using the collaboration network in the Internet Movie
Database (IMDB). We are going to consider two different graphs. For the first
one we define an undirected graph G = (V,E) where

• the vertex V are the actor and the actress

• the non oriented edges in E links the actors and the actresses if they played
together in a movie.

For the second one we do the opposite thing: we define an undirected graph
G = (V,E) where

• the vertices V are the movies

• the non oriented edges in E links two movies if they have an actor or
actress in common

1.1 The Problem

Since we are dealing with a web-scale network any brute force algorithm would
require years to end. The main difficulty here is caused by the computation of
distance d(v, w) in (1). This is a well know problem known as All Pairs Shortest
Paths or APSP problem.

We can solve the APSP problem either using the fast matrix multiplication or,
as made in this paper, implementing a breath-first-search (BFS) method. There

3

are several reason to prefer this second approach over the first one in this type
of problems.

A graph is a data structure and we can describe it in different ways. Choosing
one over another can have an enormous impact on performance. In this case,
we need to remember the type of graph that we are dealing with: a very big
and sparse one. The fast matrix multiplication implement the graph as an n×n
matrix where the position (i, j) is zero if the nodes i, j are not linked, 1 (or a
generic number if weighted) otherwise. This method requires O(n2) space in
memory, that is an enormous quantity on a web-scale graph. Furthermore the
time complexity is O(n2.373 log n)} [Zwick 2002; Williams 2012]

Using the BFS method the space complexity is O(n+m), which is a very lower
value compared to the previous method. In terms of time, the complexity is
O(nm). Unfortunately, this is not enough to compute all the distances in a
reasonable time. It is also been proven that this method can not be improved.
In this paper I propose an exact algorithm to compute the top-k nodes with the
higher closeness centrality.

4

2 The algorithm

In a connected graph, given a node v ∈ V , we can define the its farness as

f(v) =
1

c(v)
=

1

n− 1

∑
w∈V

d(v, w) (2)

where c(v) is the closeness centrality defined in (1). Since we are working with
a disconnected graph, a natural generalization of this formula is

f(v) =
1

c(v)
=

1

r(v)− 1

∑
w∈V

d(v, w) (3)

where r(v) = |R(v)| is the cardinality of the set of reachable nodes from v. To
avoid any problem during the computation, this formula still needs to be mod-
ified. Let’s assume that the node v that we are considering has just one link at
distance 1 with another node w with out-degree 0. If we consider the formula
(3) we will get a false result: v would appear to be very central, even if it’s obvi-
ously very peripheral. To avoid this problem, we can generalize the formula (3)
normalizing as suggested in [Lin 1976; Wasserman and Faust 1994; Boldi

and Vigna 2013; 2014; Olsen et al. 2014]

f(v) =
n− 1

(r(v)− 1)2

∑
w∈R(v)

d(v, w) (4)

With the convention that in a case of 0
0 we set the closeness of v to 0

2.1 The lower bound technique

During the computation of the farness, for each node, we have to compute the
distance from that node and all the other ones reachable from it. Since we are
dealing with millions of nodes, it’s not possibile in a reasonable time. In order
to compute only the top-k most central node we need to find a way to avoid
computing BFS for nodes that won’t be in the top-k.

The idea is to keep track of a lower bound on the farness for each node that
we will compute. This will allow us to kill the BFS operation before reaches
the end if the lower bound tell us that the node will not be in the top-k. More
precisely:

• The algorithm will compute the farness of the first k nodes, saving them
in a vector top-actors. From now on, this vector will be full.

• Then, for all the next vertices, it defines a lower bound

n− 1

(n− 1)2
(σd−1 + nd · d) (5)

5

where σd is the partial sum in (4) at the level of exploration d. The lower
bound (5) is updated every time that we change level of exploration during
the BFS. In this way, if at a change of level the lower bound of the vertex
that we are considering is bigger than the k − th element of top-actors,
we can kill the BFS. The reason behind that is very simple: the vector
top-actors is populated with the top-k nodes in order and the farness is
inversely proportional to the closeness centrality. So if at that level the
lower bound is already bigger than the last element of the vector, there is
no need to compute the other level of the BFS since it will not be added
in top-actors anyway.

The (5) it’s a worst case scenario, and that makes it perfect for a lower
bound. If we are at the level d of exploration, we have already computed
the sum in (4) up to the level d − 1. Then we need consider in our
computation of the sum the current level of exploration: the worst case
gives us that it’s linked to all the nodes at distance d. We also put r(v) =
n, in the case that our graph is strongly connected and all vertices are
reachable form v.

Scrivere pseudocodice

6

3 The IMDB Case Study

The algorithm shown before can be applied to any dataset on which is possibile
to build a graph on. In this case we are considering tha data taken from the
Internet Movie Database (IMDB).

3.1 Data Structure

All the data used can be downloaded here: https://datasets.imdbws.com/

In particolar we’re interest in 3 files

• title.basics.tsv

• title.principals.tsv

• name.basics.tsv

• title.ratings.tsv

Let’s have a closer look to this 4 files:

title.basics.tsv

Contains the following information for titles:

• tconst (string) - alphanumeric unique identifier of the title

• titleType (string) – the type/format of the title (e.g. movie, short,
tvseries, tvepisode, video, etc)

• primaryTitle (string) – the more popular title / the title used by the
filmmakers on promotional materials at the point of release

• originalTitle (string) - original title, in the original language

• isAdult (boolean) - 0: non-adult title; 1: adult title

• startYear (YYYY) – represents the release year of a title. In the case of
TV Series, it is the series start year

• endYear (YYYY) – TV Series end year.

• runtimeMinutes – primary runtime of the title, in minutes

• genres (string array) – includes up to three genres associated with the
title

7

https://datasets.imdbws.com/

title.principals.tsv

Contains the principal cast/crew for titles:

• tconst (string) - alphanumeric unique identifier of the title

• ordering (integer) – a number to uniquely identify rows for a given titleId

• nconst (string) - alphanumeric unique identifier of the name/person

• category (string) - the category of job that person was in

• job (string) - the specific job title if applicable

• characters (string) - the name of the character played if applicable

name.basics.tsv

Contains the following information for names:

• nconst (string) - alphanumeric unique identifier of the name/person

• primaryName (string)– name by which the person is most often credited

• birthYear – in YYYY format

• deathYear – in YYYY format if applicable

• primaryProfession (array of strings)– the top-3 professions of the person

• knownForTitles (array of tconsts) – titles the person is known for

title.ratings.tsv

Contains the following information for titles:

• tconst (string) - alphanumeric unique identifier of the title

• averageRating – weighted average of all the individual user ratings

• numVotes – number of votes the title has received

8

3.2 Filtering

This is a crucial section for the algorithm in this particolar case study. This
raw data contains a huge amount of un-useful information that will just have
a negative impact on the performance during the computation. We are going
to see in detail all the modification made for each file. All this operation have
been implemented using python and the pandas library.

Since we want to build two different graph, some consideration will have to
be considered for the specific case. If nothing is told it means that the filtering
of that file is the same for both graphs.

3.2.1 name.basics.tsv

For this file we only need the following columns

• nconst

• primaryTitle

• primaryProfession

Since all the actors starts with the string nm0 we can remove it to clean the
output. Furthermore a lot of actors/actresses do more than one job (director
etc..). To avoid excluding important actors we consider all the ones that have
the string actor/actress in their profession. In this way, both someone who
is classified as actor or as actor, director is taken into consideration.

Then we can generate the final filtered file Attori.txt that has only two
columns: nconst and primaryName

3.2.2 title.basics.tsv

For this file we only need the following columns

• tconst

• primaryTitle

• isAdult

• titleType

Since all the movies starts with the string t0 we can remove it to clean the
output. In this case, we also want to remove all the movies for adults. This part
can be optional if we are interest only in the closeness and harmonic centrality.
Even if the actors and actresses of the adult industry use to make a lot of movies
together, this won’t alter the centrality result. As we know, an higher closeness
centrality can be seen as the ability of a node to spread efficiently information in

9

the network. Including the adult industry would lead to the creation of a very
dense and isolated neighborhood. But none of those nodes will have an higher
closeness centrality because they only spread information in their community.
This phenomenon will be discussed more deeply in the analysis of the graph
visualized.

We can also notice that there is a lot of junk in IMDb. To avoid dealing with
un-useful data, we are considering all the non-adult movies in this whitelist

• movie

• tvSeries

• tvMovie

• tvMiniSeries

The reason to only consider this categories is purely to optimize the performance
during the computation. On IMDb each episode is listed as a single element:
to remove them without loosing the most important relations, we only consider
the category tvSeries. This category list a TV-Series as a single element, not
divided in multiple episodes. In this way we will loose some of the relations
with minor actors that may appear in just a few episodes. But we will have
preserved the relations between the protagonists of the show.

Then we can generate the final filtered file FilmFiltrati.txt that has only
two columns: tconst and primaryTitle

3.2.3 title.principals.tsv

This file is needed for the analysis of both graphs, but there some different
observation between them. For the both we only need the following columns

• tconst

• nconst

• category

As before, we clean the output removing unnecessary strings.

Actors Graph

Using the data obtained before we create an array of unique actor ids (nconst)
and an array of how may times they appear (counts). This will give us the
number of movies they appear in. And here it comes the core of the opti-
mization for this graph. Let’s define a constant MINMOVIES. This integer is the
minimum number of movies that an actor needs to have made in his carrier to
be considered in this graph. The reason to do that it’s purely computational.

10

If an actor/actress has less then a reasonable number of movies made in his
carrier, there is an high probability that he/she has an important role in our
graph during the computation of the centralities.

Movies Graph

For this graph we don’t need any optimization on this file. We just clean clean
the output and leave the rest as it is

At the end, for both graph, we can finally generate the file Relazioni.txt

containing the columns tconst and nconst

3.2.4 title.ratings.tsv

This file is necessary just in the analysis of the movie graph, it won’t be even
downloaded for the analysis of the actors graph. We will only need the following
columns

• tconst

• numVotes

The idea behind the optimization made in this file is the same that we have used
before with the MINMOVIES technique. We want to avoid computing movies
that are not central with an high probability. To do that we consider the
number of votes that each movies has received on the IMDB website. To do
that we introduce the constant VOTES, considering only the movies with an
higher number of votes.During the analysis we will change this value to see how
it effects the list of the top-k most central movies.

In this case we don’t have to generate a new file, we can apply this condition to
FilmFiltrati.txt

11

4 An overview of the code

The algorithm implement is multi-threaded and written in C++

4.1 Data structures

In this case we are working with two simple struct for the classes Film and
Actor

1 struct Film {

2 string name;

3 vector <int > actor_indicies;

4 };

5

6 struct Actor {

7 string name;

8 vector <int > film_indices;

9 };

Then we need two dictionaries build like this

1 map <int , Actor > A; // Dictionary {actor_id (key): Actor (value)}

2 map <int , Film > F; // Dictionary {film_id (key): Film (value)}

We are considering the files Attori.txt and FilmFiltrati.txt, we don’t need
the relations one for now. Once that we have read this two files, we loop on
each one brutally filling the two dictionaries created before. If a line is empty,
we skip it. We are using a try and catch approach. Even if the good practice
is to use it only for a specific error, since we are outputting everything on the
terminal it makes sense to catch any error.

1 void DataRead ()

2 {

3 ifstream actors("data/Attori.txt");

4 ifstream movies("data/FilmFiltrati.txt");

5

6 string s,t;

7 const string space /* the final frontier */ = "\t";

8 for (int i = 1; getline(actors ,s); i++)

9 {

10 if (s.empty ())

11 continue;

12 try {

13 Actor TmpObj;

14 int id = stoi(s.substr(0, s.find(space)));

15 TmpObj.name = s.substr(s.find(space)+1);

16 A[id] = TmpObj; // Python notation , works with C++17

17 if (id > MAX_ACTOR_ID)

18 MAX_ACTOR_ID = id;

19 } catch (...) {

20 cout << "Could not read the line " << i << " of Actors

file" << endl;

21 }

22 }

12

23

24

25 for (int i = 1; getline(movies ,t); i++)

26 {

27 if (t.empty ())

28 continue;

29

30 try{

31 Film TmpObj;

32 int id = stoi(t.substr(0, t.find(space)));

33 TmpObj.name = t.substr(t.find(space)+1);

34 F[id] = TmpObj;

35 } catch (...) {

36 cout << "Could not read the line " << i << " of Film

file" << endl;

37 }

38 }

39 }

Now we can use the file Relazioni.txt. As before, we loop on all the
elements of this file, creating the variables

• id film: index key of each movie

• id attore: index key of each actor

If they both exists, we update the list of indices of movies that the actor/ac-
tresses played in. In the same way, we updated the list of indices of actors/ac-
tresses that played in the movies with that id.

1 void BuildGraph ()

2 {

3 ifstream relations("data/Relazioni.txt");

4 string s;

5 const string space = "\t";

6

7 for (int i=1; getline(relations ,s); i++){

8 if (s.empty ())

9 continue;

10 try {

11 int id_film = stoi(s.substr(0, s.find(space)));

12 int id_attore = stoi(s.substr(s.find(space)+1));

13 if (A.count(id_attore) && F.count(id_film)) { //

Exclude movies and actors filtered

14 A[id_attore]. film_indices.push_back(id_film);

15 F[id_film]. actor_indicies.push_back(id_attore);

16 }

17 } catch (...) {

18 cout << "Could not read the line " << i << " of

Releations file" << endl;

19 }

20 }

21 }

13

Now that we have defined how to build this graph, we have to implement the
algorithm what will return the top-k central elements.

The code can be found here: https://github.com/lukefleed/imdb-graph

14

https://github.com/lukefleed/imdb-graph
https://github.com/lukefleed/imdb-graph

5 Analysis of the results

In this section we are going to discuss the results of the top-k algorithm applied
to the IMDb graphs. We are particularly interested in two factors:

• The time needed to for the execution in function of different filtering
values.

• The discrepancy on the results while varying the filtering values

The first one will tell us how much more efficient the algorithm is in terms
of time, independently from the results. The second one is the metric to un-
derstand how accurate the filtered algorithm is. It’s clear that even if we can
compute the algorithm 100 times faster, it’s of no use if the results are com-
pletely different from the real ones.

The platform for the tests is a laptop, so can not be considered precise due
factors as thermal throttling. The CPU is an Intel(R) Core™ i7-8750H (6 cores,
12 threads), equipped with 16GB of DDR4 @2666 MHz RAM.

5.1 Actors graph

Let’s take into analysis the graph were each actors is a node and two nodes are
linked the if they played in a movie together. In the case, during the filtering, we
created the variable MIN ACTORS. This variable is the minimun number of movies
that an actor/actress has to have done to be considered in the computation.

Varying this variable obviously affects the algorithm, in different way. The
higher this variable is, the less actors we are taking into consideration. So, with
a smaller graph, we are expecting better results in terms of time execution. On
the other hand, we also can expect to have less accurate results. What we are
going to discuss is how much changing MIN ACTORS affects this two factors

5.1.1 Time of execution

TO DO

5.1.2 Discrepancy of the results

We want to analyze how truthful our results are while varying MIN ACTORS. The
methodology is simple: for each results (lists) we take the intersection of the
two. This will return the number of elements in common. Knowing the length
of the lists, we can find the number of elements not in common.

A way to see this results is with a square matrix n×n, A = (aij), where n is the
number of different values that we gave to MIN ACTORS during the testing. In
this way the (i, j) position is the percentage of discrepancy between the results
with MIN ACTORS set as i and j

This analysis is implemented in python using the pandas and numpy libraries.

15

1 dfs = {

2 i: pd.read_csv(f"top_actors_{i:02d}_c.txt", sep=’\t’, usecols

=[1], names =["actor"])

3 for i in [5] + list(range(10, 71, 10))}

4 sets = {i: set(df["actor"]) for i, df in dfs.items()}

5

6 diff = []

7 for i in sets.keys():

8 diff.append ([len(sets[i]) - len(sets[i] & sets[j]) for j in

sets.keys()])

9 diff = np.array(diff , dtype=float)

10 diff /= len(next(iter(sets.values ())))

Visualizing this analysis we obtain this

Figure 1: Discrepancy of the results on the actors graph in function of the
minimum number of movies required to be considered as a node

16

As expected, the matrix is symmetrical and the elements on the diagonal are
all equal to zero. We can see clearly that with a lower value of MIN ACTORS

the results are more precise. The discrepancy with MIN ACTORS=10 is 14% while
being 39% when MIN ACTORS=70.

This is what we obtain confronting the top-k results when k = 100. It’s interest-
ing to se how much the discrepancy change with different values of k. However,
choosing a lower value for k would not be useful for this type of analysis. Since
we are looking at the not common elements of two lists, with a small length, we
would get results biased by statistical straggling.

Da fare: test con con k=500 e k=1000

17

5.2 Movies Graphs

In this section we are taking into consideration the graph build over the movies
and their common actors/actresses. Due to an elevated number of nodes, to
optimize the performance during the execution in the section 3.2 we introduced
the variable VOTES. It represents the minimum number of votes (indifferently is
positive or negative) that a movie need to have on the IMDb database to be
considered as a node in our graph.

As seen during the analysis of the actors graph in 5.1, varying this kind of
variables affects the results in many ways. All the observations made before
are still valid for this case, I won’t repeat them for shortness. As done before
(5.1.2), we are going to use a matrix to visualize and analyze the results

Giving us:

Figure 2: Discrepancy of the results on the movie graph in function of the
minimum number of votes required to be considered as a node

18

1 dfs = {

2 i: pd.read_csv(f"top_movies_{i:02d}_c.txt", sep=’\t’, usecols

=[1], names =["movie"])

3 for i in [500, 1000, 5000, 10000 , 25000, 50000, 75000, 100000]}

4 sets = {i: set(df["movie"]) for i, df in dfs.items()}

5

6 diff = []

7 for i in sets.keys():

8 diff.append ([len(sets[i]) - len(sets[i] & sets[j]) for j in

sets.keys()])

9 diff = np.array(diff , dtype=float)

10 diff /= len(next(iter(sets.values ())))

Dire qualcosa sull’analisi, ma andrebbe rifatta perché i valori non vanno bene

19

6 Visualization of the graphs

Graphs are fascinating structures, visualizing them can give us a more deep
understanding of their proprieties. To do that we need to make some sacrifices.
We are dealing with millions of nodes, displaying them all would be impossibile,
especially on a web page as I did.

For each case we need to find a small (in the order of 1000) subset of nodes
S ⊂ V that we want to display. It’s important to take into consideration, as far
as we can, nodes that are ”important” in the graph

All this section is implemented in python using the library pyvis. The goal of
this library is to build a python based approach to constructing and visualizing
network graphs in the same space. A pyvis network can be customized on a
per node or per edge basis. Nodes can be given colors, sizes, labels, and other
metadata. Each graph can be interacted with, allowing the dragging, hovering,
and selection of nodes and edges. Each graph’s layout algorithm can be tweaked
as well to allow experimentation with rendering of larger graphs. It is designed
as a wrapper around the popular Javascript visJS library

6.1 Actors Graph

For the actors graph we choose the subset S as the actors with at least 100
movies made in their carrier. We can immediately deduct that this subset will
be characterized by actors and actresses of a certain age. But as we have seen,
having an high number of movies made it’s a good estimator for the closeness
centrality. It’s important to keep in mind that the graph will only show the
relations nodes in this subset. This means that even if an actor has 100 movies
made in his carrier, in this graph may have just a few relations. We can see this
graph as collaboration network between the most popular actors and actresses.

An interactive version can be found at this web page. It will take a few seconds
to render, it’s better to use a computer and not a smartphone.

Interactive version: https://lukefleed.xyz/imdb-graph.html

20

https://lukefleed.xyz/imdb-graph.html
https://lukefleed.xyz/imdb-graph.html

Figure 3: The collaboration network of the actors and actresses with more that
an 100 movies on the IMDb network

The results obtained is extremely interesting. We can clearly see how this
graph it’s characterized by different (and some times isolated) communities.
The nodes in them are all actors and actresses of the same nationality. There
are some very big clusters as the Bollywood ’s one that are almost isolated. Due
to cultural and linguistic differences those actors never collaborated with anyone
outside their country.

A visual analysis of this graph can reflects some of the proprieties that we saw
during the analysis of the results. Let’s take the biggest cluster, the Bollywood
one. Even if it’s very dense and the nodes have a lot of links, none of them
ever appeared in out top-k results during the testing. This happens due to the
proprieties of closeness centrality, the one that we are taking into consideration.
It can be seen as the ability of a node to transport information efficiently into
the graph. But the Bollywood’s nodes are efficient in transporting information
only in their communities.

A simple and heuristic way to see this phenomena is by grabbing in the
interactive graph a node with an higher centrality and dragging him around.
We’ll see that it will drag with him every community. If we repeat the same
action with a Bollywood node, it will only move the nodes of his community,
leaving almost un-moved all the other nodes

21

	Introduction
	The Problem

	The algorithm
	The lower bound technique

	The IMDB Case Study
	Data Structure
	Filtering
	name.basics.tsv
	title.basics.tsv
	title.principals.tsv
	title.ratings.tsv

	An overview of the code
	Data structures

	Analysis of the results
	Actors graph
	Time of execution
	Discrepancy of the results

	Movies Graphs

	Visualization of the graphs
	Actors Graph

