// g++ -Wall -pedantic -std=c++17 -Ofast -pthread kenobi.cpp -o kenobi #include #include #include #include #include #include #include #include #include #include #include #include // getline #include // find #include // ceil #include using namespace std; struct Film { string name; vector actor_indicies; }; struct Actor { string name; vector film_indices; }; map A; // Dictionary {actor_id (key): Actor (value)} map F; // Dictionary {film_id (value): Film (value)} int MAX_ACTOR_ID = -1; // Here DataRead() puts the larges actor_id loaded from Attori.txt const int N_THREADS = 12; // Number of threads to use for some functions void DataRead() { ifstream actors("data/Attori.txt"); // read the file ifstream movies("data/FilmFiltrati.txt"); // read the file string s,t; const string space /* the final frontier */ = "\t"; for (int i = 1; getline(actors,s); i++) { if (s.empty()) // jumps empty lines, sometimes can happen continue; try { Actor TmpObj; // Temporary object for the actor class int id = stoi(s.substr(0, s.find(space))); TmpObj.name = s.substr(s.find(space)+1); A[id] = TmpObj; // Matlab/Python notation, works since C++17 if (id > MAX_ACTOR_ID) MAX_ACTOR_ID = id; } catch (...) { cout << "Could not read the line " << i << " of Actors file" << endl; } } for (int i = 1; getline(movies,t); i++) { if (t.empty()) continue; try{ Film TmpObj; int id = stoi(t.substr(0, t.find(space))); TmpObj.name = t.substr(t.find(space)+1); F[id] = TmpObj; } catch (...) { cout << "Could not read the line " << i << " of Film file" << endl; } } } void BuildGraph() { ifstream relations("data/Relazioni.txt"); string s; const string space = "\t"; for (int i=1; getline(relations,s); i++){ // Scorro relations if (s.empty()) continue; try { int id_film = stoi(s.substr(0, s.find(space))); // Index of the movie int id_attore = stoi(s.substr(s.find(space)+1)); // Index of the actor if (A.count(id_attore) && F.count(id_film)) { // Do not consider the filtered ones A[id_attore].film_indices.push_back(id_film); F[id_film].actor_indicies.push_back(id_attore); } } catch (...) { cout << "Could not read the line " << i << " of Releations file" << endl; } } } void PrintGraph(size_t max_n_actors = 3) { const size_t n = min(max_n_actors, A.size()); // There could be less film than max actors! size_t i = 0; for (const auto& [id_attore, attore] : A) { cout << id_attore << " (" << attore.name << ")"; if (!attore.film_indices.empty()) { cout << ":\n"; for (int id_film : attore.film_indices) { cout << "\t- " << id_film << " (" << F[id_film].name << ")\n"; for (int id_attore_adj : F[id_film].actor_indicies) if (id_attore_adj != id_attore) cout << "\t\t* " << id_attore_adj << " (" << A[id_attore_adj].name << ")\n"; } } cout << endl; i++; // Taking count of how many are getting printed if (i >= n) // Stop when I arrive ad n break; } } // Find a movie by the title. Gives -1 if there is no match int FindFilm(string title) { for (const auto& [id, film] : F) if (film.name == title) return id; return -1; } // Find an actor by the name. Gives -1 if there is no match int FindActor(string name) { for (const auto& [id, actor] : A) if (actor.name == name) return id; return -1; } vector> closeness(const size_t k) { /* **************************** ALGORITHM **************************** Input : A graph G = (V, E) Output: Top k nodes with highest closeness and their closeness values c(v) global L, Q ← computeBounds(G); global Top ← [ ]; global Farn; for v ∈ V do Farn[v] = +∞; while Q is not empty do v ← Q.extractMin(); if |Top| ≥ k and L[v] > Farn[Top[k]] then return Top; Farn[v] ← updateBounds(v); // This function might also modify L add v to Top, and sort Top according to Farn; update Q according to the new bounds; - We use a list TOP containing all “analysed” vertices v1 , . . . , vl in increasing order of farness - A priority queue Q containing all vertices “not analysed, yet”, in increasing order of lower bound L (this way, the head of Q always has the smallest value of L among all vertices in Q). - At the beginning, using the function computeBounds(), we compute a first bound L(v) for each vertex v, and we fill the queue Q according to this bound. - Then, at each step, we extract the first element v of Q: if L(v) is smaller than the k-th biggest farness computed until now (that is, the farness of the k-th vertex in variable Top), we can safely stop, because for each x ∈ Q, f (x) ≤ L(x) ≤ L(v) < f (Top[k]), and x is not in the top k. - Otherwise, we run the function updateBounds(v), which performs a BFS from v, returns the farness of v, and improves the bounds L of all other vertices. Finally, we insert v into Top in the right position, and we update Q if the lower bounds have changed. The crucial point of the algorithm is the definition of the lower bounds, that is, the definition of the functions computeBounds and updateBounds. Now let's define a conservative way (due to the fact that I only have a laptop and 16GB of RAM) to implement this two functions - computeBounds: The conservative strategy computeBoundsDeg needs time O(n): it simply sets L(v) = 0 for each v, and it fills Q by inserting nodes in decreasing order of degree (the idea is that vertices with high degree have small farness, and they should be analysed as early as possible, so that the values in TOP are correct as soon as possible). Note that the vertices can be sorted in time O(n) using counting sort. - updateBounds(w): the conservative strategy updateBoundsBFSCut(w) does not improve L, and it cuts the BFS as soon as it is sure that the farness of w is smaller than the k-th biggest farness found until now, that is, Farn[Top[k]]. If the BFS is cut, the function returns +∞, otherwise, at the end of the BFS we have computed the farness of v, and we can return it. The running time of this procedure is O(m) in the worst case, but it can be much better in practice. It remains to define how the procedure can be sure that the farness of v is at least x: to this purpose, during the BFS, we update a lower bound on the farness of v. The idea behind this bound is that, if we have already visited all nodes up to distance d, we can upper bound the closeness centrality of v by setting distance d + 1 to a number of vertices equal to the number of edges “leaving” level d, and distance d + 2 to all the remaining vertices. **************************** END OF ALGORITHM **************************** */ // L = 0 for all vertices and is never update, so we do not need to define it. We will just loop over each vertex, in the order the map prefers. // We do not need to define Q either, as we will loop over each vertex anyway, and the order does not matter. vector> top_actors; // Each pair is (actor_index, farness). top_actors.reserve(k+1); // We need exactly k items, no more and no less. vector threads; mutex top_actors_mutex; // The threads write to top_actors, so another thread reading top_actors at the same time may find it in an invalid state (if the read happens while the other thread is still writing) threads.reserve(N_THREADS); for (int i = 0; i < N_THREADS; i++) { // Lancio i thread threads.push_back(thread([&top_actors,&top_actors_mutex,&k](int start) { vector enqueued(MAX_ACTOR_ID, false); // Vector to see which vertices with put in the queue during the BSF // We loop over each vertex for (int actor_id = start; actor_id <= MAX_ACTOR_ID; actor_id += N_THREADS) { if (!A.count(actor_id)) // The actor must exist, otherwise A[actor_id] would attempt to write A, and this may produce a race condition if multiple threads do it at the same time continue; // if |Top| ≥ k and L[v] > Farn[Top[k]] then return Top; => We can not exploit the lower bound of our vertex to stop the loop, as we are not updating lower bounds L. // We just compute the farness of our vertex using a BFS queue> q; // FIFO of pairs (actor_index, distance from our vertex). for (size_t i = 0; i < enqueued.size(); i++) enqueued[i] = false; int r = 0; // |R|, where R is the set of vertices reachable from our vertex long long int sum_distances = 0; // Sum of the distances to other nodes int prev_distance = 0; // Previous distance, to see when we get to a deeper level of the BFS q.push(make_pair(actor_id, 0)); // This vertex, which is at distance 0 enqueued[actor_id] = true; bool skip = false; while (!q.empty()) { auto [bfs_actor_id, distance] = q.front(); // Prendo l'elemento in cima alla coda q.pop(); // Try to set a lower bound on the farness if (distance > prev_distance) { top_actors_mutex.lock(); // Acquire ownership of the mutex, wait if another thread already owns it if (top_actors.size() == k) { // We are in the first item of the next exploration level // We assume r = A.size(), the maximum possible value double farness_lower_bound = 1.0 / ((double)A.size() - 1) * (sum_distances + q.size() * distance); if (top_actors[k-1].second <= farness_lower_bound) { // Stop the BFS skip = true; top_actors_mutex.unlock(); // Release the ownership break; } } top_actors_mutex.unlock(); // Release the ownership } // We compute the farness of our vertex actor_id r++; sum_distances += distance; // We loop on each actor on each film that bfs_actor_id played in, and add them to the queue for (int bfs_film_id : A[bfs_actor_id].film_indices) { for (int adj_actor_id : F[bfs_film_id].actor_indicies) { if (!enqueued[adj_actor_id]) { // The adjacent vertices have distance +1 with respect to the current vertex q.push(make_pair(adj_actor_id, distance+1)); enqueued[adj_actor_id] = true; } } } } if (skip) { cout << actor_id << " " << A[actor_id].name << " SKIPPED" << endl; continue; } // BFS is over, we compute the farness double farness; if (r <= 1) // Avoid computing something/0 farness = numeric_limits::infinity(); else farness = (double)(A.size()-1) / pow((double)r-1, 2) * (double)sum_distances; top_actors_mutex.lock(); // Acquire ownership of the mutex, wait if another thread already owns it // Insert the actor in top_actors, before the first element with farness >= than our actor's (i.e. sorted insertion) auto index = find_if(top_actors.begin(), top_actors.end(), [&farness](const pair& p) { return p.second > farness; }); top_actors.insert(index, make_pair(actor_id, farness)); if (top_actors.size() > k) top_actors.pop_back(); top_actors_mutex.unlock(); // Release the ownerhsip (we are done with top_actors) cout << actor_id << " " << A[actor_id].name << "\n\tCC: " << 1.0/farness << endl; // top_actors_lock gets destroyed after this line, releasing the mutex } }, i)); } for (auto& thread : threads) // Aspetto che tutti i thread abbiano finito thread.join(); return top_actors; } vector> harmonic(const size_t k) { // vector> top_actors; // Each pair is (actor_index, harmonic centrality). top_actors.reserve(k+1); // We need exactly k items, no more and no less. vector threads; mutex top_actors_mutex; // To prevent simultaneous accesses to top_actors threads.reserve(N_THREADS); for (int i = 0; i < N_THREADS; i++) { threads.push_back(thread([&top_actors,&top_actors_mutex,&k](int start) { vector enqueued(MAX_ACTOR_ID, false); // Vector to see which vertices with put in the queue during the BSF // We loop over each vertex for (int actor_id = start; actor_id <= MAX_ACTOR_ID; actor_id += N_THREADS) { if (!A.count(actor_id)) // The actor must exist, otherwise A[actor_id] would attempt to write A, and this may produce a race condition if multiple threads do it at the same time continue; // if |Top| ≥ k and L[v] > Farn[Top[k]] then return Top; => We can not exploit the lower bound of our vertex to stop the loop, as we are not updating lower bounds L. // We just compute the farness of our vertex using a BFS queue> q; // FIFO of pairs (actor_index, distance from our vertex). for (size_t i = 0; i < enqueued.size(); i++) enqueued[i] = false; int r = 0; // |R|, where R is the set of vertices reachable from our vertex double sum_reverse_distances = 0; // Sum of the distances to other nodes int prev_distance = 0; // Previous distance, to see when we get to a deeper level of the BFS q.push(make_pair(actor_id, 0)); enqueued[actor_id] = true; bool skip = false; while (!q.empty()) { auto [bfs_actor_id, distance] = q.front(); q.pop(); // Try to set an upper bound on the centrality if (distance > prev_distance) { top_actors_mutex.lock(); // Acquire ownership of the mutex, wait if another thread already owns it if (top_actors.size() == k) { // We are in the first item of the next exploration level double harmonic_centrality_upper_bound = sum_reverse_distances + q.size() / (double)distance + (A.size() - r - q.size()) / (double)(distance + 1); if (top_actors[k-1].second >= harmonic_centrality_upper_bound) { // Stop the BFS skip = true; top_actors_mutex.unlock(); // Release the ownership break; } } top_actors_mutex.unlock(); // Release the ownership } // We compute the farness of our vertex actor_id r++; if (distance != 0) sum_reverse_distances += 1.0/distance; // We loop on the adjacencies of bfs_actor_id and add them to the queue for (int bfs_film_id : A[bfs_actor_id].film_indices) { for (int adj_actor_id : F[bfs_film_id].actor_indicies) { if (!enqueued[adj_actor_id]) { // The adjacent vertices have distance +1 with respect to the current vertex q.push(make_pair(adj_actor_id, distance+1)); enqueued[adj_actor_id] = true; } } } } if (skip) { cout << actor_id << " " << A[actor_id].name << " SKIPPED" << endl; continue; } // BFS is over, we compute the farness double harmonic_centrality = sum_reverse_distances; if (!isfinite(harmonic_centrality)) continue; top_actors_mutex.lock(); // Acquire ownership of the mutex, wait if another thread already owns it // Insert the actor in top_actors, before the first element with farness >= than our actor's (i.e. sorted insertion) auto index = find_if(top_actors.begin(), top_actors.end(), [&harmonic_centrality](const pair& p) { return p.second < harmonic_centrality; }); top_actors.insert(index, make_pair(actor_id, harmonic_centrality)); if (top_actors.size() > k) top_actors.pop_back(); cout << actor_id << " " << A[actor_id].name << "\n\tHC: " << harmonic_centrality << endl; top_actors_mutex.unlock(); // Release the ownership } }, i)); } for (auto& thread : threads) thread.join(); return top_actors; } int main() { srand(time(NULL)); DataRead(); BuildGraph(); cout << "Numero film: " << F.size() << endl; cout << "Numero attori: " << A.size() << endl; PrintGraph(); // ------------------------------------------------------------- // // FUNZIONE CERCA FILMclos // cout << "Cerca film: "; // string titolo; // getline(cin, titolo); // int id_film = FindFilm(titolo); // cout << id_film << "(" << F[id_film].name << ")"; // if (!F[id_film].actor_indicies.empty()) { // cout << ":"; // for (int id_attore : F[id_film].actor_indicies) // cout << " " << id_attore << "(" << A[id_attore].name << ")"; // } // cout << endl; // // FUNZIONE CERCA ATTORE // cout << "Cerca attore: "; // string attore; // getline(cin, attore); // int id_attore = FindActor(attore); // cout << id_attore << "(" << A[id_attore].name << ")"; // if (!A[id_attore].film_indices.empty()) { // cout << ":"; // for (int id_attore : A[id_attore].film_indices) // cout << " " << id_attore << "(" << F[id_film].name << ")"; // Non worka ancora // } // cout << endl; // ------------------------------------------------------------- // cout << "Grafo, grafo delle mie brame... chi è il più centrale del reame?\n" <