You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
61 lines
2.5 KiB
Python
61 lines
2.5 KiB
Python
#!/usr/bin/env python3
|
|
import requests
|
|
import pandas as pd
|
|
import os
|
|
import csv
|
|
|
|
def download_url(url):
|
|
print("Downloading:", url)
|
|
file_name_start_pos = url.rfind("/") + 1
|
|
file_name = url[file_name_start_pos:]
|
|
if os.path.isfile(file_name):
|
|
print("Already downloaded: skipping")
|
|
return
|
|
|
|
r = requests.get(url, stream=True)
|
|
r.raise_for_status()
|
|
with open(file_name, 'wb') as f:
|
|
for chunk in r.iter_content(chunk_size=4096):
|
|
f.write(chunk)
|
|
return url
|
|
|
|
urls = ["https://datasets.imdbws.com/name.basics.tsv.gz",
|
|
"https://datasets.imdbws.com/title.principals.tsv.gz",
|
|
"https://datasets.imdbws.com/title.basics.tsv.gz"]
|
|
|
|
for url in urls:
|
|
download_url(url)
|
|
|
|
os.makedirs("data", exist_ok=True)
|
|
|
|
print("Filtering actors...")
|
|
df_attori = pd.read_csv(
|
|
'name.basics.tsv.gz', sep='\t', compression='gzip',
|
|
usecols=['nconst', 'primaryName', 'primaryProfession'],
|
|
dtype={'primaryName': 'U', 'primaryProfession': 'U'},
|
|
converters={'nconst': lambda x: int(x.lstrip("nm0"))})
|
|
df_attori.query('primaryProfession.str.contains("actor") or primaryProfession.str.contains("actress")', inplace=True)
|
|
df_attori.to_csv('data/Attori.txt', sep='\t', quoting=csv.QUOTE_NONE, escapechar='\\', columns=['nconst', 'primaryName'], header=False, index=False)
|
|
del df_attori # Free memory
|
|
|
|
print("Filtering films...")
|
|
df_film = pd.read_csv(
|
|
'title.basics.tsv.gz', sep='\t', compression='gzip',
|
|
usecols=['tconst', 'primaryTitle', 'isAdult', 'titleType'],
|
|
dtype={'primaryTitle': 'U', 'titleType': 'U'},
|
|
converters={'tconst': lambda x: int(x.lstrip("t0")), 'isAdult': lambda x: x != "0"})
|
|
df_film.query('not isAdult and titleType in ["movie", "tvSeries", "tvMovie", "tvMiniSeries"]',
|
|
inplace=True)
|
|
df_film.to_csv('data/FilmFiltrati.txt', sep='\t', quoting=csv.QUOTE_NONE, escapechar='\\', columns=['tconst', 'primaryTitle'], header=False, index=False)
|
|
filtered_tconsts = df_film["tconst"].to_list()
|
|
del df_film # Free memory
|
|
|
|
print("Filtering relations...")
|
|
df_relazioni = pd.read_csv(
|
|
'title.principals.tsv.gz', sep='\t', compression='gzip',
|
|
usecols=['tconst', 'nconst','category'],
|
|
dtype={'category': 'U'},
|
|
converters={'nconst': lambda x: int(x.lstrip("nm0")), 'tconst': lambda x: int(x.lstrip("t0"))})
|
|
df_relazioni.query('(category == "actor" or category == "actress") and tconst in @filtered_tconsts', inplace=True)
|
|
df_relazioni.to_csv('data/Relazioni.txt', sep='\t', quoting=csv.QUOTE_NONE, escapechar='\\', columns=['tconst', 'nconst'], header=False, index=False)
|