You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

76 lines
2.3 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%load_ext autoreload\n",
"%autoreload 2\n",
"\n",
"import os\n",
"import wget\n",
"import zipfile\n",
"import numpy as np\n",
"import pandas as pd\n",
"import networkx as nx\n",
"import plotly.graph_objects as go\n",
"from utils import *\n",
"from collections import Counter\n",
"from tqdm import tqdm\n",
"import time\n",
"\n",
"# ignore warnings\n",
"import warnings\n",
"warnings.filterwarnings(\"ignore\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# import the graphs from the saved files\n",
"G_brighkite_checkins = nx.read_gpickle(os.path.join('data', 'brightkite', 'brightkite_checkins_graph.gpickle'))\n",
"G_gowalla_checkins = nx.read_gpickle(os.path.join('data', 'gowalla', 'gowalla_checkins_graph.gpickle'))\n",
"G_foursquareEU_checkins = nx.read_gpickle(os.path.join('data', 'foursquare', 'foursquareEU_checkins_graph.gpickle'))\n",
"G_foursquareIT_checkins = nx.read_gpickle(os.path.join('data', 'foursquare', 'foursquareIT_checkins_graph.gpickle'))\n",
"\n",
"G_brighkite_friends = nx.read_gpickle(os.path.join('data', 'brightkite', 'brightkite_friendships_graph.gpickle'))\n",
"G_gowalla_friends = nx.read_gpickle(os.path.join('data', 'gowalla', 'gowalla_friendships_graph.gpickle'))\n",
"G_foursquareEU_friends = nx.read_gpickle(os.path.join('data', 'foursquare', 'foursquareEU_friendships_graph.gpickle'))\n",
"G_foursquareIT_friends = nx.read_gpickle(os.path.join('data', 'foursquare', 'foursquareIT_friendships_graph.gpickle'))"
2 years ago
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "916dbcbb3f70747c44a77c7bcd40155683ae19c65e1c03b4aa3499c5328201f1"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}