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Abstract

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, pla-
cerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, no-
nummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pel-
lentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.
Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla
ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in,
pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean fauci-
bus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor sem-
per nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis
quis, diam. Duis eget orci sit amet orci dignissim rutrum.
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1 Introduction

1.1 Graph Theory

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat
ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget,
consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant
morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras
viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus
sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc.
Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada
eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus.
Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci
dignissim rutrum.

1.2 Aim of the project

Given a social network, which of its nodes are more central? This question has been asked
many times in sociology, psychology and computer science, and a whole plethora of centrality
measures (a.k.a. centrality indices, or rankings) were proposed to account for the importance
of the nodes of a network.

These networks, typically generated directly or indirectly by human activity and interaction
(and therefore hereafter dubbed social”), appear in a large variety of contexts and often exhibit
a surprisingly similar structure. One of the most important notions that researchers have been
trying to capture in such networks is “node centrality”: ideally, every node (often representing
an individual) has some degree of influence or importance within the social domain under con-
sideration, and one expects such importance to surface in the structure of the social network;
centrality is a quantitative measure that aims at revealing the importance of a node.

Among the types of centrality that have been considered in the literature, many have to do with
distances between nodes. Take, for instance, a node in an undirected connected network: if
the sum of distances to all other nodes is large, the node under consideration is peripheral;
this is the starting point to define Bavelas’s closeness centrality [1], which is the reciprocal of
peripherality (i.e., the reciprocal of the sum of distances to all other nodes).

The role played by shortest paths is justified by one of the most well-known features of complex
networks, the so-called small-world phenomenon. A small-world network [2] is a graph where
the average distance between nodes is logarithmic in the size of the network, whereas the clus-
tering coefficient is larger (that is, neighborhoods tend to be denser) than in a random Erdős-
Rényi graph with the same size and average distance. The fact that social networks (whether
electronically mediated or not) exhibit the small-world property is known at least since Mil-
gram’s famous experiment [] and is arguably the most popular of all features of complex net-
works. For instance, the average distance of the Facebook graph was recently established to be
just 4.74 [3].
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2 The Erdős-Rényi model

Before 1960, graph theory mainly dealt with the properties of specific individual graphs. In
the 1960s, Paul Erdős and Alfred Rényi initiated a systematic study of random graphs. Random
graph theory is, in fact, not the study of individual graphs, but the study of a statistical ensemble
of graphs (or, as mathematicians prefer to call it, a probability space of graphs). The ensemble
is a class consisting of many different graphs, where each graph has a probability attached to
it. A property studied is said to exist with probability P if the total probability of a graph in
the ensemble possessing that property is P (or the total fraction of graphs in the ensemble that
has this property is P ). This approach allows the use of probability theory in conjunction with
discrete mathematics for studying graph ensembles. A property is said to exist for a class of
graphs if the fraction of graphs in the ensemble which does not have this property is of zero
measure. This is usually termed as a property of almost every (a.e.) graph. Sometimes the terms
“almost surely” or “with high probability” are also used (with the former usually taken to mean
that the residual probability vanishes exponentially with the system size).

2.1 Erdős-Rényi graphs

Two well-studied graph ensembles are GN ,M , the ensemble of all graphs with N nodes and M
edges, and GN ,p , the ensemble of all graphs with N nodes and probability p of any two nodes
being connected. These two families, initially studied by Erdős and Rényi, are known to be
similar if M = (N

2

)
p, so as long p is not too close to 0 or 1 they are referred to as ER graphs.

An important attribute of a graph is the average degree, i.e., the average number of edges con-
nected to each node. We will denote the degree of the ith node by ki and the average degree by
〈r 〉 . N -vertex graphs with 〈k〉 =O(N 0) are called sparse graphs.

An interesting characteristic of the ensemble GN ,p is that many of its properties have a related
threshold function, pt (N ), such that the property exists, in the “thermodynamic limit” of N →
∞ with probability 0 if p < pt , and with probability 1 if p > pt . This phenomenon is the same
as the physical concept of a percolation phase transition.

Another property is the average path length between any two nodes, which in almost every
graph of the ensemble (with 〈k〉 > 1 and finite) is of order ln N . The small, logarithmic distance
is actually the origin of the “small-world” phenomena that characterize networks.

2.2 Scale-free networks

The Erdős-Rényi model has traditionally been the dominant subject of study in the field of ran-
dom graphs. Recently, however, several studies of real-world networks have found that the ER
model fails to reproduce many of their observed properties. One of the simplest properties of
a network that can be measured directly is the degree distribution, or the fraction P(k) of nodes
having k connections (degree k). A well-known result for ER networks is that the degree distri-
bution is Poissonian,
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P (k) = ez zk

k !
(1)

Where z = 〈k〉. is the average degree. Direct measurements of the degree distribution for real

networks show that the Poisson law does not apply. Rather, often these nets exhibit a scale-free
degree distribution:

P (k) = ck−γ for k = m, ...,K (2)

Where c ∼ (γ−1)mγ−1 is a normalization factor, and m and K are the lower and upper cutoffs
for the degree of a node, respectively. The divergence of moments higher then ⌈γ−1⌉ (as K →
∞ when N →∞) is responsible for many of the anomalous properties attributed to scale-free
networks.

All real-world networks are finite and therefore all their moments are finite. The actual value of
the cutoff K plays an important role. It may be approximated by noting that the total probability
of nodes with k > K is of order 1/N ∫ ∞

K
P (k)dk ∼ 1

N
(3)

This yields the result

K ∼ mN 1/(γ−1) (4)

The degree distribution alone is not enough to characterize the network. There are many other
quantities, such as the degree-degree correlation (between connected nodes), the spatial cor-
relations, the clustering coefficient, the betweenness or central-ity distribution, and the self-
similarity exponents.

2.3 Diameter and fractal dimension

Regular lattices can be viewed as networks embedded in Euclidean space, of a well-defined
dimension, d . This means that n(r ), the number of nodes within a distance r from an origin,
grows as n(r ) ∼ r d (for large r ). For fractal objects, d in the last relation may be a non-integer
and is replaced by the fractal dimension d f

An example of a network where the above power laws are not valid is the Cayley tree (also known
as the Bethe lattice). The Cayley tree is a regular graph, of fixed degree z, and no loops. An
infinite Cayley tree cannot be embedded in a Euclidean space of finite dimensionality. The
number of nodes at l is n(l ) ∼ (z −1)l . Since the exponential growth is faster than any power
law, Cayley trees are referred to as infinite-dimensional systems.

In most random network models, the structure is locally tree-like (since most loops occur only
for n(l ) ∼ N ), and since the number of nodes grows as n(l ) ∼ 〈k − 1〉l , they are also infinite
dimensional. As a consequence, the diameter of such graphs (i.e., the minimal path between
the most distant nodes) scales as D ∼ ln N . Many properties of ER networks, including the
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logarithmic diameter, are also present in Cayley trees. This small diameter in ER graphs and
Cayley trees is in contrast to that of finite-dimensional lattices, where D ∼ N 1/dl .

Similar to ER, percolation on infinite-dimensional lattices and the Cayley tree yields a critical
threshold pc = 1/(z −1). For p > pc , a “giant cluster” of order N exists, whereas for p < pc,only
small clusters appear. For infinite-dimensional lattices (similar to ER networks) at criticality,
p = pc , the giant component is of size N 2/3. This last result follows from the fact that percola-
tion on lattices in dimension d ≥ dc = 6 is in the same universality class as infinite-dimensional
percolation, where the fractal dimension of the giant cluster is d f = 4, and therefore the size of
the giant cluster scales as N d f /dc = N 2/3. The dimension dc is called the “upper critical dimen-
sion.” Such an upper critical dimension exists not only in percolation phenomena, but also in
other physical models, such as in the self-avoiding walk model for polymers and in the Ising
model for magnetism; in both these cases dc = 4.
Watts and Strogatz suggested a model that retains the local high clustering of lattices (i.e., the
neighbors of a node have a much higher probability of being neighbors than in random graphs)
while reducing the diameter to D ∼ ln N . This so-called, “small-world network” is achieved
by replacing a fraction ϕ of the links in a regular lattice with random links, to random distant
neighbors.

2.4 Random graphs as a model of real networks

Many natural and man-made systems are networks, i.e., they consist of objects and interactions
between them. These include computer networks, in particular the Internet, logical networks,
such as links between WWW pages, and email networks, where a link represents the presence
of a person’s address in another person’s address book. Social interactions in populations, work
relations, etc. can also be modeled by a network structure. Networks can also describe possi-
ble actions or movements of a system in a configuration space (a phase space), and the nearest
configurations are connected by a link. All the above examples and many others have a graph
structure that can be studied. Many of them have some ordered structure, derived from geo-
graphical or geometrical considerations, cluster and group formation, or other specific prop-
erties. However, most of the above networks are far from regular lattices and are much more
complex and random in structure. Therefore, it can be assumed (with a lot of precaution) that
they maintain many properties of the appropriate random graph model.

In many aspects scale-free networks can be regarded as a generalization of ER networks. For
large γ (usually, for γ > 4) the properties of scale-free networks, such as distances, optimal
paths, and percolation, are the same as in ER networks. In contrast, for γ < 4, these proper-
ties are very different and can be regarded as anomalous. The anomalous behavior of scale-
free networks is due to the strong heterogeneity in the degree of the nodes, which breaks the
node-to-node translational homogeneity (symmetry) that exists in the classical homogeneous
networks, such as lattices, Cayley trees, and ER graphs. The small variation of the degrees in the
ER model or in scale-free networks with large g amma is insufficient to break this symmetry,
and therefore many results for ER networks are the same as for Cayley trees, where the degree
of each node is the same.
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3 Characterization of real-world networks

3.1 Properties of real-world networks

Una piccola introduzione

3.1.1 Degree distribution

The degree of a node is the number of links connected to it. In directed networks, one can
distinguish between the in-degree, out-degree, and the total degree (which is the sum of the
two). The degree distribution, P (k), is the fraction of sites having degree k. As can be seen
above, many real networks do not exhibit a Poisson degree distribution, as predicted in the ER
model. In fact, many of them exhibit a distribution with a long, power-law, tail, P (k) ∼ k−γ with
some γ, usually between 2 and 3.

3.1.2 Distances and optimal paths

Since many networks are not embedded in real space, the geometrical distance between nodes
is meaningless. The most important distance measure in such networks is the minimal num-
ber of hops (or chemical distance). That is, the distance between two nodes in the network is
defined as the number of edges in the shortest path between them. If the edges are assumed to
be weighted, the lowest total weight path, called the optimal path, may also be used. The usual
mathematical definition of the diameter of the network is the length of the path between the
farthest nodes in the network.

3.1.3 Clustering

The clustering coefficient is usually related to a community represented by local structures. The
usual definition of clustering (sometimes also referred to as transitivity) is related to the number
of triangles in the network. The clustering is high if two nodes sharing a neighbor have a high
probability of being connected to each other. There are two common definitions of clustering.
The first is global,

C = 3× the number of triangles in the network

the number of connected triples of vertices
(5)

where a “connected triple” means a single vertex with edges running to an unordered pair of
other vertices.

A second definition of clustering is based on the average of the clustering for single nodes. The
clustering for a single node is the fraction of pairs of its linked neighbors out of the total number
of pairs of its neighbors:

Ci = the number of triangles connected to vertex i

the number of triples centered on vertex i
(6)

For vertices with degree 0 or 1, for which both numerator and denominator are zero, we use
Ci = 0. Then the clustering coefficient for the whole network is the average
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C = 1

n

∑
i

Ci (7)

In both cases the clustering is in the range 0 ≤C ≤ 1.

In random graph models such as the ER model and the configuration model, the clustering
coefficient is low and decreases to 0 as the system size increases. This is also the situation in
many growing network models. However, in many real-world networks the clustering coef-
ficient is rather high and remains constant for large network sizes. This observation led to the
introduction of the small-world model, which offers a combination of a regular lattice with high
clustering and a random graph.

3.1.4 Correlations

In random graph models, it is usually assumed that there are no correlations between the de-
grees of neighboring nodes. That is, the probability of reaching a node by following a link is
independent of the node from which the link emanated. In many real-world networks, how-
ever, this is not the case. Several types of correlations exist, depending on the internal prop-
erties of the nodes. However, when considering only the network topology, the main types of
correlations that have been studied are the degree-degree correlations.

Degree-degree correlations are represented by P (k,k ′), the probability that a node of degree k
is connected to a node of degree k . If no correlation exists, given an edge, then the probability
that it leads to a node of degree k is kP (k)/〈〉. Thus, the probability that an edge leads from a
node of degree k to a node of degree k is P (k,k ′) = kk ′P (k)P (k ′)/〈k〉2 (where each direction of
the edge is counted separately).

An alternative approach for studying correlations is analyzing the average degree of neighbor-
ing nodes as a function of the degree, i.e., 〈k〉nn(k). This yields a one-parameter curve that can
be easily studied. One can also calculate the correlation coefficient, r , between the degrees of
neighboring sites

r = 〈ki k j 〉−〈k2〉
〈k2〉−〈k〉 (8)

where averages are taken over all pairs of neighbors, i and j .

3.2 Betweenness centrality: what is your importance in the network?

The importance of a node in a network depends on many factors. A website may be important
due to its content, a router due to its capacity. Of course, all of these properties depend on
the nature of the studied network, and may have very little to do with the graph structure of
the network. We are particularly interested in the importance of a node (or a link) due to its
topological function in the network. It is reasonable to assume that the topology of a network
may dictate some intrinsic importance for different nodes. One measure of centrality can be
the degree of a node. The higher the degree, the more the node is connected, and therefore, the
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higher is its centrality in the network. However, the degree is not the only factor determining a
node’s importance

One of the most accepted definitions of centrality is based on counting paths going through a
node. For each node, i, in the network, the number of “routing” paths to all other nodes (i.e.,
paths through which data flow) going through i is counted, and this number determines the
centrality i. The most common selection is taking only the shortest paths as the routing paths.
This leads to the following definition: the betweenness centrality of a node, i, equals the number
of shortest paths between all pairs of nodes in the network going through it, i.e.,

g (i ) = ∑
{ j ,k}

gi ( j ,k) (9)

where the notation { j ,k} stands for summing each pair once, ignoring the order, and gi ( j ,k)
equals 1 if the shortest path between nodes j and k passes through node i and 0 otherwise.
In fact, in networks with no weight (i.e., where all edges have the same length), there might be
more than one shortest path. In that case, it is common to take gi ( j ,k) =Ci ( j ,k)/C ( j ,k), where
C ( j ,k) is the number of shortest paths between j and k, and Ci ( j ,k) is the number of those
going through i . 1

The usefulness of the betweenness centrality in identifying bottlenecks and important nodes
in the network has led to applications in identifying communities in biological and social net-
works.

Alternative There are other approaches to the importance of nodes. A well-known example is
the Page Rank algorithm used to determine the importance of WWW pages based on the links
pointing to them. This algorithm initiates a random walk at a random node, following a random
link at each node, with some small probability, at every step, of jumping to a randomly chosen
node without following a link. This algorithm gives high importance (high probability of hitting)
to nodes with a high number of links pointing to them, and also to nodes pointed to by these
nodes

1Several variations of this scheme exist, focusing, in particular, on how to count distinct shortest paths (if sev-
eral shortest paths share some edges). These differences tend to have a very small statistical influence in random
complex networks, where the number of short loops is small. Therefore, we will concentrate on the above defini-
tion 9. Another nuance is whether the source and destination are considered part of the shortest path. This is also
irrelevant for very high degree nodes, on which we will mainly focus.
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4 The Small-World Model

It should be clarified that real networks are not random. Their formation and development
are dictated by a combination of many different processes and influences. These influencing
conditions include natural limitations and processes, human considerations such as optimal
performance and robustness, economic considerations, natural selection and many others.
Controversies still exist regarding the measure to which random models represent real-world
networks. However, in this chapter we will focus on random network models and attempt to
show if their properties may still be used to study properties of real-world networks.

Many real-world networks have many properties that cannot be explained by the ER model.
One such property is the high clustering observed in many real-world networks. This led Watts
and Strogatz to develop an alternative model, called the “small-world” model. Their idea was
to begin with an ordered lattice, such as the k-ring (a ring where each site is connected to its 2k
nearest neighbors - k from each side) or the two-dimensional lattice (see Figure 1). For each site,
each of the links emanating from it is removed with probability ϕ and is rewired to a randomly
selected site in the network. A variant of this process is to add links rather than rewire, which
simplifies the analysis without considerably affecting the results. The obtained network has the
desirable properties of both an ordered lattice (large clustering) and a random network (small
world), as we will discuss below.

Figure 1: Small-world networks with an underlying ring structure. (a) A small-world network
formed by adding shortcuts to a simple ring (with k = 1). (b) A small-world network formed by
adding shortcuts to a ring with k = 3.

4.1 Clustering in a small-world network

The simplest way to treat clustering analytically in a small-world network is to use the link ad-
dition, rather than the rewiring model. In the limit of large network size, N → ∞, and for a
fixed fraction of shortcuts φ, it is clear that the probability of forming triangle vanishes as we
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approach 1/N , so the contribution of the shortcuts to the clustering is negligible. Therefore,
the clustering of a small-world network is determined by its underlying ordered lattice. For ex-
ample, consider a ring where each node is connected to its k closest neighbors from each side.
A node’s number of neighbors is therefore 2k, and thus it has 2k(2k −1)/2 = k(2k −1) pairs of
neighbors. Consider a node, i . All of the k nearest nodes on i ’s left are connected to each other,
and the same is true for the nodes on i ’s right. This amounts to 2k(k−1)/2 = k(k−1) pairs. Now
consider a node located d places to the left of k. It is also connected to its k nearest neighbors
from each side. Therefore, it will be connected to k −d neighbors on i ’s right side. The total
number of connected neighbor pairs is

k(k −1)+
k∑

d=1
(k −d) = k(k −1)+ k(k −1)

2
= 3

2
k(k −1) (10)

and the clustering coefficient is:

C =
3
2 k(k −1)

k(2k −1)
= 3(k −1)

2(2k −1)
(11)

For every k > 1, this results in a constant larger than 0, indicating that the clustering of a small-
world network does not vanish for large networks. For large values of k, the clustering coeffi-
cient approaches 3/4, that is, the clustering is very high. Note that for a regular two-dimensional
grid, the clustering by definition is zero, since no triangles exist. However, it is clear that the grid
has a neighborhood structure.

4.2 Distances in a small-world network

The second important property of small-world networks is their small diameter, i.e., the small
distance between nodes in the network. The distance in the underlying lattice behaves as the
linear length of the lattice, L. Since N ∼ Ld where d is the lattice dimension, it follows that the
distance between nodes behaves as:

l ∼ L ∼ N 1/d (12)

Therefore, the underlying lattice has a finite dimension, and the distances on it behave as a
power law of the number of nodes, i.e., the distance between nodes is large. However, when
adding even a small fraction of shortcuts to the network, this behavior changes dramatically.

Let’s try to deduce the behavior of the average distance between nodes. Consider a small-world
network, with dimension d and connecting distance k (i.e., every node is connected to any
other node whose distance from it in every linear dimension is at most k). Now, consider the
nodes reachable from a source node with at most r steps. When r is small, these are just the r-
th nearest neighbors of the source in the underlying lattice. We term the set of these neighbors
a “patch”. the radius of which is kr , and the number of nodes it contains is approximately
n(r ) = (2kr )d .

We now want to find the distance r for which such a patch will contain about one shortcut. This
will allow us to consider this patch as if it was a single node in a randomly connected network.

11



Assume that the probability for a single node to have a shortcut is Φ. To find the length for
which approximately one shortcut is encountered, we need to solve for r the following equa-
tion: (2kr )dΦ= 1. The correlation length ξ defined as the distance (or linear size of a patch) for
which a shortcut will be encountered with high probability is therefore,

ξ= 1

kΦ1/d
(13)

Note that we have omitted the factor 2, since we are interested in the order of magnitude. Let
us denote by V (r ) the total number of nodes reachable from a node by at most r steps, and by
a(r ), the number of nodes added to a patch in the r-th step. That is, a(r ) = n(r )−n(r −1). Thus,

a(r ) ∼ dn(r )

dr
= 2kd(2kr )d−1 (14)

When a shortcut is encountered at the r step from a node, it leads to a new patch 2. This new
patch occurs after r ′ steps, and therefore the number of nodes reachable from its origin is V (r −
r ′). Thus, we obtain the recursive relation

V (r ) =
r∑

r ′=0

a(r ′)[1+ξ−d V (r − r ′)] (15)

where the first term stands for the size of the original patch, and the second term is derived from
the probability of hitting a shortcut, which is approximately ξ−d for every new node encoun-
tered. To simplify the solution of 15, it can be approximated by a differential equation. The sum
can be approximated by an integral, and then the equation can be differentiated with respect to
r . For simplicity, we will concentrate here on the solution for the one-dimensional case, with
k = 1, where a(r ) = 2. Thus, one obtains

dV (r )

dr
= 2[1+V (r )/ξ] (16)

the solution of which is:

V (r ) = ξ
(
e2r /ξ−1

)
(17)

For r ≪ ξ, the exponent can be expanded in a power series, and one obtains V (r ) ∼ 2r = n(r ), as
expected, since usually no shortcut is encountered. For r g gξ, V (r ). An approximation for the
average distance between nodes can be obtained by equating V (r ) from 17 to the total number
of nodes, V (r ) = N . This results in

r ∼ ξ

2
ln

N

ξ
(18)

As apparent from 18, the average distance in a small-world network behaves as the distance in
a random graph with patches of size ξ behaving as the nodes of the random graph.

2It may actually lead to an already encountered patch, and two patches may also merge after some steps, but
this occurs with negligible probability when N →∞ until most of the network is reachable
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5 Detecting Small-Worldness

As we have seen, many real technological, biological, social, and information networks fall into
the broad class of small-world networks, a middle ground between regular and random net-
works: they have high local clustering of elements, like regular networks, but also short path
lengths between elements, like random networks. Membership of the small-world network
class also implies that the corresponding systems have dynamic properties different from those
of equivalent random or regular networks.

However, the existing small-world definition is a categorical one, and breaks the continuum of
network topologies into the three classes of regular, random, and small-world networks, with
the latter being the broadest. It is unclear to what extent the real-world systems in the small-
world class have common network properties and to what specific point in the middle-ground
(between random and regular) a network generating model must be tuned to genuinely capture
the topology of such systems.

The current state of the art algorithm in the field of small-world network analysis is based on the
idea that small-world networks should have some topological structure, reflected by properties
such as an high clustering coefficient. On the other hand, random networks (as the Erdős-Rényi
model) have no such structure and, usually, a low clustering coefficient. The current state of the
art algorithms can be empirically described in the following steps:

1. Compute the average shortest path length L and the average clustering coefficient C of
the target system.

2. Create an ensemble of random networks with the same number of nodes and edges as the
target system. Usually, the random networks are generated using the Erdős-Rényi model.

3. Compute the average shortest path length Lr and the average clustering coefficient Cr of
each random network in the ensemble.

4. Compute the normalized average shortest path length λ := L/Ln and the normalized av-
erage clustering coefficient γ :=C /Cn

5. If λ and γ are close to 1, then the target system is a small-world network.

One of the problems with this interpretations is that we have no information on how the average
shortest path scales with the network size. Specifically, a small-world network is defined to be
a network where the typical distance L between two randomly chosen nodes (the number of
steps required) grows proportionally to the logarithm of the number of nodes N in the network.

L ∝ N

But since we are working with a real-world network, there is no such thing as "same network
with different number of nodes". So this definition, can’t be applied in this case.

Furthermore, let’s try to take another approach. We can consider a definition of small-world
network that it’s not directly depend of γ and λ, e.g:
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A small-world network is a spatial network with added long-range connections.

Then we still cannot make robust implications as to whether such a definition is fulfilled just
using γ and λ (or in fact other network measures). The interpretation of many studies assumes
that all networks are a realization of the Watts-Strogatz model for some rewiring probability,
which is not justified at all! We know many other network models, whose realizations are en-
tirely different from the Watts-Strogatz model.

The above method is not robust to measurement errors. Small errors when establishing a net-
work from measurements suffice to make, e.g., a lattice look like a small-world network. See [4]
and [5].
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